Текст книги "Обзор ядерных аварий с возникновением СЦР (LA-13638)"
Автор книги: В. Фролов
Соавторы: Б. Рязанов,Норман Прувост,Шан Монахан,Томас Маклафлин,В. Свиридов
Жанр:
Физика
сообщить о нарушении
Текущая страница: 3 (всего у книги 18 страниц)
Раствор уранилнитрата, U(93 %), в сборнике воды; многочисленные осцилляции мощности; существенные дозы получили восемь человек.
Авария произошла в крыле С-1 здания 9212 во время выполнения технологического процесса выделения обогащенного урана U(93 %) из различных твердых отходов. Твердые отходы растворялись в азотной кислоте, производилась очистка, раствор концентрировался, а затем перерабатывался в тетрафторид урана. В крыле В-1 этого здания была смонтирована и находилась в эксплуатации сходная система с применением более совершенной технологии. Однако, вследствие задержек с вводом в действие оборудования по переработке UF4 в крыле В-1, раствор, который там производился, транспортировался в крыло С-1 для окончательной переработки.
На протяжении нескольких дней, непосредственно предшествовавших аварии, установка (здание 9212) была остановлена для проведения физической инвентаризации. Вследствие сложности установки, на проведение физической инвентаризации требовалось несколько дней, причем не все процессы останавливались и запускались в одно и то же время. К моменту аварии производство уже было возобновлено в крыле В-1, но не в крыле С-1.
На рисунке 9 показаны емкости и оборудование, находившиеся в крыле С-1, которые оказались вовлеченными в аварию. Для проведения физической инвентаризации потребовались вскрытие и зачистка трех емкостей диаметром 5 дюймов[1]1
Расположение и размеры труб были такими, чтобы исключить достижения критического состояния с используемыми растворами.
[Закрыть] (127 мм) (FSTK 1–2, FSTK 6–1, FSTK 6–2), которые использовались для хранения раствора уранилнитрата. Перед возобновлением операций было необходимо осуществить сборку емкостей и проверить их герметичность. На проведение всего процесса обычно требовалось несколько восьмичасовых смен.
Примерно в 01:00, во время смены, предшествующей аварии (с 23:00 в воскресенье 15 июня до 07:00 в понедельник 16 июня), начальник смены, работавшей в крыле С-1, заметил, что в стеклянном стояке диаметром 6 дюймов (152 мм), который являлся частью аппаратуры для коррекции рН (рис. 9), находится раствор уранилнитрата. Он дал инструкции оператору осушить стояк. В 05:00 начальник смены снова заметил уранилнитрат в стояке и спросил оператора, сливал ли он раствор из стояка. Оператор подтвердил выполнение этой операции, и при дальнейшем изучении они обнаружили, что раствор попадает в стояк через клапан V-2. Клапан был закрыт, и стояк был снова освобожден от раствора.
В 07:00 16 июня произошла пересменка, и начальник смены, работавшей в крыле С-1, ушел домой. Свидетельства о том, проинформировал ли он своего сменщика о протечках уранилнитрата, были противоречивыми, однако в рабочем журнале отметка об этом отсутствовала.
В 08:00 в крыло С-1 прибыл еще один начальник смены. Кроме других заданий, он должен был проконтролировать герметичность трех емкостей. Емкости были зачищены и смонтированы на предыдущей неделе. При этом в крыле С-1 еще не были возобновлены работы. Получив эту информацию, проверяющий счел, что необязательно проверять показания уровнемеров и убеждаться в том, каково состояние каждого клапана (открыты они или закрыты). Проверяющий назначил двух операторов для проверки герметичности трех емкостей (для этого предполагалось просто наполнить корпуса водой) и дал им конкретное указание проверить клапан V-1, так как в крыле В-1 были возобновлены работы.
Рисунок 9. Упрощенная схема емкостей и трубопроводов, расположенных в крыле С-1.
Для всех оставалось неизвестным, что через клапан V-1 на протяжении нескольких часов, прошедших с начала предыдущей смены до примерно 13:30, происходила утечка уранилнитрата, поступающего из крыла В-1. В это время один из операторов в соответствии с инструкцией, полученной от начальника смены, проверил клапан и полностью перекрыл его, приложив давление. До этого момента уранилнитрат собирался в емкости FSTK 1–2, так как клапан V-3 также был открыт.
Вскоре после 14:00 операторы завершили проверку герметичности емкостей FSTK 6–1 и 6–2 и открыли клапаны V-4, V-5 и V-11 для того, чтобы выпустить воду из этих емкостей в барабан объемом 55 галлонов (208 л). В соответствии с принятой практикой проведения контроля герметичности, один из операторов остался непосредственно возле барабана для осуществления наблюдения и выявления нештатных ситуаций. Клапан V-3 был уже открыт, причем потоки растворов из этих емкостей были таковы, что в барабан сначала перетекала жидкость из емкости FSTK 1–2, т. е. уранилнитрат попадал в барабан прежде, чем туда попадала вода. Примерно в 14:05 оператор заглянул в барабан и заметил желто-коричневые пары, поднимающиеся из жидкости. Он отступил от барабана и через несколько секунд увидел голубую вспышку, которая свидетельствовала о том, что произошел резкий всплеск мощности. Практически сразу же после этого сработала аварийная сигнализация, и персонал был эвакуирован из здания. Дальнейший приток воды на протяжении 11 мин приводил к увеличению положительной реактивности, а затем стал уменьшать ее. Раствор стал подкритичным примерно через 20 мин.
Последующее изучение ситуации показало, что с момента открытия клапана V-11 до достижения системой критичности прошло полных 15 минут. Неизвестно, почему оператор, стоявший возле барабана (имевший 6 лет стажа работы с ураном), не заметил протекающий в барабан желтый раствор уранилнитрата.
К тому моменту, когда система стала критичной, объем раствора, собравшегося в цилиндре высотой 234,5 мм и диаметром 552 мм, составил, по оценкам, примерно 56 л. Масса 235U в этот момент составляла 2,1 кг, из которых 0,4 кг было добавлено одновременно с начавшимся процессом разбавления системы водой. Во время всплеска мощности система регистрации излучения (состоящая из ионизационной камеры со слоем бора, усилителя и самописца), которая была установлена на расстоянии примерно 430 м от места аварии, зашкалила вследствие высокой интенсивности излучения. Примерно через 15 секунд после первого всплеска мощности прибор снова зашкалил. В течение последующих 2,6 минут кривая самописца осциллировала неопределенное число раз. Возможно, что происходило уменьшение амплитуды осцилляций, однако это нельзя подтвердить при изучении вида кривой. За этим периодом развития ситуации последовал медленный спад на протяжении 18 минут до уровня, примерно в пять раз превышающего фон.
Развитие ситуации со всплесками мощности может быть реконструировано лишь качественно. Источник нейтронов был слабым и обусловлен (а, п) – реакцией на кислороде воды. Поэтому имела место задержка в развитии устойчивой цепной реакции, и возможно, что система перед первым всплеском мощности оказалась слегка надкритичной на мгновенных нейтронах. По оценке, скорость ввода реактивности в это время составила около 17 центов в секунду. Мощность первого пика была определена реактивностью, полученной на момент начала цепной реакции. Хотя нет возможности убедиться в этом, можно достаточно обоснованно оценить вклад первого пика, составивший примерно 1 X 1016 делений при общем выходе 1,3 X 1018 делений. Второй всплеск мощности, или пик, произошел через 15 секунд, что соответствует времени, необходимому для того, чтобы возникшие в результате радиолиза газовые пузыри смогли покинуть систему. Всплески мощности, происходившие в последующие 2,6 минуты, не более чем в 1,7 раза превышали среднюю мощность.
Кривая самописца показывала, что большая часть делений произошла за первые 2,8 минуты, и в этом случае средняя мощность, которая потребовалась для объяснения наблюдаемого числа делений, составляет примерно 220 кВт. После этого система, вероятно, начала закипать, что привело к резкому уменьшению плотности и реактивности и к уменьшению мощности до низкого значения на протяжении завершающих 18 минут.
На рисунке 10 показана фотография барабана, сделанная вскоре после аварии. В результате аварии не было механических повреждений или радиоактивного загрязнения. Восемь человек получили значительные дозы радиации (461, 428, 413, 341, 298, 86,5, 86,5 и 28,8 бэр). По крайней мере, один из этих людей обязан жизнью тому обстоятельству, что быстрая эвакуация прошла по хорошо подготовленному плану. Один из облученных прожил 14,5 лет, другой – 17,5 лет после аварии, состояние одного облученного неизвестно, а остальные были живы спустя 29 лет после аварии.
Вскоре после аварии в Окриджской национальной лаборатории (ОРНЛ) был поставлен критический эксперимент, в котором моделировались условия данной аварии. Это было сделано для того, чтобы получить информацию о возможных дозах радиации, полученных людьми во время аварии.
Производство было возобновлено через три дня.
Рисунок 10. Барабан, в котором в 1958 году произошла авария на заводе Y-12.
5. Лос-Аламосская национальная лаборатория, 30 декабря 1958 г. 11, 12Растворы плутония в емкости для работы с органическими веществами; единичный всплеск мощности; один погибший; два человека получили значительные дозы облучения.
Работы, проводившиеся на установке, где случилась авария, включали радиохимические процессы очистки и выделения плутония из шлаков, тиглей и других отходов с невысоким содержанием плутония, которые накапливаются при осуществлении процессов регенерации. Растворы, с которыми предполагалось работать, содержали менее 0,1 г/л плутония, а также следы америция. В то время, когда произошла авария, проходила ежегодная физическая инвентаризация. При этом нормальное движение материалов на участке было остановлено с тем, чтобы определить содержание плутония в остатках продуктов во всех технологических аппаратах. Авария произошла в 16 ч 35 мин незадолго до окончания последнего рабочего дня накануне новогодних праздников.
Реконструкция наиболее существенных событий показывает, что неожиданно произошел унос твердых частиц с высоким содержанием плутония из двух емкостей в один большой аппарат, в котором находились разбавленные водные растворы и органика. Данные твердые вещества должны были обрабатываться отдельно. После удаления большей части водного раствора из этого аппарата оставшиеся приблизительно 200 л продукта, включая промывочный раствор азотной кислоты, были слиты в емкость из нержавеющей стали объемом 1000 л и диаметром 1000 мм, в которой и случилась авария. Емкость содержала около 295 л стабилизированной щелочью водно-органической эмульсии. Считается, что добавленная кислота привела к разделению жидких фаз.
По оценке, слой водного раствора (330 л) содержал 60 г плутония; органический слой (160 л) содержал 3,1 кг плутония (рис. 11). Фотография емкости приведена на рисунке 12. Проведенный анализ показывает, что этот слой толщиной 203 мм характеризовался реактивностью, которая была на 5 в ниже значения, соответствующего критичности на запаздывающих нейтронах, так как критическая толщина составляла 210 мм. Когда была включена мешалка, водный раствор поднялся по стенкам емкости, при этом внешний слой органики был вытеснен к центру, и центральная часть системы стала толще. Вращение изменило реактивность, и система из подкритической приблизительно на 5 в стала критической на мгновенных нейтронах; произошел всплеск мощности. Ни один из самописцев детекторов гамма-излучения, расположенных поблизости от места происшествия, не зарегистрировал характерную картину; тем не менее, характер сделанных записей указывал, что имел место один пик мощности. Энерговыделение составило 1,5 X 1017 делений.
На основании экспериментов, проведенных после аварии в сосуде с аналогичной геометрией, было установлено, что между запуском мешалки и достижением полной скорости вращения, составлявшей 60 оборотов в минуту, не произошло никакой видимой задержки. Через 1 с (один оборот) наблюдалось движение или возмущение поверхности, а через 2 или 3 секунды в системе произошло интенсивное перемешивание. Из этих наблюдений можно было заключить, что система могла достичь критичности примерно за 1 с. Образование пузырей, вероятно, стало доминирующим механизмом гашения первого пика мощности, а перемешивание слоев переводило систему в подкритическое состояние. Средняя концентрация плутония в полностью перемешанном растворе составляла 6,8 г/л, т. е. была меньше минимальной критической концентрации для бесконечной гомогенной системы металл-вода.
Рисунок 11. Конфигурация раствора и органики в емкости перед аварией.
Из приведенных интервалов времени и оценки, показывающей, что первоначально подкритичность системы соответствовала 5 р, следует, что скорость ввода реактивности должна была составлять приблизительно 5 р/с. При соответствующих значениях коэффициентов пересчета для данного раствора выход в первом пике мощности составил 2,2 X 1017 делений, продолжительность пика составила 1,65 с, т. е. всплеск мощности завершился через 0,45 с после достижения критичности на мгновенных нейтронах. Чтобы получить наблюдаемый выход (1,5 X 1017 делений) в единичном пике, скорость ввода реактивности должна быть уменьшена приблизительно до 2 в/с. Так как это не согласуется с оценкой времени процесса (около 3 с до полного перемешивания), единственная возможность объяснения состоит в том, чтобы предположить, что скорость ввода реактивности была несколько меньше 5 в/с и что цепная реакция прекратилась приблизительно через 3 с в результате перемешивания. Можно также предполагать, что первым толчком, вызвавшим всплеск мощности, стало утолщение верхнего слоя органики, к тому же добавилось отражение нейтронов сбоку за счет водного раствора. Вслед за этим произошла деформация системы, и под действием лопастей мешалки она приобрела конфигурацию в виде воронки с меньшей реактивностью. После этого система стала надежно подкритической вследствие установления однородной концентрации, составлявшей менее 7 г/л.
Примерно за месяц до аварии весь плутониевый технологический участок проверялся комиссией лаборатории по ядерной безопасности. Начали осуществляться планы по замене технологических аппаратов большого объема несколькими секциями из труб безопасного диаметра (диаметр труб в секциях – 15 см, длина – около 3 м). Считалось, что административные меры контроля, которые успешно применялись на протяжении более 7 лет, могут быть сохранены в течение дополнительных 6–8 месяцев, которые требовались для получения и монтажа усовершенствованного оборудования.
После аварии установка оборудования безопасной геометрии была ускорена, и его монтаж был закончен до возобновления технологических операций. Чтобы обеспечить повышенную безопасность, были внедрены усовершенствованные методики отбора проб твердых веществ, и была подчеркнута необходимость строгого соблюдения мер технологического контроля. Время простоя оборудования составило около 6 недель.
Рисунок 12. Емкость, в которой в 1958 году на площадке в Лос-Аламосе произошла авария с возникновением СЦР.
В результате аварии через 36 часов наступила смерть оператора, который наблюдал в смотровое окно в момент, когда включился мотор мешалки. Было оценено, что доза облучения верхней части его туловища составила 12000 ± 50 % бэр. Два других человека получили дозы облучения, составлявшие 134 и 53 бэр, и впоследствии это не оказало негативного влияния на их здоровье. Несмотря на то, что удар, вызванный процессом образования пузырей в области, смещенной относительно оси емкости, привел к смещению емкости с опор примерно на 10 мм, не было радиоактивного загрязнения и механического повреждения оборудования.
6. Радиохимический завод, шт. Айдахо, 16 октября 1959 г. 13Раствор уранилнитрата, U(91 %), в емкости для сбора жидких отходов; многократные всплески мощности; два человека получили значительные дозы облучения.
Данная авария произошла на радиохимическом заводе, который перерабатывал, наряду с другими материалами, облученные тепловыделяющие элементы различных реакторов. Делящийся материал (34 кг обогащенного урана U(91 %) в форме уранилнитрата с концентрацией U примерно 170 г/л) хранился в батарее цилиндрических контейнеров безопасной геометрии. При осуществлении операции воздушного барботирования внезапно произошло сифонирование, в результате чего около 200 л раствора перелилось в резервуар объемом 15400 л, в котором находилось примерно 600 л воды.
Перед аварией проводилась переработка топлива в оболочке из нержавеющей стали путем растворения его в серной кислоте с последующей экстракцией примесей в трех пульсационных колоннах. Между первой и второй ступенями экстракции раствор помещался в две батареи, состоявшие из трубных секций диаметром 125 мм и длиной 3050 мм, которые часто называли «карандашами». Батареи «карандашей» были связаны между собой трубопроводами, от которых шла линия к емкости для сбора жидких отходов объемом 5000 галлонов (18900 л).
Для того, чтобы исключить всякую возможность перетекания растворов самотеком из «карандашей» в резервуар, на высоте 600 мм над уровнем «карандашей» на линии была сделана петля. Передачу растворов в емкость можно было осуществить только в результате целенаправленных действий оператора.
В день аварии операторы, в соответствии с инструкциями, выполняли операцию барботирования раствора для получения однородных проб для анализа. Манометр, установленный на одной из батарей «карандашей», дал показания, соответствующие штатным значениям давления воздуха, прокачиваемого для барботажа. Манометр, присоединенный ко второй батарее, не работал. Дополнительный манометр на этой батарее не был установлен, и оператор начал открывать вентиль подачи воздуха (барботажный вентиль) до тех пор, пока по косвенным признакам он не убедился в том, что барботирование началось. Очевидно, что воздушный барботажный вентиль был открыт так сильно, что жидкость поднялась примерно на 1200 мм от первоначального уровня жидкости в «карандашах» до верхушки петли, идущей к емкости для сбора отходов, что и вызвало сифонирование.
Хотя расход жидкости при сифонировании составлял 13 л/мин, трудно сопоставить его непосредственно со скоростью ввода реактивности, которая зависела также от степени перемешивания. Скорость ввода реактивности могла достигать 25 центов/с. Так как емкость диаметром 2,73 м и длиной 2,63 м лежала на боку, геометрия раствора приближалась к квазибесконечному плоскому слою. Волны в растворе могли вызывать большие флуктуации реактивности системы. После аварии было обнаружено большое количество уранилнитрата, который кристаллизовался на внутренних стенках емкости, а большая часть воды испарилась в систему вентиляции. Последовавшие всплески мощности дали 4 X 1019 делений, что достаточно для того, чтобы выкипела почти половина раствора объемом 800 л, что в результате привело к прекращению всплесков мощности.
О том, как происходили всплески мощности, можно лишь предполагать. В наличии имеются только ленты самописцев системы постоянного контроля воздуха, располагавшихся на разных расстояниях от емкости. Некоторые из самописцев, по-видимому, вышли из строя после того, как были достигнуты очень высокие уровни радиации. На некоторые приборы, находившиеся в более слабых радиационных полях (обычно на большем расстоянии), оказали, возможно, воздействие выделившиеся газообразные продукты деления. Можно достаточно обоснованно предположить, что за первым резким пиком, составившим, по крайней мере, 1017 делений, последовали многократные всплески мощности, и, наконец, на протяжении 15–20 минут происходило кипение. Очень большой выход (4 X 1019 делений) является скорее результатом большого объема системы и относительно большой продолжительности процесса, а не амплитуды в пике мощности в емкости.
Никто из персонала не получил значительной дозы гамма– или нейтронного облучения, так как на установке была мощная радиационная защита. Во время эвакуации персонала из здания были получены следующие дозы облучения от аэрозольных продуктов деления: 50 бэр (один человек), 32 бэра (один человек), меньшие дозы облучения получили 17 человек. Так как эвакуация персонала происходила относительно быстро, общего сигнала об аварийной эвакуации не было; такой сигнал мог подаваться только вручную. Быстрая эвакуация объяснялась тем, что это была ночная смена, персонал был малочисленным и смог быстро покинуть свои рабочие места, после чего все были собраны и проверены на посту охраны. Впоследствии признавалось, что на рабочих местах довольно часто происходило срабатывание локальной аварийной сигнализации, поэтому операторы не уходили со своих мест, пока аварийная сигнализация не срабатывала в другой или даже в третьей точке.
Было также замечено, что персонал пользовался при эвакуации только обычным выходом из здания; никто не воспользовался специально обозначенными маршрутами для эвакуации. Это привело к образованию толпы на выходе. Ситуация была бы гораздо более серьезной, если бы это происходило во время дневной смены, которая по количеству персонала в десять раз превышает ночную. Таким образом, дозы облучения могли быть, наверное, уменьшены, если бы произошла немедленная эвакуация по правильному маршруту. Оборудование повреждено не было.
Комиссии, проводившие расследование аварии, определили ряд факторов, повлиявших на развитие ситуации:
• Операторы плохо знали оборудование, которое редко использовалось, включая батареи «карандашей» и их регулирующие вентили.
• На линии, на которой произошло сифонирование, не было установлено предохранительное устройство. Было отмечено, что такие устройства были установлены на тех емкостях, которые использовались постоянно.
• Инструкции для операторов были противоречивыми, в них недостаточно точно описывались действия оператора, например, не было указано на необходимость осторожного обращения с воздушным барботажным вентилем при осуществлении барботажа.