Текст книги "Шаг за шагом. От детекторного приемника до супергетеродина"
Автор книги: Рудольф Сворень
Жанр:
Радиоэлектроника
сообщить о нарушении
Текущая страница: 16 (всего у книги 19 страниц)
Нужно прямо сказать, что применение в приемнике самодельных фильтров промежуточной частоты крайне нежелательно. Во-первых, самодельные контуры обладают низкой добротностью, во-вторых, их довольно трудно настроить и, в-третьих, и это, пожалуй, самое главное – самодельные контуры очень неудобно экранировать.
Опыт показывает, что из-за плохой экранировки в приемнике с самодельными контурами обычно возникает самовозбуждение на промежуточной частоте, бороться с которым не так-то просто. По всем этим причинам самодельные контуры ПЧ можно применять лишь в самом крайнем случае. В усилителе ПЧ лучше всего применить двухконтурные фильтры ПЧ любой конструкции от любого фабричного приемника, настроенные на 465 кгц. Фильтры эти должны быть в экране, и закрепить их можно непосредственно на панели ПЧ.
Промежуточную частоту 465 кгц имеют все отечественные радиоприемники, за исключением приемников «АРЗ», «Москвич» и «Рекорд» самых первых выпусков. Два наиболее распространенных типа двухконтурных фильтров промежуточной частоты показаны на листе 173. Катушки первого из них (от приемников «Родина-52», «Звезда», «Дорожный» и др.) выполнены в горшкообразных сердечниках СБ-1а. Во втором типе двухконтурного фильтра (от приемников «Рекорд-52», «Стрела», «Заря» и др.) используются катушки, намотанные на двухсекционных каркасах, которые снабжены ферритовыми кольцами и сердечником. Почти во всех типах фабричных фильтров промежуточной частоты средняя индуктивность катушек примерно равна 1000 мкгн (900—1100 мкгн), а емкость конденсаторов 120–140 пф (лист 173).
При использовании фабричных двухконтурных фильтров вместо катушки связи L16 окажется включенным контур L16C24,что несомненно улучшит избирательность приемника. Совершенно ясно, что никаких изменений в схеме приемника при этом делать не нужно.
Во время монтажа панелей ВЧ и ПЧ следует помнить, что все соединения высокочастотных цепей должны производиться кратчайшими путями. В частности, анод гептодной части Л1 лучше всего соединить с катушкой L13, установленной на панели ПЧ, коротким проводником, помимо гребенок Г1 – Г2.
НАЛАЖИВАНИЕ
О налаживании супергетеродинного приемника очень подробно рассказано в статьях В. Короля «Налаживание супергетеродина», опубликованных в журналах «Радио» № 3 (стр. 47–50) и № 4 (стр. 45–47) за 1954 год. Кроме того, вопросам налаживания приемников посвящены книги В. В. Енютина «Налаживание радиоприемников», издательство ДОСААФ, 1958 г., Г. А. Сницерева «Измерения при ремонте и налаживании радиоприемников», Связьиздат, 1955 и др. Ниже мы остановимся лишь на основных этапах налаживания приемника без специальных измерительных приборов.
Перед тем как включать приемник в сеть, нужно внимательно проверить правильность соединения всех цепей и, прежде всего, убедиться в том, что цепи постоянного анодного напряжения не замкнуты на «землю» («землей» мы в дальнейшем будем называть общий провод, подключаемый к гнезду «3»). Это можно сделать с помощью омметра, используя, например, авометр ТТ-1, Ц-20 и др., подключив его к конденсатору С35(выпрямитель). Если приемник собран правильно, омметр покажет сопротивление 50—100 ком, причем в момент подключения прибора можно будет отметить «бросок» стрелки, обусловленный зарядкой конденсаторов С35 и С34 от батареи омметра. Если же прибор покажет сопротивление менее 1–5 ком (иногда можно обнаружить даже короткое замыкание), то нужно проверить исправность конденсаторов развязки и еще раз внимательно просмотреть весь монтаж. Лишь после того как этот дефект устранен, можно включить приемник в сеть и измерить режимы ламп (рис. 139), предварительно, конечно, измерив напряжение сети: при пониженном напряжении сети режимы ламп могут значительно отличаться от указанных на схеме.
Рис. 139. Налаживание супергетеродина, как и всякого другого радиоустройства, следует начинать с тщательной проверки монтажа и режимов (напряжений на различных электродах ламп).
Напомним, что режимом лампы мы называем постоянные напряжения на ее электродах. Эти напряжения устанавливаются подбором соответствующих сопротивлений – R4, R7 и R14 в цепях экранных сеток и R15, R18в цепях катодов ламп. При подборе режимов не нужно стремиться к тому, чтобы они абсолютно точно соответствовали рекомендованным – изменение режимов на 5—10 % (а иногда и на 15–25 %) существенно не повлияет на работу приемника.
Если в вашем распоряжении нет специальных измерительных приборов – генератора сигналов и лампового вольтметра, то налаживание приемника следует начинать с гетеродина, добиваясь прежде всего его нормальной работы на. одном из диапазонов, например на коротких волнах (рис. 140).
Рис. 140. Проверка работы гетеродина: если при коротком замыкании контура изменяется анодный ток лампы гетеродина (напряжение на аноде), значит, гетеродин работает.
Можно убедиться в наличии переменного напряжения на контуре гетеродина, замыкая этот контур конденсатором сравнительно большой емкости (0,001—0,1 мкф) или простым проводником. Если гетеродин работал нормально, то при коротком замыкании контура колебания в нем прекратятся, и вследствие этого практически исчезнет сеточный ток лампы, который возникал при положительных полупериодах переменного напряжения на сетке. Постоянная составляющая сеточного тока, проходя по сопротивлению R2, создает на нем напряжение отрицательного смещения (около 5—10 в). Поэтому при срыве колебаний вместе с сеточным током исчезает отрицательное смещение и резко возрастает анодный ток лампы. В этом можно убедиться, включив миллиамперметр, рассчитанный на измерение тока 10–20 ма последовательно с сопротивлением R6, или измеряя напряжение на аноде (точнее, на конденсаторе С18). Чем больше анодный ток, тем больше падение напряжения на сопротивлении R6, тем меньше напряжение на аноде. Опытные любители обнаруживают срыв генерации посильным «щелчкам», которые слышны в громкоговорителе при замыкании контура гетеродина.
Если при замыкании контура анодный ток лампы не возрастает (или напряжение на аноде не падает), то значит, гетеродин не работает. В этом случае нужно прежде всего попробовать поменять местами концы катушки обратной связи или контурной катушки. Если это не даст желаемых результатов, то следует несколько сблизить эти катушки. Поворачивая ротор конденсатора настройки, нужно добиться нормальной работы гетеродина во всем диапазоне частот.
При налаживании гетеродина можно столкнуться с таким неприятным явлением, как прерывистая генерация, которая проявляется в виде сильного «рокота», прослушиваемого в громкоговорителе. Для того чтобы прекратить прерывистую генерацию, нужно включить последовательно с конденсатором С11 сопротивление величиной 50—200 ом, а также уменьшить расстояние между контурной катушкой и соответствующей катушкой обратной связи.
Выполняя все эти операции, нужно всегда проверять работу гетеродина на всем диапазоне: иногда может оказаться, что, чрезмерно раздвинув катушки, вы «сорвете» генерацию на каком-либо участке диапазона. Попутно укажем, что «прерывистая генерация» обычно наблюдается на коротковолновом участке диапазона, а «срыв» генерации – на длинноволновом участке. Последнее объясняется тем, что с уменьшением частоты ослабляется индуктивная связь между катушками.
Если нельзя добиться нормальной работы гетеродина указанными путями, то можно попытаться подобрать число витков катушки обратной связи и в самом крайнем случае величину сопротивлений R2, R6 и конденсатора С11.
Если гетеродин работает, то приемник должен сразу же принимать хотя бы одну-две станции – антенну следует временно подключить непосредственно к входному контуру, то есть к статору конденсатора С5. Приняв хотя бы одну станцию, следует сразу же подстроить в резонанс контуры ПЧ – сближением секций или с помощью сердечников, если они имеются. При этом можно ориентироваться на увеличение громкости приема (рис. 141, 142).
Рис. 141.Если контуры усилителя ПЧ даже немного расстроены один относительно другого, то приемник будет обладать очень плохой чувствительностью и избирательностью.
Рис. 142. По сигналу первой же принятой станции необходимо сразу подстроить фильтры ПЧ, добиваясь наибольшей громкости передачи.
На время настройки всех контуров приемника и в том числе контуров ПЧ необходимо отключить систему АРУ. Проще всего это сделать, замкнув накоротко конденсатор C25.
Наиболее сложным этапом налаживания супергетеродина является настройка входных и гетеродинных контуров и сопряжение их настроек. Настраивать эти контуры можно, ориентируясь на работающие радиостанции, пользуясь заранее начерченной шкалой (чертеж 6). Прежде всего нужно временно зашунтировать входной контур сопротивлением 10–20 ком (для того чтобы меньше проявлялись резонансные свойства этого контура).
Изменяя емкость подстроечных конденсаторов С12, С13 и С14 и индуктивность катушек L7,L9 и L11, необходимо добиться, чтобы прием той или другой станции соответствовал шкале приемника (рис. 143, 144).
Рис. 143. Границы диапазона устанавливают с помощью заранее начерченной шкалы, подгоняя частоту гетеродина. При этом на низких частотах диапазона изменяют индуктивность контура (например, с помощью сердечника катушки).
Рис. 144. На высших частотах диапазона изменяют начальную емкость контура (например, с помощью подстроенного конденсатора).
Частоту принимаемой станции можно узнать с помощью какого-нибудь фабричного приемника. Затем, сняв шунтирующее сопротивление со входного контура, нужно подстроить и его, ориентируясь на наибольшую громкость приема. Входной контур должен также перекрывать диапазон частот, указанный на шкале. В заключение добиваются наилучшего сопряжения настроек контуров, ориентируясь на станции, работающие в трех точках каждого диапазона – в середине и на краях (лист 168).
При настройке входных и гетеродинных контуров следует помнить, что подстроечным конденсатором нужно пользоваться на высших частотах диапазона, то есть при выведенном роторе блока конденсаторов настройки, а подгонять индуктивность нужно на низших частотах, то есть при введенном роторе.
Основные элементы налаживания супергетеродинного приемника иллюстрируются рисунками 139–144. Рекомендуемый способ позволяет лишь приблизительно настроить приемник. Для точной его настройки необходимо иметь специальные приборы и прежде всего генератор сигналов.
В процессе налаживания приемника часто приходится устранять неисправность отдельных его деталей или неточности монтажа. Конечно, перечислить все возможные неполадки приемника очень трудно, можно указать лишь основные из них.
Из деталей, применяемых в приемнике, неисправной может оказаться любая: могут замкнуться электроды внутри лампы (например, сетка и катод), нарушиться контакты в переключателе диапазонов или ламповой панельке, могут замыкаться на каком-нибудь участке диапазона роторные и статорные пластины конденсатора настройки, может оказаться пробитым диэлектрик в конденсаторе постоянной емкости (в этом случае конденсатор ведет себя как обычный проводник), возможно нарушение контакта в выводах конденсаторов, а также постоянных и переменных сопротивлений и т. д. и т. п.
Обычно обнаружить какую-нибудь из этих неисправностей можно сравнительно легко, используя простейший прибор – авометр или заменяя проверяемую деталь другой, заведомо исправной. К сожалению, помимо неточностей монтажа и не исправных деталей, при налаживании приемника нередко встречаются и другие неполадки, устранить которые не всегда легко и просто.
Одно из самых неприятных явлений, с которым приходится сталкиваться в процессе налаживания приемника – его самовозбуждение. Обычно оно проявляется в виде сильных «свистов», громкость и тон которых могут оставаться неизменными на всех диапазонах. Причиной самовозбуждения является «паразитная» положительная обратная связь, которая может появиться в любом из каскадов приемника или сразу в нескольких каскадах. Такая обратная связь обычно возникает из-за неудачного расположения отдельных деталей или монтажных цепей, а также из-за попадания переменных составляющих анодного или экранного тока в общие питающие цепи.
Чаще всего самовозбуждение возникает в усилителе ПЧ и преобразователе частоты. Реже наблюдается самовозбуждение усилителя НЧ.
Для того чтобы обнаружить каскад, в котором происходит самовозбуждение, можно поочередно вынимать из приемника лампы, начиная с первой, или снижать напряжение на аноде и экранной сетке той или иной лампы, увеличивая соответствующее гасящее сопротивление (R4, R7, R14) и сопротивление фильтра (R5, R6, R8).
Чтобы предотвратить самовозбуждение усилителя ПЧ, прежде всего нужно устранить паразитную связь между анодной и сеточной цепью лампы Л2 и особенно между катушками L13L14, с одной стороны, и L15L16– с другой стороны. Конечно, лучше всего применить экранированные контуры ПЧ от фабричных приемников. Экраны этих контуров необходимо заземлить, то есть соединить с общим «заземленным» проводом. В случае применения самодельных контуров ПЧ можно устранить нежелательную связь между ними, расположив катушки под углом 90°, а также поместив каркас с катушками L15L16 в экран из алюминия, латуни или белой жести (чертеж 3). Следует помнить, что экранирование несколько изменяет индуктивность катушки, а следовательно, и резонансную частоту контура, но это не очень страшно, так как в экран помещается лишь один колебательный контур L15С23, частоту настройки которого можно принять за основу и уже по ней подстраивать другие контуры ПЧ – L13C21 и L14C22 (для случая самодельных контуров).
Если и после экранирования анодного контура усилителя ПЧ самовозбуждение не прекратится, то можно попробовать увеличить в полтора-два раза сопротивления развязывающих фильтров, снизить напряжение на экранных сетках на 15–50 % и, наконец, включить в цепь катода лампы Л2 небольшое (100–300 ом) сопротивление. За счет этого сопротивления в усилителе возникнет отрицательная обратная связь (лист 157), которая скомпенсирует «паразитную» положительную связь, являющуюся причиной самовозбуждения. Правда, введение отрицательной обратной связи заметно снижает усиление каскада и поэтому может быть рекомендовано лишь в качестве крайней меры. Избавиться от самовозбуждения в преобразователе частоты, как правило, удается путем рационального размещения деталей, сокращения длины монтажных проводов и, в крайнем случае, уменьшения экранного напряжения лампы Л1.
Другое неприятное явление, с которым можно столкнуться при налаживании приемника, – фон переменного тока, о котором уже рассказывалось весьма подробно. Возможны две основные причины появления фона: первая – плохая фильтрация выпрямленного (анодного) напряжения и вторая – наводка от проводов, по которым проходит питающий переменный ток.
Обе причины могут возникать одновременно (стр. 212).
Для улучшения фильтрации анодного напряжения в блоке питания можно применить дроссель вместо сопротивления R19. Для борьбы с наводками, создающими фон, необходимо помещать в экран все провода сеточной цепи лампы Л3 – провода, идущие к детектору, регулятору громкости, гнездам звукоснимателя.
В супергетеродинном приемнике существует еще одна причина фона: паразитная модуляция в преобразовательном каскаде. Если напряжение на аноде гетеродина плохо отфильтровано или на деталях гетеродинного контура появляются большие наводки, то в этом каскаде высокочастотный сигнал может подвергнуться паразитной модуляции с частотой 50 гц. Для борьбы с этим явлением можно попробовать параллельно с конденсатором С18 включить электролитический конденсатор на 5—20 мкф и 300 в.
Следует заметить, что фон и даже самовозбуждение на низкой частоте могут появиться, если окажутся незаземленными корпус и ось переменного сопротивления Чтобы заземлить ось, достаточно под гайку, с помощью которой закрепляется сопротивление, подложить жестяную пластинку, соединив ее с «земляным» проводом, или, что то же самое, с экранирующим чулком.
В процессе налаживания приемника может возникнуть необходимость значительно изменить данные деталей, приведенные на схеме и в описании.
Прежде всего, вместо силового трансформатора от приемника «Рекорд» можно с успехом применить трансформатор от любого другого приемника, не считаясь с тем, что в этом случае режимы ламп могут заметно отличаться от приведенных на схеме.
В зависимости от того как выполнен монтаж, может значительно изменяться емкость колебательных контуров. Это может потребовать введения в контуры (чаще всего на ДВ и СВ диапазонах) дополнительных конденсаторов емкостью 5—50 пф, которые следует подключать параллельно соответствующим подстроечным конденсаторам. Большое значение имеет точный подбор сопрягающих конденсаторов. Для удобства настройки приемника (сопряжения контуров) на ДВ и СВ диапазонах целесообразно параллельно сопрягающим конденсаторам включать подстроечные конденсаторы емкостью 5—30 пф. Эти конденсаторы в основном будут влиять на настройку на низших частотах диапазона.
В ряде случаев может оказаться необходимым несколько изменить число витков контурных катушек и особенно катушек обратной связи. При подборе индуктивности контуров длинных и средних волн, а также контуров ПЧ, выполненных на картонных гильзах, следует обращать внимание на то, чтобы отдельные секции какой-либо катушки были намотаны в одну и ту же сторону и чтобы конец одной из секций был соединен с началом другой. В этом случае при сближении секций общая индуктивность катушки растет (резонансная частота контура падает) так же, как и при вдвигании в катушку сердечника! Если перемещением секций или сердечника не удается установить нужную частоту контура, то следует постепенно изменять число витков в одной из секций.
Следует заметить, что для ослабления помех с частотой, равной промежуточной, в ряде случаев может оказаться необходимым включение в антенную цепь фильтра с теми же данными, что и у любого контура ПЧ, например L15C23. Схема включения такого фильтра показана на листе 163.
Налаживание приемника – процесс достаточно трудоемкий, требующий внимания, большого терпения и, самое главное, вдумчивого отношения ко всем явлениям, с которыми приходится сталкиваться при настройке того или иного каскада. Поиски неисправностей наугад, бессистемная замена деталей, нежелание задуматься над возможными причинами той или иной неполадки – все это в итоге приводит к большим потерям времени, а иногда вообще мешает довести работу до конца.
Глава 8
НАСТОЯЩИЙ ПРИЕМНИК
Сделаны последние пайки, закреплены сердечники в катушках после окончательной настройки контуров, проверена работа супергетеродина на различных диапазонах и в разное время. Приемник работает хорошо, принимает много станций на длинных, средних, а также на коротких волнах, усилитель низкой частоты громко и чисто воспроизводит грамзаписи.
И все же то, что вы построили, трудно назвать настоящим приемником: большие габариты, громоздкая конструкция, отсутствие футляра – все это заставляет считать, что нами построен лишь действующий макет приемника. Кстати, постройка макета является обязательным этапом в создании какого-либо электронного устройства (рис. 145).
Рис. 145. Обычно для проверки новой схемы какого-либо электронного устройства делают электрический макет.
Опытные конструкторы, квалифицированные радиоспециалисты, прежде чем разрабатывать опытный образец приемника или телевизора, строят электрические макеты отдельных узлов, на которых изучают и отрабатывают схемы, уточняют данные деталей, режим ламп и т. д. Лишь после того как макет окончательно отработан, можно приступать к постройке опытного образца.
Подобным образом поступим и мы – построив действующий макет супергетеродина, выполненный на отдельных панелях, перейдем к изготовлению настоящего приемника, который по своей конструкции должен быть похож на один из промышленных образцов. Все детали приемника будут размещены на одном небольшом деревянном, а еще лучше металлическом шасси, которое мы установим в деревянный футляр. При этом приемник не только приобретет хороший внешний вид. Разместив все детали на одном шасси, мы сделаем монтаж более компактным и аккуратным, уменьшим число опорных монтажных лепестков и сократим длину соединительных проводов. Благодаря этому ослабятся паразитные обратные связи и появится возможность повысить усиление отдельных каскадов. Кроме того, благодаря сокращению соединительных проводов уменьшатся наводки и снизится уровень фона.
Конструктивных вариантов приемника может быть бесчисленное множество. Выбирая тот или иной вариант, вы можете взять за образец какой-нибудь заводской приемник – «Рекорд», «Зарю», «Волну» и т. п. Можно воспользоваться и образцом радиолюбительской конструкции. Можно, наконец, создать конструкцию самому. Для этого нужно тщательно измерить размеры основных деталей и, вооружившись листом миллиметровки, найти наиболее удачный вариант их размещения и необходимые размеры шасси.
ТРИ СХЕМЫ…
На чертежах 18, 21 и 22 показаны три конструктивных варианта радиолюбительских супергетеродинов. Любой из них вы можете взять за основу при конструировании своего приемника. Все три приемника выполнены по примерно одинаковым схемам, но на различных типах ламп.
Схема первого из приемников (чертеж 19) почти полностью повторяет схему нашего электрического макета: здесь применены те же усилительные лампы: 6И1П, 6К4П, 6Ж1П, (6ЖЗП) и 6П1П, те же схемы отдельных узлов: входной цепи, преобразователя частоты, детектора усилителей ПЧ и НЧ, а также сохранена нумерация основных деталей. Некоторое отличие представляет лишь схема регулировки тембра и блока питания.
Регулировка тембра осуществляется в специальной цепи отрицательной обратной связи, которая возникает благодаря включению конденсатора С31 между анодом и управляющей сеткой лампы Л4. Так как емкость конденсатора С31 очень мала, то этот конденсатор не пропускает из анодной цепи на сетку низшие звуковые частоты, и обратная связь в основном существует лишь на высших звуковых частотах. А поскольку обратная связь в данной схеме получается отрицательной, то она ослабляет сигнал, поступающий на сетку лампы с предыдущего каскада, причем ослабляет лишь высшие звуковые частоты этого сигнала. Иными словами, благодаря введению обратной связи у частотной характеристики усилителя появляется «завал» в области высших частот (рис. 146).
Рис. 146. Если цепь отрицательной обратной связи имеет разное сопротивление на высших и низших частотах, то с ее помощью можно регулировать тембр.
Нарисованная нами картина в полной мере относится к случаю, когда движок потенциометра R16 («регулировка тембра») находится в верхнем (по схеме) положении и все напряжение, поступающее через конденсатор С31, полностью подается на сетку лампы. Теперь представьте себе, что движок потенциометра R16 находится в крайнем нижнем положении. В этом случае конденсатор замкнут на «землю», напряжение обратной связи на сетку не поступает, и «завала» частотной характеристики нет. Совершенно ясно, что если мы будем перемещать движок потенциометра из одного крайнего положения в другое, то будет изменяться глубина обратной связи, а вместе с ней и степень «завала» частотной характеристики, то есть, иными словами, будет происходить регулировка тембра.
В блоке питания рассматриваемого приемника выпрямитель выполнен по так называемой мостовой схеме (лист 177). Прежде чем разбирать ее, нам придется коротко остановиться на схеме двухполупериодного выпрямителя (лист 176), которая используется во втором приемнике.
Рассмотренная нами ранее (стр. 168) схема выпрямителя называется однополупериодной. Название это связано с тем, что в таком выпрямителе ток через вентиль проходит лишь в течение одной половины периода, а во время второго полупериода наступает пауза – вентиль тока не пропускает. Особую рать при этом играет первый конденсатор фильтра – Сф1 (С34). Когда вентиль пропускает ток, этот конденсатор заряжается (то есть накапливает заряды), а во время паузы он разряжается через нагрузку – через анодные цепи ламп. Учитывая все это, конденсатор Сф1 можно назвать накопительным конденсатором. Именно благодаря этому конденсатору ток через нагрузку протекает все время, а не только в те моменты, когда проходит ток через вентиль.
Чтобы лучше уяснить рать накопительного конденсатора, представьте себе, что у вас имеется бак с открытым краном у самого дна и что кто-то через равные промежутки времени ведром доливает в этот бак воду (рис. 147).
Рис. 147. Первый конденсатор фильтра Сф1 (С34) можно сравнить с баком, который периодически наполняется водой (импульсы тока через вентиль) и отдает эту воду в виде непрерывной струи (постоянный ток, потребляемый нагрузкой).
Можно так подобрать емкость бака и количество доливаемой воды, что бак никогда не будет оставаться пустым и из крана все время будет бежать струя воды. Такая система очень похожа на наш выпрямитель: бак играет рать накопительного конденсатора Сф1, открытый кран характеризует потребление тока нагрузкой, а доливание воды ведром напоминает импульсы тока, которые проходят через вентиль пятьдесят раз в секунду. Что же касается выпрямленного напряжения, то его можно сравнить со средним давлением воды на дно бака. Очевидно, это давление зависит от среднего уровня воды в баке.
Развивая наше сравнение, можно сделать ряд очень интересных выводов относительно работы выпрямителя. Прежде всего отметим, что ток через нагрузку будет пульсировать, то есть будет периодически меняться по величине, подобно тому как меняется скорость воды, вытекающей из крана (чем ниже уровень воды в баке, тем медленнее она вытекает). Мы уже знаем, что, для того чтобы сгладить пульсацию тока, в фильтр выпрямителя вводят дроссель (или сопротивление) и еще один конденсатор Сф2 (С35). Попутно заметим, что, чем больше потребляемый ток, тем сильнее будут его пульсации (чем больше открыт, кран, тем резче меняется уровень воды за время между двумя доливаниями). Величина пульсаций зависит также и от емкости накопительного конденсатора: чем больше эта емкость, тем большую энергию накопит конденсатор в то время, когда вентиль пропускает ток, тем меньше будут пульсации.
Аналогично при увеличении емкости бака возрастет объем запасаемой в нем воды и уменьшается влияние открытого крана: чем больше запас воды, тем меньше меняется ее уровень за время между двумя доливаниями.
От величины потребляемого тока и от емкости накопительного конденсатора Сф1 сильно зависит и напряжение на выходе выпрямителя: чем больше емкость Сф1 и чем меньше потребляемый ток, тем больше выпрямленное напряжение (чем больше емкость бака и чем меньше воды вытекает через открытый кран, тем больше средний уровень воды в баке). Совершенно очевидно, что ни при каких обстоятельствах напряжение на конденсаторе не может оказаться больше амплитуды переменного напряжения, которое подводится к выпрямителю и через вентиль заряжает накопительный конденсатор. Точно так же максимальный уровень воды в баке не может быть выше уровня ведра, из которого заливают этот бак, – вода может литься сверху вниз, но не наоборот.
Что же касается выпрямленного, то есть среднего напряжения, то его величина, как мы уже отмечали, зависит от емкости Сф1 и потребляемого тока и практически на 20–50 % меньше амплитуды переменного напряжения. Выпрямленное напряжение оказывается равным амплитуде переменного напряжения лишь при «холостом ходе», то есть тогда, когда выпрямитель работает без нагрузки. И, наконец, последнее – уровень воды в баке не должен превышать высоты его стенок, иначе вода перельется через верх.
Так же и напряжение, подводимое к конденсатору, не должно превышать величину, на которую он рассчитан, иначе произойдет пробой этого конденсатора (повреждение изолятора и короткое замыкание обкладок). Оба конца повышающей обмотки силового трансформатора окажутся замкнутыми через вентиль, в результате чего в цепи пойдет большой ток и трансформатор и вентиль, быстро перегревшись, выйдут из строя.
Следует заметить, что, когда возрастает ток в повышающей обмотке, увеличивается потребляемая трансформатором мощность, а следовательно, и ток в сетевой обмотке, куда включен предохранитель. Это значит, что в случае «пробоя» конденсатора фильтра мгновенно сгорит предохранитель и одна из самых дорогих деталей приемника – силовой трансформатор – будет спасен (конечно, лишь в том случае, если вы еще не успели заменить настоящий предохранитель толстым «жучком», рис. 148).
Рис. 148. Устанавливая вместо плавкого предохранителя более толстый провод, вы рискуете вывести из строя силовой трансформатор и ряд других деталей.
Обратите внимание на то, что в верхнем и нижнем рядах рисунка 147 изображены совершенно одинаковые баки и в то же время во втором случае пульсации намного меньше, а средний уровень воды заметно выше. А дело здесь в том, что бак, расположенный в нижнем ряду, доливается в два раза чаще, чем верхний, и поэтому уровень воды меняется весьма незначительно.
Рассуждая подобным образом, можно прийти к следующему выводу: чем чаще мы будем подзаряжать накопительный конденсатор фильтра Сф1, тем больше будет выпрямленное напряжение и меньше будут его пульсации.
Но как можно увеличить частоту импульсов зарядного тока? Ведь не можем же мы изменить частоту переменного напряжения, которое подводится к вентилю – эта частота всегда равна 50 гц («частота сети»)!
Оказывается, что есть другой путь. Чтобы подзаряжать конденсатор Сф1 не пятьдесят раз. в секунду, а сто раз, достаточно использовать напряжение второго полупериода, во время которого вентиль обычного однополупериодного выпрямителя тока не пропускает. Нам уже давно известно, что любой вентиль пропускает ток лишь во время положительных полупериодов переменного напряжения, а во время отрицательных полупериодов диод оказывается включенным в обратном направлении (или на аноде кенотрона оказывается «минус») и тока в цепи нет. Но ведь сами названия «положительный» и «отрицательный», которые мы присвоили полупериодам переменного напряжения, совершенно условны. Можно включить вентиль так, что он будет пропускать ток во время первого, третьего, пятого и других нечетных полупериодов. Если повернуть вентиль в обратную сторону (лист 176), ток через нагрузку будет протекать во время второго, четвертого, шестого и других четных полупериодов. Если же взять силовой трансформатор с двумя одинаковыми повышающими обмотками и два вентиля, то можно построить схему, где ток через нагрузку будет протекать в одну и ту же сторону как во время четных, так и во время нечетных полупериодов (лист 176).