355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Рудольф Сворень » Шаг за шагом. От детекторного приемника до супергетеродина » Текст книги (страница 7)
Шаг за шагом. От детекторного приемника до супергетеродина
  • Текст добавлен: 16 октября 2016, 20:35

Текст книги "Шаг за шагом. От детекторного приемника до супергетеродина"


Автор книги: Рудольф Сворень



сообщить о нарушении

Текущая страница: 7 (всего у книги 19 страниц)

Судя по резонансной кривой, меньше всех будут ослабляться сигналы соседних станций, частота которых на 10 кгц больше или меньше частоты принимаемой станции (лист 91). Относительное число, показывающее, во сколько раз контурный ток (или напряжение на контуре) с частотой принимаемой станции больше, чем контурный ток с частотой соседней станции (при условии, что ток, наведенный обеими станциями, в антенне одинаков), называется избирательностью по соседнему каналу. Так, например, если напряжение резонансной частоты равно 5 в, а напряжение соседней станции 0,5 в, то избирательность контура равна 10.

Избирательность – это замечательное свойство контура, и благодаря этому свойству без колебательных контуров не обходится ни один приемник. Именно избирательность колебательного контура дает возможность выделить сигналы нужной нам станции среди бесчисленного множества сигналов, действующих в антенне.

Об избирательности контура можно судить по «остроте» резонансной кривой. Чем острее резонансная кривая, чем круче ее спады, тем больше будет ослабляться сигнал соседней мешающей станции, тем лучше избирательность приемника. Форма резонансной кривой сильно зависит от добротности Q контура: чем больше Q, тем «острее» резонансная кривая. Таким образом улучшение добротности контура не только увеличивает чувствительность приемника, но и повышает его избирательность (рис. 54, 55).

В некоторых приемниках, предназначенных для местного приема, имеется несколько контуров, каждый из которых настроен на определенную станцию. Включение нужного контура осуществляется с помощью переключателя, и такая система получила название фиксированной настройки. Фиксированная настройка очень удобна для радиослушателя, но с увеличением числа принимаемых станций схема и конструкция приемника сильно усложняются.

Значительно проще осуществить прием большого числа станций, если применить плавную настройку колебательного контура путем постепенного изменения емкости Ск или индуктивности Lк.

Для плавной настройки приемника обычно используется конденсатор переменной емкости (лист 92). Такой конденсатор состоит из двух частей: неподвижной – статора и подвижной – ротора. Статор и ротор собраны из тонких пластин, причем ротор соединен с металлическим корпусом конденсатора, а статор изолирован от него. Большое число пластин необходимо для того, чтобы получить сравнительно большую емкость при небольших габаритах конденсатора. При монтаже ротор, как правило, соединяют с нижним (по схеме) концом катушки, то есть фактически заземляют. При повороте ротора изменяется расстояние между его пластинами и пластинами статора, а вместе с этим изменяется и емкость конденсатора. Основной характеристикой таких конденсаторов является максимальная емкость Смакс (пластины полностью введены) и минимальная емкость Смин (пластины полностью выведены). На схемах указываются обе эти величины (через тире).


Широкое распространение получили стандартные блоки, состоящие из двух конденсаторов переменной емкости (двух секций), каждый из которых имеет максимальную емкость Смакс = 450 (520) пф и минимальную Смин = 15 (25) пф. Роторы обеих секций соединены между собой, так как они закреплены на общей металлической оси. На схеме конденсаторы, роторы которых закреплены на одной оси, соединяют пунктирной линией. В случае необходимости, например в детекторном приемнике, можно использовать только одну секцию блока, не подключая никуда статор второй секции.

С помощью одного конденсатора стандартного блока можно плавно изменять частоту настройки контура в три-четыре раза и таким образом полностью перекрыть один из радиовещательных диапазонов. При этом максимальной емкости будет соответствовать самая низкая частота диапазона, а минимальной емкости – самая высокая частота. Это следует из рассмотренной нами основной формулы для f0: с увеличением емкости конденсатора резонансная частота контура уменьшается.

Для перехода с одного диапазона на другой в контуре осуществляется переключение катушек. Так, например, для перехода с длинных волн на средние индуктивность катушки Lк уменьшают примерно в десять раз, а при переходе на короткие волны – еще в десять – двадцать раз. Конденсатор настройки на всех диапазонах используется одни и тот же, а катушки к нему подключаются с помощью переключателя (переключатель диапазонов, рис. 56).


Рис. 56. Для настройки приемника на нужную станцию в пределах диапазона используется конденсатор с плавно меняющейся емкостью, а для перехода с диапазона на диапазон – включение катушек с различной индуктивностью.

Для того чтобы при налаживании приемника можно было точно подогнать границы диапазона, в контур вводят элементы подстройки. Один из этих элементов – это подключенный непосредственно к катушке, а следовательно, определяющий общую емкость контура, подстроечный конденсатор Сп (лист 93), емкость которого можно изменять от 5—10 до 25–50 пф. Этот конденсатор (его иногда называют «триммер») особенно сильно влияет на настройку контура на самых высоких частотах, когда ротор конденсатора настройки выведен. Это объясняется тем, что подстроечный конденсатор фактически подключен параллельно конденсатору настройки Ск, и общая емкость контура определяется их суммой.

Когда емкость конденсатора настройки Ск мала, то даже небольшие изменения емкости Сп оказываются весьма ощутимыми. Если же полностью ввести ротор конденсатора Ск, то на фоне его большой емкости влияние Сп будет незначительным. Сказанное хорошо иллюстрируется простым примером. Допустим, что емкость Ск изменяется от 20 пф до 500 пф, а емкость Сп можно менять в пределах 5—30 пф. При выведенном роторе конденсатора настройки (Ск= 20 пф) общую емкость контура можно менять с помощью Сп от 25 пф (20 + 5) до 50 пф (20 + 30), то есть в два раза. Когда же мы введем ротор (Ск= 500 пф), то общую емкость контура можно будет менять лишь на 5 % – от 505 пф (500 + 5) до 530 пф (500 + 30). Поэтому мы и говорим, что в основном Сп влияет на резонансную частоту контура на самых высоких частотах диапазона, то есть при минимальной емкости конденсатора Ск (рис. 57, 58).


Рис. 57. На коротковолновом участке любого диапазона (высшие частоты, ротор выведен) подстройку производят с помощью подстроечного конденсатора…


Рис. 58. …а на длинноволновом участке (низшие частоты, ротор введен) с помощью сердечника катушки и подбором числа витков.

После налаживания приемника, когда емкость подстроечного конденсатора Сп окончательно подобрана, к нему больше не прикасаются.

Чаще всего встречаются следующие типы подстроечных конденсаторов: воздушный, очень напоминающий обычный конденсатор настройки с небольшим числом миниатюрных статорных и роторных пластин; трубчатый, в котором обе обкладки имеют форму цилиндров (наподобие конденсатора КТК), один из которых перемещается с помощью винта; дисковый керамический, состоящий из двух керамических частей – основания и поворачивающегося диска, на который нанесен слой серебра – одна из обкладок конденсатора. Вторая обкладка закреплена на керамическом основании. При вращении керамического диска меняется взаимное расположение обкладок, а следовательно, и емкость конденсатора. Во всех случаях подстроечный конденсатор обозначается на схеме как обычный постоянный, с той лишь разницей, что нижняя черточка рисуется в виде дуги со стрелкой.

Очень удобно производить подстройку контура, если в катушке имеется ферромагнитный сердечник. Вдвигая такой сердечник в катушку, мы увеличиваем ее индуктивность и уменьшаем резонансную частоту контура. Если катушка выполнена из двух отдельных секций, то ее индуктивность можно изменять, сближая либо раздвигая секции: чем ближе одна секция к другой, тем сильнее взаимодействуют их магнитные поля, как бы усиливая друг друга, тем, следовательно, больше общая индуктивность катушки (лист 96). Сказанное справедливо лишь тогда, когда секции намотаны в одну и ту же сторону и начало одной из них соединено с концом другой. Если не выполняется одно из этих условий, то магнитные поля отдельных секций ослабляют друг друга, и при сближении секций общая индуктивность уменьшается.

Если в контуре имеется и подстроечный конденсатор и катушка с сердечником, то подстройку контура путем изменения индуктивности катушки целесообразно производить при максимальной емкости конденсатора настройки Ск, то есть тогда, когда подстроечный конденсатор Сп на резонансную частоту почти не влияет (рис. 58).

Используя одну секцию стандартного блока конденсаторов, две катушки и переключатель для включения этих катушек в контур (переключатель диапазонов), можно собрать детекторный приемник с плавной настройкой на ДВ и СВ диапазонах. Благодаря резонансным свойствам контура такой приемник будет обладать некоторой избирательностью и будет работать громче, чем простейший детекторный приемник, описанный в предыдущей главе.


ДЕТЕКТОРНЫЙ, ДВУХДИАПА3ОННЫЙ, С ПЛАВНОЙ НАСТРОЙКОЙ

На чертеже 2 показаны общий вид и принципиальная схема двухдиапазонного детекторного приемника с плавной настройкой.

Чтобы этот приемник работал, к нему нужно подключить наружную антенну (к гнезду «А») и заземление (к гнезду «3»). Гнездо «А» (антенна) соединяется с переключателем диапазонов. Последний фактически состоит из нескольких одинаковых переключателей (их обычно называют секциями), которые связаны с одной общей осью и поэтому управляются (переключаются) одновременно (лист 94, чертеж 7).

На схемах и в описании отдельные секции какого-либо переключателя обозначаются буквой П (переключатель) с индексом, который состоит из цифры и буквы. Цифра указывает порядковый (для данной схемы) номер переключателя, а буква относится к определенной секции.

Так, например, если в схеме имеется два переключателя, то секции первого из них будут обозначаться: П, П и т. д. в зависимости от числа секций. Секции второго переключателя будут обозначаться П, П и т. д.

Во всех приемниках, которые нам предстоит построить, будет использован один переключатель, обозначаемый на схемах как П1. В этом переключателе должно быть четыре секции (а, б, в, г), каждая из которых имеет один подвижной и три неподвижных контакта. В крайнем случае можно обойтись переключателем с тремя секциями, то есть с тремя подвижными контактами.

Во многих любительских приемниках используются более простые переключатели – тумблеры (лист 95), а также более сложные, но зато более удобные клавишные переключатели, где все необходимые переключения (коммутация) осуществляются путем замыкания или размыкания тех или иных контактов (аналогично верхнему рисунку на листе 94).


Подвижной контакт переключателя диапазонов на наших схемах обозначается буквой п с индексом соответствующей секции. Например, обозначение пб соответствует подвижному контакту секции б. При переключении диапазонов каждый подвижной контакт соединяется с каким-либо из трех неподвижных контактов своей секции. Обозначения неподвижных контактов соответствуют диапазону, на котором к ним подключаются подвижные контакты. Так, например, обозначение бд означает «секция б диапазон длинных волн», аналогично обозначение ак соответствует секции а и диапазону коротких волн. Такую подробную систему мы ввели для того, чтобы начинающему радиолюбителю легче было разбирать схему и монтировать приемник.

В нашем детекторном приемнике из четырех секций переключателя П1 используются только две – П и П. Остальные секции в этом приемнике не нужны, и контакты их никуда не подключаются. К подвижному контакту ап через гнездо А подключается антенна. При приеме на длинных ватах (крайнее верхнее положение подвижного контакта) антенна оказывается подключенной к катушке связи L1, которая, в свою очередь, индуктивно, то есть через общий магнитный поток, связана с контурной катушкой L2. Индуктивность катушки L2 выбрана таким образом, что она вместе с конденсатором настройки обеспечивает резонансные частоты контура, соответствующие станциям длинноволнового диапазона (150–420 кгц). Конденсатор настройки С5, а вместе с ним и цепь детектор – телефон подключаются к контурной катушке L2 отдельной секцией П.

Как уже говорилось, перемещение подвижных контактов происходит одновременно во всех секциях переключателя, и поэтому при переходе на средние волны антенна будет подключена уже к катушке связи L3 вместо L1, а в контур будет входить катушка L4 вместо L2.

Следует заметить, что подстроечные конденсаторы С2 и С3 коммутировать (переключать) нет необходимости. Каждый из них соединяется с соответствующей контурной катушкой и вместе с ней включается в контур. Конденсатор настройки С5 и цепь детектор – телефон являются общими для обоих диапазонов, и поэтому они подключаются либо к катушке L2 (ДВ), либо к катушке L1 (СВ). Параллельно головному телефону подключен так называемый конденсатор фильтра, с ролью которого мы познакомимся несколько позже. Попутно заметим, что головные телефоны обычно идут в комплекте по два (два наушника на общем оголовье) и соединены последовательно. В предлагаемой схеме детекторного приемника выбрана индуктивная связь контура с антенной (лист 86). Сделано это для того, чтобы изготовленные для детекторного приемника катушки можно было использовать и в других приемниках, в том числе и в супергетеродине. При желании можно сделать и более простую – емкостную связь с антенной (лист 85). В этом случае катушки связи L1 и L3 уже не нужны. Не нужна и секция П переключателя диапазонов, так как конденсатор связи Ссв (С1) можно подключить непосредственно к контуру (пунктирная линия). Емкостную связь с антенной можно применять почти во всех приемниках, которые нам предстоит построить, и во всех случаях это будет давать «экономию» целой группы катушек и одной секции переключателя диапазонов.

Не следует путать конденсатор связи С'1 с защитным конденсатором С1, который нужен для того, чтобы защитить входную цепь при случайном соединении антенны с проводами электросети. Емкость С, достаточно велика и для токов высокой частоты не представляет большого сопротивления. В то же время для частоты 50 гц (частота тока в электросети) сопротивление конденсатора С, настолько велико, что он фактически разрывает цепь антенны.

Теперь поговорим о конструкции нашего приемника и о применяемых в нем самодельных деталях.

Конечной нашей целью является постройка четырехлампового трехдиапазонного супергетеродинного приемника (чертеж 1).

К этой цели мы будет двигаться постепенно, шаг за шагом, строя детекторные и простейшие ламповые приемники.

Для того чтобы на каждом промежуточном этапе не изготовлять шасси и корпус простейшего приемника, мы остановимся на блочной конструкции. Основой ее является деревянная рама (чертеж 3), на которой закрепляются небольшие фанерные панели.

На них и собираются отдельные узлы различных ламповых приемников. Такая блочная система позволяет легко переходить от одного типа лампового приемника к другому и потом из нескольких блоков собрать супергетеродин. При желании любой из ламповых приемников можно собрать на отдельном деревянном или металлическом шасси и изготовить для него футляр.

Детекторный приемник собирают на панели (панель ВЧ), которая будет использована и в других приемниках. Исходя из этого и выбраны размеры панели (чертеж 3) и размещены на ней основные детали.

Основными самодельными деталями приемника являются контурные катушки. Конструкций этих катушек может быть бесчисленное множество, но мы рассмотрим лишь наиболее распространенные (чертежи 4 и 5).

В современных фабричных приемниках наиболее широко применяются катушки, намотанные на небольших каркасах из полистирола, разделенных перегородками на четыре секции. Каждый из этих каркасов снабжен полистироловым винтом, к которому приклеен небольшой (диаметр 2,5 мм, длина 12–14 мм) подстроечный сердечник из феррита. На такой каркас может надеваться дополнительная, более широкая секция, специально предназначенная для катушки связи. Такие каркасы используются в приемниках «Люкс», «Дружба», «Байкал», «Октава» и многих других. В таблицах на чертежах 4 и 5 приведены намоточные данные катушек, и в частности катушек L1, L2, L3, L4, которые используются в нашем прием нике.

Совершенно очевидно, что катушка L1 объединяется, на одном каркасе с L2, а катушка L3 с катушкой L4.

В заводских приемниках весьма широкое распространение получили также катушки в разборных горшкообразных сердечниках СБ-1 (сердечник броневой с внешним диаметром 12,5 мм). Такой сердечник состоит из двух чашек, в одну из которых ввинчивается подстроечный винт (чертеж 4, в). В чашки вставляется небольшой трехсекционный каркас, на который и наматывается катушка. Когда число витков катушки окончательно подобрано, чашки склеиваются друг с другом, а концы катушек выводятся через небольшое отверстие. Важно отметить, что половинки горшкообразного сердечника должны плотно соединяться друг с другом, иначе индуктивность катушки заметно снизится.

Для катушек связи с антенной (L1 и L3) нужно склеить из картона отдельные каркасы с внутренним диаметром 12,5—13 мм. На одном из этих каркасов разместится катушка L1, а на другом – L3. Внутрь самодельных картонных каркасов вставляются соответствующие контурные катушки L2 и L4.

В сравнительно старых приемниках часто применяли катушки, выполненные в пластмассовых каркасах диаметром 12–15 мм, как правило снабженных подстроенными сердечниками (чертеж 4, б). Такие каркасы с сердечниками можно использовать для нашего приемника, установив на них картонные щечки, между которыми и располагаются обмотки.

Таким образом, мы получим на каждом каркасе по две секции – одну для катушки связи L1 или L3, а другую – для контурной катушки. Указать число витков катушек для этого случая точно нельзя, так как эти данные зависят от диаметра каркаса, материала сердечника и его размеров. Поэтому намоточные данные, приведенные в таблице, нужно рассматривать как весьма приближенные.

Если вам не удастся достать один из перечисленных типов каркасов, то можно изготовить катушки на обычных охотничьих папковых (картонных) гильзах 12 калибра, то есть с внешним диаметром 20 мм (чертеж 4, а). Поскольку сердечников в этих катушках нет, то точную подгонку индуктивности производят путем перемещения витков. Для этого общее число витков разбивают на две примерно равные части, каждую из которых размещают в отдельной секции (ширина секций по 5 мм). Одну из секций делают подвижной, склеив для нее каркас из плотной бумаги. При сближении секций общая индуктивность увеличивается, что объясняется усилением общего магнитного поля. Увеличение индуктивности при сближении секций произойдет лишь в том случае, если эти секции соединены между собой «согласно», когда одна катушка как бы является продолжением другой, катушки намотаны в одну и ту же сторону, и начало одной из них соединено с концом другой (лист 96).

Если нарушить одно из этих условий, то получится уже соединение «навстречу», и при сближении секций общая индуктивность будет уменьшаться. В катушках связи L1 и L3 индуктивность подгонять не нужно, так как подбор ее не требует большой точности и поэтому катушки связи размещают в одной секции шириной 8 мм.

Для катушки L4, выполненной на папковых гильзах, можно применить однослойную намотку (чертеж 1). Такая катушка должна содержать 160 витков (например, 120 + 40 или 2x80). Одна из секций намотана на подвижной гильзе, склеенной из бумаги. Катушка связи с антенной имеет те же данные, что и в предыдущем случае.

Вблизи каждой катушки для удобства монтажа в фанерной панели закрепляется несколько лепестков из белой жести, к которым припаиваются выводы катушек и монтажные провода (чертежи 1, 6, 8).

Рядом с лепестками располагаются подстроечные конденсаторы, которые могут быть любого типа, например керамические. Подстроечные конденсаторы можно изготовить самому. Одной из обкладок самодельного конденсатора (лист 93) является сравнительно большой лепесток из белой жести (чертеж 6), на который плотно надевают плоскую бумажную гильзу, склеенную из двух-трех слоев кальки. На кальку наматывают один слой любого медного провода, который и играет роль второй обкладки конденсатора. Перемещая бумажную гильзу вдоль жестяного лепестка, можно менять емкость от 5—10 до 25–30 пф. Для того чтобы ослабить влияние руки на емкость конденсатора (при настройке), нужно заземлить, то есть соединить с нижним по схеме концом катушки, ту обкладку конденсатора, которая выполнена в виде слоя медного провода, причем совершенно безразлично, заземлить ли одновременно оба конца этого провода или же только один.

Подавляющее большинство фабричных и любительских приемников монтируется на металлическом, обычно стальном, шасси. Металлическое шасси используется как проводник, соединяющий все точки схемы, которые должны подключаться к гнезду «Земля». Таких точек в любом приемнике очень много, и поэтому использование шасси позволяет сильно упростить монтаж – вместо того чтобы ту или иную точку соединять с гнездом «Земля», эту точку соединяют с шасси, которое, в свою очередь, соединяют с гнездом «Земля». Поэтому если в дальнейшем вы встретите указание о том, что какую-либо точку нужно заземлить, то ее нужно просто соединить с металлическим шасси (лист 97).


Слова «заземлить», «заземленный», «заземление» можно встретить и при описании различных устройств (например, усилителей, магнитофонов, измерительных приборов, в которых даже нет гнезда «Земля», но и в этом случае под заземлением имеется в виду соединение той или иной детали с шасси.

В нашем приемнике шасси сделано из дерева и фанеры, но по краю каждой панели и, в частности, панели ВЧ проходит толстый, предварительно залуженный медный провод, так называемая земляная шина, или земляной провод. Он-то и выполняет роль металлического шасси. К земляному проводу подключают все цепи, которые нужно заземлить. На схемах этот провод не показан, а подключение к нему обозначается как обычное соединение с металлическим шасси. Крепление земляного провода осуществляется с помощью жестяных лепестков.

К земляному проводу подключается и корпус конденсатора настройки, а следовательно, соединенный с корпусом ротор этого конденсатора. Статор одной из секций соединяется с контактом бп – переключателя диапазонов, статор второй секции в детекторном приемнике никуда не подключается.

Несколько слов следует сказать о переключателе. Наиболее широкое распространение получили переключатели, состоящие из фиксатора и нескольких керамических или гетинаксовых панелей (галет), на которых и закреплены контакты (чертеж 7, А). В нашем приемнике такой галетный переключатель диапазонов закрепляется на небольшой фанерной панели, которая, в свою очередь, крепится к деревянной раме. Рядом с переключателем на панели закреплены два переменных сопротивления, которые будут использованы в ламповых приемниках.

Нам необходим переключатель с четырьмя секциями на три положения, то есть для трех диапазонов. Если попадется переключатель на большее число положений или с большим числом секций, то это не беда – некоторые из них можно будет просто не использовать. Если удастся достать переключатель с тремя секциями, то можно применить и его, отказавшись от индуктивной связи с антенной (см. стр. 120).

Если вам не удастся достать фабричный переключатель, то его можно сделать самому (чертеж 7, Б—3). Самодельный переключатель имеет четыре подвижных контакта (3), сделанных из жести и закрепленных на вращающейся фанерной крестовине (Г). Четыре группы неподвижных контактов (Е) закреплены на фанерной панели. Каждый неподвижный контакт можно сделать из белой жести или в виде трех-четырех витков медной проволоки диаметром 0,6–0,8 мм, тщательно очищенной от изоляции. Под неподвижные контакты подкладываются маленькие бруски из твердых пород дерева, а в подвижных контактах делают вмятину, благодаря чему и осуществляется фиксация переключателя в нужных положениях (Ж). Подключение подвижного контакта к соответствующему лепестку переключателя осуществляется с помощью мягкого многожильного провода.

Следует сразу же заметить, что самодельный переключатель изготовить сравнительно сложно, а высокой надежностью он не отличается. Поэтому делать переключатель самому следует лишь в самом крайнем случае.

Важным узлом приемника является шкальное устройство, которое нужно изготовить сразу же, не дожидаясь окончания всех работ, так как шкала будет использоваться нами при настройке всех приемников, в том числе и детекторного. Сама шкала (чертеж 6) аккуратно и точно вычерчивается цветной тушью на плотной бумаге и наклеивается на подшкальник, сделанный из белой жести. На ось конденсатора настройки плотно насаживается большой шкив, который можно сделать из трех тонких фанерных дисков или какой-нибудь круглой жестяной крышки. Для крепления шкива на ось конденсатора плотно надевается жестяная трубка, к которой уже припаивается жестяной шкив или жестяная заклепка, стягивающая отдельные диски фанерного шкива. После того как шкив закреплен и установлена шкала, на ось конденсатора настройки надевают стрелку, также сделанную из жести. Шкив при помощи тросика (капроновая нить с пружинкой) связан с осью настройки, которая может выполняться по-разному.

В приемнике с самодельным переключателем диапазонов лучше всего применить ось от сгоревшего переменного сопротивления вместе с деталями ее крепления – резьбовой втулкой и гайками. Такую же ось можно применить и в приемнике с фабричным переключателем, но при этом на передней панели будет уже четыре ручки управления. Для того чтобы сохранить три ручки, одну из них, а именно среднюю, нужно сделать сдвоенной. Для этого на ось переключателя диапазонов следует надеть свободно вращающуюся трубку, на которую будет одеваться тросик, идущий к шкиву (чертеж 6). Ручка настройки в этом случае применяется специальная – с большим внутренним отверстием.

На панели ВЧ заранее устанавливается панелька для усилительной лампы. Эта панелька будет использована во всех ламповых приемниках, а предварительная установка ее избавит от необходимости проводить сложные столярные работы на уже смонтированной панели. Кроме того, лепестки ламповой панели при монтаже детекторного приемника можно будет использовать как опорные точки для крепления проводов.

Панелька может быть пластмассовая или керамическая (керамическая лучше) и обязательно должна иметь девять гнезд (не считая центрального отверстия, если таковое имеется). Это замечание очень важно, так как для многих ламп применяются панельки, у которых имеется семь гнезд, или панельки с восемью гнездами для ламп более старых серий. Панельки с девятью гнездами предназначены для ламп: 6И1П, 6П14П, 6Н2П и др. (лист 109).

На краю панели ВЧ закреплено пять сравнительно длинных лепестков из белой жести, образующих так называемую «гребенку» (гребенка Г1). Такая же гребенка будет установлена на соседней панели (гребенка Г2), и, спаяв соответствующие лепестки гребенок, можно будет соединить панели между собой.

Вот мы и рассмотрели основные особенности конструкции нашего приемника, и теперь можно приступать к его монтажу.

Опытные любители производят монтаж, пользуясь лишь принципиальной схемой, но для начинающих удобно составить еще и монтажную схему, из которой видно примерное размещение всех деталей и их взаимное соединение.

На чертеже 2 показана монтажная схема нашего детекторного приемника. Чтобы вам легче было пользоваться монтажной схемой и согласовывать ее с принципиальной, на обеих схемах одинаковыми индексами (красным цветом) обозначен целый ряд монтажных точек. Пользуясь принципиальной, а тем более монтажной схемой, можно легко смонтировать, или, как часто говорят любители, «спаять», приемник.

Правильно собранный приемник при подключении антенны[9]9
  Чтобы повысить напряжение сигнала, подводимое к контуру, антенну можно временно подключить к статору конденсатора C5, либо непосредственно, либо через конденсатор емкостью 50—100 пф.


[Закрыть]
 и заземления должен сразу же заработать: поворачивая ручку настройки, вы сможете принять местную станцию. В том, что станция в данный момент работает, можно убедиться, приняв ее на обычном ламповом приемнике.

Если окажется, что приемник не работает, то нужно прежде всего спокойно и внимательно проверить монтаж и детали.

Чаще всего могут встретиться такие неисправности: плохие контакты в гнездах антенны, заземления или телефонов; ненадежные контакты в монтаже из-за плохой пайки; ненадежные контакты в переключателе из-за его загрязнения, незаметного на глаз; обрыв монтажного провода (имеется в виду одножильный медный провод в хлорвиниловой изоляции); короткое замыкание между статором и ротором конденсатора настройки или между обкладками конденсатора фильтра; неисправность в полупроводниковом диоде; обрыв в контурной катушке или обмотке головных телефонов. Все эти неисправности сводятся к двум основным: обрыву цепи и короткому замыканию, а их легко обнаружить с помощью любого омметра или пробника, состоящего из батарейки и какого-нибудь индикатора – стрелочного прибора (лист 98) или даже обычной лампочки. Простейший пробник для проверки цепей можно собрать из батарейки и телефона. Если подключить такой пробник к исправной цепи, то в момент подключения в телефонах будет слышен сильный щелчок; при оборванной цепи щелчка не будет. При проверке конденсаторов малой емкости – наоборот, наличие сильных щелчков будет свидетельствовать о коротком замыкании между пластинами.

Простейшими пробниками можно пользоваться лишь в крайнем случае. Лучше всего для налаживания приемника иметь авометр – универсальный измерительный прибор, в который входит амперметр, вольтметр и омметр (отсюда название «авометр»). Наша промышленность выпускает много различных типов авометров: ТТ-1, ТТ-2, Ц-20, Ц-315 и др. Любой из них может оказаться чрезвычайно полезным как при налаживании самодельных детекторных и ламповых приемников, так и при проверке и ремонте промышленной радиоаппаратуры – магнитофонов, приемников, телевизоров, радиоузлов и т. п.

Когда вы убедитесь в работоспособности построенного детекторного приемника, а для этого достаточно принять хотя бы одну радиостанцию, можно приступить к его наладке. Она в основном сведется к тому, что изменением индуктивности катушек (это осуществляется перемещением подвижных секций или подстроечных сердечников, а в крайнем случае, подбором числа витков катушек), а также подгонкой емкости подстроечных конденсаторов нужно будет добиться совпадения положения стрелки по шкале с частотой принимаемой станции.

Так, например, если идет прием на частоте 150 кгц (2000 м), а стрелка, связанная с ротором конденсатора настройки, показывает частоту 200 кгц (1500 м), то значит, параметры контура подобраны неправильно и его граничные резонансные частоты, то есть частоты, соответствующие полностью введенному и полностью выведенному ротору конденсатора настройки, смещены относительно границ нужного нам диапазона в сторону более низких частот.


    Ваша оценка произведения:

Популярные книги за неделю