355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Рудольф Сворень » Шаг за шагом. От детекторного приемника до супергетеродина » Текст книги (страница 1)
Шаг за шагом. От детекторного приемника до супергетеродина
  • Текст добавлен: 16 октября 2016, 20:35

Текст книги "Шаг за шагом. От детекторного приемника до супергетеродина"


Автор книги: Рудольф Сворень



сообщить о нарушении

Текущая страница: 1 (всего у книги 19 страниц)

Сворень Рудольф Анатольевич
«Шаг за шагом.
От детекторного приемника до супергетеродина»

Предисловие

Весной 1959 года в популярном журнале «Радио» начала печататься серия статей «Шаг за шагом», которые и легли в основу этой книги.

Статьи «Шаг за шагом» сразу же привлекли внимание советских и зарубежных радиолюбителей четким и образным языком, продуманными иллюстрациями, стремлением автора не обходить, не «затуманивать» сложных вопросов и прежде всего говорить о главном.

Но, пожалуй, что больше всего обращало на себя внимание – это совершенно новый подход к рассказу для начинающих радиолюбителей.

С каждым годом все больше и больше ребят начинают заниматься радиолюбительством, и перед каждым из них неизбежно встает вопрос: с чего начать, как приступить к этому увлекательному, но сложному делу?

Некоторые считают, что начинать нужно с изучения основ радиотехники. Эти радиолюбители прежде всего запасаются книгами о том, как работают радиопередатчики, приемники, телевизоры, магнитофоны. Другая часть любителей думает, что изучение теории – дело второстепенное. Они «берут быка за рога» – достают схемы и чертежи и пытаются сразу же построить усилитель или приемник, причем, как правило, «самый хороший».

По-видимому, оба этих направления представляют собой крайности. Опыт показывает, что самая лучшая школа для радиолюбителя – это практическая работа, сочетаемая с тщательным изучением схемы и разбором принципа действия того радиоустройства, над которым любитель работает. Мастерство радиолюбителя – это всегда результат упорного, кропотливого труда и глубоких знаний. Для того чтобы работать творчески, создавать новые схемы и конструкции, для того чтобы научиться тщательно налаживать радиоаппаратуру, безошибочно находить неполадки в неисправных приемниках или телевизорах, – нужно многое знать и уметь. Нужно уметь намотать контурную катушку и отыскать нужные выводы обмоток трансформатора, разметить шасси и разместить на нем детали, аккуратно выполнить монтаж и подобрать нужные режимы ламп. Нужно знать основные физические процессы в усилителе или генераторе, понимать, какую роль в работе радиоустройств играют элементы, их схемы, как проходят по различным цепям переменные и постоянные токи, как влияет на работу того или иного узла изменение входящих в него сопротивлений, замена конденсаторов, перестройка контуров.

Именно так и подошел к вопросу Р. Сворень, создавший книгу, в которой гармонически сочетаются своего рода руководство для практических работ с популярным рассказом об основах радиотехники. В книге радиолюбителю предлагается несколько конструкций для самостоятельного изготовления, начиная от самого простого детекторного приемника, в котором имеются всего две детали, и кончая многоламповым супергетеродином. К постройке супергетеродина любители приходят постепенно, действительно «шаг за шагом», модернизируя свой простейший приемник, добавляя к нему все новые и новые узлы, усложняя и совершенствуя его схему. При этом появление каждого нового схемного элемента, каждой новой детали как-то незаметно и в то же время неотделимо связано с коротким рассказом о ее назначении, принципе действия и области применения. Таким образом к концу работ радиолюбитель не только создает вполне современный радиоприемник, но приобретает много полезных знаний, пожалуй, даже стройную систему знаний, которая является прекрасным фундаментом для дальнейшей самостоятельной работы.

Книга «Шаг за шагом» заметно отличается от серии статей, опубликованных в журнале «Радио». Автор переработал многие основные разделы, заново продумал почти все иллюстрации, ввел много новых рисунков и в том числе больше двухсот весьма полезных справочных листков и, наконец, написал две новые главы: первую – об основах электротехники и последнюю – о возможных усовершенствованиях приемника и дальнейших путях самостоятельной работы радиолюбителей.

Можно не сомневаться в том, что эта книга поможет вам сделать первый шаг на пути в радиоэлектронику. А сделав первый шаг, вы, конечно, уже не сможете остановиться – ведь впереди у вас самодельные радиостанции, с помощью которых можно завести друзей на всех континентах планеты, самодельные телевизоры, магнитофоны и карманные приемники, управляемые по радио модели самолетов и кораблей, «умные» электронные автоматы и много других замечательных вещей.

Успехов вам, дорогие друзья!

Председатель Федерации радиолюбительского спорта СССР,

Герой Советского Союза

Э. Кренкель

Глава 1
НЕМНОГО ЭЛЕКТРОТЕХНИКИ



ВМЕСТО ВВЕДЕНИЯ

О мае 1895 года замечательный русский физик Александр Степанович Попов продемонстрировал большому собранию ученых свое изобретение – действующий прибор для приема и регистрации электромагнитных волн, то есть то, что мы сейчас называем радиоприемником. А менее чем через год А. С. Попов построил радиопередатчик и осуществил передачу первых в мире радиограмм. Так родился «беспроволочный телеграф», первенец радиотехники, которая за шестьдесят семь лет своего существования сделала множество замечательных подарков всем без исключения областям науки и техники.

Многие годы радиотехника развивалась как один из разделов электротехники – науки об электрических и магнитных явлениях, об их практическом использовании. На первых порах даже не было таких профессий, как радиоинженер или радиотехник, и радиоспециалистов называли просто электриками, прибавляя, правда, слово «слаботочник». Лишь через двадцать – тридцать лет после своего рождения радиотехника сформировалась как самостоятельная область знаний и даже, более того, дала толчок развитию таких важных научных и технических отраслей, как телевидение, радиолокация, вычислительная техника, радиоастрономия, радионавигация и др.

Но, став самостоятельной областью науки, радиотехника, или. как мы сейчас говорим, радиоэлектроника, не порвала, да и не могла порвать своих связей с электротехникой. Ведь работа радиоэлектронных приборов и аппаратов основана на электрических и магнитных явлениях, а процессы, которые происходят в самых сложных радиоустройствах и в мельчайших их элементах, подчиняются строгим законам электротехники.

Во всех учебных заведениях будущие радиоспециалисты тщательно изучают основы электротехники. И радиолюбителю, незнающему электротехники, трудно разобраться даже в самых простых радиоустройствах.

Именно поэтому мы начинаем свой рассказ о работе и устройстве радиоприемника с краткого знакомства с некоторыми основными положениями электротехники. Конечно, на нескольких страницах подробно разбирать все ее законы мы не можем. Да это, пожалуй, и не нужно, так как эти вопросы очень хорошо разобраны в специальных книгах, например, «Курс электротехники» Д. Максимова, «Электротехника для радиста» И. Жеребцова и др. Кроме того, электричеству посвящены большие разделы в учебниках физики для 7 и 10 классов средней школы.

С некоторыми из элементов электротехники мы познакомимся по мере того, как будем изучать и строить приемники. Некоторые вопросы нам придется рассмотреть с самого начала.


ЧТО ТАКОЕ ЭЛЕКТРИЧЕСТВО?

Многие из вас сочтут этот вопрос до смешного ясным, но, попытавшись ответить на него, поймут, что это очень и очень сложно. И все же мы коснемся вопроса о том, что такое электричество, хотя бы для того, чтобы вы лишний раз над ним задумались.

Много тысячелетий живет человек на нашей планете. Сталкиваясь в своей практической деятельности с окружающим миром, он твердо усвоил такие понятия, как вещество, движение, объем, вес, температура и другие. Зрение, обоняние, слух, осязание – этот могучий арсенал, полученный от природы, – позволили человеку воспринимать мир в бесконечном многообразии вещей и явлений.

Однако уже первые философы и ученые убедились в том, что картина мира, нарисованная в сознании человека, является далеко не полной, что наши органы чувств не дают возможности непосредственно воспринять многие свойства вещества и целый ряд физических явлений.

…Натертая шерстью палочка янтаря притягивает мелкие лоскутки шелка. Под действием собственного веса эти лоскутки должны были бы падать вниз, но какая-то «особая» сила, исходящая из натертой палочки, удерживает их. Этот простейший опыт заставил человека обратить внимание на одно из недоступных непосредственному восприятию явлении природы, которое было названо электричеством. Такое название происходит от греческого слова «электрон», что означает «янтарь». О натертой палочке янтаря и о других предметах, у которых проявляются электрические свойства, говорят, что они обладают электрическим зарядом (рис. 1)[1]1
  В книге используются три вида иллюстраций: рисунки, чертежи и справочные листы. Каждой вид иллюстраций имеет свою нумерацию.


[Закрыть]
.


Рис. 1. Натертая о шерсть гребенка приобретает особые свойства, которые называются электрическим зарядом.

Стрелка компаса еще несколько тысячелетий тому назад познакомила людей с другим новым для них явлением – магнетизмом (рис. 2).


Рис. 2. Простейшие опыты с обычным компасом знакомят нас с другим особым свойством вещества – магнетизмом.

Слова «магнетизм», «магнит» происходят от названия находящегося в Малой Азии города Магнезия, вблизи которого имелись залежи железной руды, обладающей магнитными свойствами.

Электрический заряд и магнетизм – это совершенно особые свойства вещества, которые существуют наряду с такими хорошо известными нам свойствами, как вес и объем. Уже совсем недавно при изучении атома было открыто еще одно принципиально новое явление – были обнаружены так называемые внутриядерные силы, которые по своей природе не похожи ни на силу тяжести, ни на электрические, ни на магнитные силы.

Нет никакого сомнения в том, что принципиально новые качества вещества, новые, недоступные непосредственному восприятию формы существования материи будут обнаруживаться нами и в дальнейшем по мере все более углубленного знакомства с природой. И при этом нам всякий раз придете я дополнять наше представление об окружающем мире новыми понятиями, взятыми из опытов или из проверенных практикой теоретических исследований. Конечно, очень трудно вносить поправки во взгляды, которые складываются годами, но другого пути нет! Каждый, кто стремится проникнуть в тайны природы, всякий, кто стремится освоить огромные достижения современной физики, должен прежде всего приучить себя к мысли о том, что мир намного сложнее и богаче, чем это кажется с первого взгляда.

Уже простейшие опыты говорят о том, что электричество может служить человеку. Если наэлектризованная палочка притягивает клочки шелка или бумаги, то почему нельзя повторить этот опыт в больших масштабах: например, заставить большие наэлектризованные предметы двигать грузы или приводить в движение тяжелые прессы и молоты?

Конечно, все это возможно, но в использовании электрической энергии техника пошла совсем по другому пути: в качестве «работающих элементов» были выбраны самые маленькие заряженные частицы и в первую очередь электроны. Такие частицы, обладающие электрическими свойствами, для краткости называют просто электрическими зарядами.


ВЕЛИКАЯ АРМИЯ ЭЛЕКТРОНОВ

Если мы начнем дробить на мелкие кусочки какое-либо вещество, например сахар, то в итоге получим самый микроскопический кусочек этого вещества, называемый молекулой. Молекулу сахара, впрочем, как и любую другую, тоже можно разделить на составные части, но это уже будет не сахар. Для того чтобы сказанное стало несколько понятнее, представьте себя, что вам нужно город разделить на районы. Самый маленький район, который вы сможете получить, будет один дом – «молекула» большого города. Можно, конечно, и дом разобрать на составные части: кирпичи, балки, бетонные плиты, листы кровельного железа, оконные рамы, двери. Но ведь никто не подумает сказать, что какая-нибудь из этих деталей представляет собой район города.

Подобно тому как дом состоит из отдельных деталей, молекула любого вещества образуется из еще более мелких частиц – атомов. В настоящее время известно около ста основных типов атомов, различные сочетания которых дают все многообразие окружающих нас веществ: воду и воздух, бумагу и нефть, зеленый лист дерева и кипящую сталь. Точно так же из нескольких основных строительных материалов создаются самые различные здания: заводы, гаражи, школы, больницы, небоскребы и одноэтажные коттеджи.

Только не подумайте, что можно руками или каким-нибудь инструментом разделить вещество на отдельные молекулы и тем более на атомы. Частицы эти настолько малы, что их не только нельзя взять в руки, но даже нельзя рассмотреть с помощью самых совершенных оптических приборов. О размерах молекулы дают представление такие цифры: в одной капле воды содержится около 1 500 000 000 000 000 000 000 молекул, каждая из которых во столько же раз меньше самой капли, во сколько раз эта капля меньше Черного моря. Что же касается атомов, то они во много раз меньше молекул.


Рис. 3. Каждый, кто стремится проникнуть в тайны природы, кто хочет освоить замечательные достижения современной физики…


Рис. 4. … должен прежде всего приучить себя к мысли о том, что мир намного сложнее, чем это кажется с первого взгляда.

Слово «атом» означает «неделимый». Это название утвердилось тогда, когда считали, что атом уже невозможно разделить на составные части. Но жизнь, как всегда, внесла свои поправки.

В начале этого столетия было установлено, что сам «неделимый» атом также является сложной системой: в центре его находится так называемое ядро, которое, в свою очередь, состоит из множества различных частиц. Вокруг атомного ядра с огромными скоростями вращаются мельчайшие частицы – электроны.

Количество электронов в атоме может быть различным: в самом простом атоме – атоме водорода – вокруг ядра вращается один электрон, в атоме алюминия их уже 13, а в атоме элемента менделеевий, в одном из самых сложных атомов – 101 электрон (лист 3).

Можно самому построить очень упрощенную «действующую» модель атома водорода. Для этого достаточно взять какой-либо легкий предмет, например пустую коробку из-под спичек, и, привязав ее на короткую бечевку, раскрутить вокруг руки. Рука будет играть роль атомного ядра, а роль вращающегося вокруг ядра электрона будет играть спичечная коробка (рис. 5).


Рис. 5. Можно построить весьма упрощенную модель атома, где в центре находится ядро, обладающее положительным электрическим зарядом, а вокруг ядра вращаются отрицательно заряженные электроны.

И вот здесь-то и возникает вопрос: а что же в настоящем атоме выполняет роль бечевки? Ведь если в нашем опыте бечевка оборвется, то «электрон» – спичечная коробка – под действием центробежной силы улетит в сторону! Почему же вращающийся с огромной скоростью электрон не отходит от ядра?

Роль бечевки в настоящем атоме выполняют электрические силы, силы взаимодействия электрических зарядов. Но, прежде чем говорить об этом, следует отметить, что в природе существует два вида электрических зарядов: один из них назван положительным и отмечается на рисунках знаком «плюс»; другой вид зарядов называют отрицательным и обозначают знаком «минус». Применение этих слов и знаков в данном случае совершенно условно: с таким же успехом можно было бы называть заряды красными и синими или зарядами группы а и группы б, а на рисунках обозначать их любыми условными знаками. Положительный заряд появляется на стеклянной палочке, натертой кожей, отрицательный – на каучуковой или пластмассовой палочке, натертой шерстью (лист 1).

Электрические заряды взаимодействуют между собой – одноименные заряды, то есть заряды одного и того же знака, взаимно отталкиваются, разноименные электрические заряды взаимно притягиваются (лист 2). За счет электрических сил взаимного притяжения атомное ядро, обладающее положительным зарядом, как бы на бечевке удерживает вращающийся электрон, обладающий отрицательным зарядом.


В своем нормальном состоянии ядро обладает таким же (по силе) зарядом, как и общий заряд всех электронов. Поэтому положительный заряд ядра и отрицательный заряд электронов как бы компенсируют друг друга, и атом в целом, а значит, и вещество, состоящее из таких атомов, не обнаруживает своих электрических свойств. Но стоит только каким-нибудь способом убрать из атома один, а тем более несколько электронов, как начнут проявляться электрические свойства ядра, и атом будет вести себя как частица с положительным зарядом. Такой, атом получил название «положительный ион». Если же, наоборот, добавить в атом «лишние» электроны, то он будет обладать избыточным отрицательным зарядом, будет представлять собой «отрицательный ион» (лист 4).

Натирая шерстью стеклянную палочку, мы как бы вырвали из ее атомов электроны. В результате этого сама палочка приобрела положительный заряд, а кусок шерсти, куда перешли электроны со стекла, оказался заряженным отрицательным электричеством. В опыте с пластмассовой палочкой наоборот: на шерсти появляются положительные ионы, а на самой палочке – отрицательные (лист 5).

Давайте проделаем такой опыт: соединим наэлектризованные предметы – пластмассовую (—) и стеклянную (4) палочки каким-нибудь проводом или металлическим предметом. При этом электрические заряды сразу же исчезнут с наэлектризованных предметов и они уже не будут притягивать легкие кусочки шелка или бумаги. Произойдет это из-за того, что лишние электроны по проволоке перейдут с пластмассовой палочки на стеклянную и займут там свободные места в атомах, у которых не хватает электронов (лист 6).


Но почему же такой переход зарядов не мог произойти без соединительного провода непосредственно по воздуху? Благодаря каким свойствам металлических предметов по ним свободно двигаются заряды?

По своей способности проводить электрические заряды все вещества делятся на две основные группы – изоляторы и проводники. Проводники – это прежде всего все металлы[2]2
  К числу проводников относятся также растворы многих солей и кислот, а также газы, находящиеся в определенном состоянии, например светящиеся газы в лампах дневного света или трубках световых реклам.


[Закрыть]
. Некоторые электроны в проводниках, покинув свои атомы, беспорядочно двигаются в пространстве между неподвижными атомами, многие из которых уже стали положительными ионами. В нашем опыте эти свободные электроны с одного конца проводника будут сразу же «перетянуты» в положительные атомы стеклянной палочки. На место ушедших придут свободные электроны из соседних участков проводника, и этот процесс будет продолжаться до тех пор, пока на стеклянную палочку проводника не перейдут все лишние электроны с пластмассовой палочки.

Свободные электроны начинают двигаться практически одновременно во всех участках проводника, подобно тому как вода начинает одновременно двигаться во всех участках водопроводной трубы, когда мы открываем кран. Такое упорядоченное, дружное движение свободных зарядов (в частности, электронов) в проводнике под действием электрических сил называется электрическим током (лист 7).

В жидких и газообразных проводниках, в отличие от металлов, положительные ионы очень слабо связаны между собой и могут свободно перемещаться. Поэтому в таких проводниках электрический ток – это не только движение свободных электронов, но и движение свободных положительных зарядов (лист 8). Попутно заметим, что в этом случае положительные заряды и электроны двигаются в разные стороны. Так, например, электроны всегда двигаются к «плюсу», то есть по направлению к телу с положительным зарядом, а положительные ионы двигаются к «минусу».

В изоляторах, их часто называют диэлектриками, свободных электрических зарядов почти нет, поэтому электрического тока в них практически быть не может (лист 9).


Электрический ток, то есть упорядоченно движущиеся заряды, могут выполнять полезную работу, подобно тому как движущийся автомобиль может перевозить грузы, движущийся топор – колоть дрова, движущийся камень – высекать искру. О том, как микроскопические электроны выполняют самую тяжелую работу, заменяя труд миллионов людей, вы узнаете на следующей странице. А до этого нам предстоит решить еще один чрезвычайно важный вопрос: каким образом можно получить ток, который сохранялся бы в проводнике длительное время? Ведь в нашем опыте с наэлектризованными предметами ток существует в проводниках какие-то ничтожные доли секунды – как только заполнятся свободные места в атомах стеклянной палочки, ток прекратится. А такой кратковременный ток – плохой работник: ничего полезного он сделать не успеет.

Для того чтобы ток существовал долго, нужно, чтобы все время сохранялся недостаток электронов на одном из наэлектризованных предметов и избыток – на другом.

Подобная задача сравнительно просто решается в химических источниках тока – аккумуляторах и гальванических элементах. Примером химического источника тока может служить сосуд, наполненный раствором серной кислоты, в который вставлены два электрода – пластинки из цинка и меди. В результате химических реакций с серной кислотой в медном электроде образуется недостаток электронов, а в цинковом – избыток. Поэтому если соединить электроды проводником, то в нем появится электрический ток – свободные электроны будут переходить по проводнику с цинковой пластинки на медную, подобно тому как они переходили с пластмассовой палочки на стеклянную. Разница здесь состоит в том, что ток не прекратится сразу же, как это было в предыдущем опыте.

В результате химических процессов в кислоте электроны будут непрерывно отбираться из медной пластинки и добавляться в цинковую то есть, пока кислота не потеряет своих свойств, медь будет сохранять положительный заряд, а цинк отрицательный, и все это время в проводнике будет электрический ток.

Этот процесс несколько напоминает круговорот воды в природе, когда влага падает на землю в виде дождя и снега и под действием солнечных лучей вновь поднимается в виде испарений. Химические источники тока находят довольно широкое применение на практике. В качестве примера можно привести автомобильный аккумулятор или батарейку карманного фонаря, состоящую из гальванических элементов (листы 10 и 11). Еще более широко распространены такие источники тока, как электрические генераторы. Необходимое накопление электрических зарядов происходит в них за счет использования механических сил, источником которых служат двигатели внутреннего сгорания и паровые или водяные турбины (лист 12).

Существуют устройства, в которых накопление зарядов осуществляется за счет световой, тепловой и атомной энергии. Мы не будем подробно разбирать работу различных электрических генераторов, а лучше вернемся к вопросу о том, как выполняют полезную работу электроны, движущиеся по проводнику. Для примера рассмотрим обычный карманный фонарик. В нем имеется электрическая цепь, состоящая из источника тока – батарейки, коротких соединительных проводов (их роль может выполнять металлический корпус фонаря или полоски белой жести), лампочки и простейшего выключателя.

Для всех элементов электротехнических и радиотехнических устройств: аккумуляторов, электродвигателей, переключателей, лампочек, радиоламп, громкоговорителей, соединительных проводов и т. п. (листы 10, 12, 13, 18, 21, 24, 37, 44, 45, 58, 60, 67, 68, 84, 92, 93, 94, 95, 103, 104, 116, 184–219), имеются условные обозначения, с помощью которых можно выполнить сравнительно простой рисунок – так называемую принципиальную схему. Схема даст полное представление об электрических цепях рассматриваемого устройства. На схеме часто делают сокращенные обозначения, которые указывают порядковый номер того или иного элемента цепи. Например, если в цепи имеются две лампочки, то на схеме они обозначаются Л1 и Л2.

Примером простейшей схемы может служить изображенная на рисунке 6 схема карманного фонаря. Если замкнуть выключатель Вк1, то в цепи карманного фонаря появится ток и лампочка Л1 засветится. Свечение лампочки объясняется тем, что ее нить оказывает большое сопротивление движущимся зарядам. Дело в том, что заряды не двигаются по Проводнику беспрепятственно: то и дело они ударяются о встречные атомы или сталкиваются между собой. Из-за всех этих ударов и столкновений часть энергии движущихся зарядов превращается в тепло, подобно тому как превращается в тепло часть энергии молота, ударившего по наковальне (рис. 6).


Рис. 6. Движущиеся в электрической цепи заряды ударяются о неподвижные атомы проводника, благодаря чему проводник, по которому течет ток, например нить лампочки, нагревается.

Способность какого-либо участка электрической цепи препятствовать движению зарядов называется электрическим сопротивлением. Сопротивление нити лампочки довольно велико, а диаметр этой нити очень мал. Поэтому нить отбирает у тока много энергии и в то же время плохо излучает тепло. Нагревшись до высокой температуры, нить лампочки начинает светиться. Таким образом и преобразуется энергия движущихся зарядов, то есть энергия электрического тока, в свет и тепло. Само собой разумеется, что сопротивление соединительных проводов должно быть как можно меньше, чтобы они не отбирали энергию у движущихся зарядов.

На первый взгляд может показаться странным, как это движущийся электрон, обладающий ничтожной массой, нагревает до высокой температуры нить лампочки или спираль электроплитки. Конечно, если бы речь шла об одном электроне, то эти сомнения были бы оправданы. Действительно, энергия одного электрона настолько мала, что ее не стоит и учитывать. Но ведь по нити лампочки или по спирали плитки одновременно движется очень много электронов. Настолько много, что их количество может выражаться числом, у которого после единицы стоят десятки нулей! И хоть мал работник – электрон, а с такой огромной армией уже не считаться нельзя – она может проделать весьма значительную работу.

Другой путь использования энергии движущихся зарядов – это превращение ее в механическую работу. Для этой цели служат электрические двигатели, которые с помощью тока вращают колеса электровоза, поднимают ковши гигантских экскаваторов или приводят в движение винты атомохода «Ленин».

При упорядоченном движении электрических зарядов по проводнику он не только нагревается, но и приобретает магнитные свойства – становится своего рода магнитом (рис. 7).


Рис. 7. Вокруг движущихся зарядов возникает магнитное поле. Как и обычный магнит, проводник, по которому течет ток, обладает магнитными свойствами: он может поворачивать стрелку компаса, притягивать железные предметы или другие проводники, по которым течет ток.

Если взглянуть на постоянный магнит, например на стрелку компаса, то может показаться, что магнетизм не имеет ничего общего с электричеством. В действительности же магнитные свойства любого постоянного магнита связаны с движением зарядов и, в частности, с движением электронов вокруг атомного ядра. Магнитные свойства Земли, благодаря которым стрелка компаса всегда поворачивается на север, также обусловлены мощными токами, которые существуют как внутри земного шара, так и в атмосфере.

Если взять два проводника, по которым течет электрический ток. то они будут взаимодействовать между собой как два магнита, то есть будут взаимно притягиваться или отталкиваться (в зависимости от направления тока). Это явление и используется в электрических двигателях, где силы взаимного притяжения или отталкивания постоянного магнита и проводника с током или еще чаще одних только проводников с током выполняют нужную нам механическую работу (лист 13).

Самое сложное электротехническое устройство с множеством генераторов, двигателей, переключателей, нагревательных и осветительных приборов различных типов всегда можно рассматривать как комбинацию сравнительно простых цепей. Сложные и простые электрические цепи в свое время были тщательно изучены. Результатами такого изучения явились несколько основных законов, основных правил, которым подчиняются электрические процессы. С некоторыми из этих правил мы сейчас познакомимся.



АНКЕТА ЭЛЕКТРИЧЕСКОЙ ЦЕПИ

В качестве примера простой цепи возьмем уже известный нам карманный фонарик, в котором имеется и источник тока – батарейка – и так называемая нагрузка – лампочка, потребляющая электрическую энергию батареи, и соединительная линия – два провода, по которым электроны идут «на работу» и «с работы», то есть по одному проводу двигаются от батареи к нагрузке, а по другому – от нагрузки к батарее.

Прежде чем рассматривать законы электрической цепи, нам необходимо научиться количественно оценивать происходящие в ней процессы. Пока мы лишь общими фразами описывали характеристики электрических цепей и то, что в них происходит.

Мы говорили, например, что на стеклянной палочке сосредоточен сильный заряд или, наоборот, слабый заряд, что проводник хорошо проводит ток или, наоборот, плохо проводит ток, что ток в цепи велик или мал. Таких общих слов, как «большой», «малый», «сильный», «слабый», «много», «мало» и др., очень часто оказывается недостаточно ни в технике, ни в повседневной жизни. Ведь вы же не можете прийти в магазин и потребовать: «Отпустите мне мало хлеба» или «Продайте мне много манной крупы». Вы должны назвать точную цифру и указать единицу измерения – килограмм, грамм, литр, метр и т. д. Точно так же, описывая какую-нибудь электрическую цепь, мы должны точно оценивать протекающий в ней ток, сопротивление всей цепи и отдельных ее участков, мощность, потребляемую нагрузкой и теряемую в соединительных проводах, и ряд других величин.

Единицей измерения электрического сопротивления служит ом (листы 14,15). Вместо слова «ом» иногда ставят греческую букву «омега» – Ω. Более крупными единицами являются килоом (ком) и мегом (Мом). Для характеристики этих величин укажем, что сопротивление накаленной нити лампочки карманного фонаря примерно равно 20 ом, а кусок медной проволоки диаметром 1 мм и длиной 1 м обладает сопротивлением около 0,02 ом (лист 17). Если же такой провод протянуть от Москвы до Владивостока (расстояние около 10 000 км), то его сопротивление уже составит 200 ком (или 0,2 Мом). Сопротивление провода растет не только при увеличении длины, но и при уменьшении его диаметра (лист 16) – чем тоньше проводник, тем труднее электронам двигаться в нем. Кроме того, сопротивление зависит еще и от материала, из которого сделан проводник (сопротивление медного провода меньше, чем железного, но больше, чем серебряного), и от его температуры (при нагревании большинство материалов увеличивает свое сопротивление). В формулах и на схемах, а иногда и в тексте сопротивление сокращенно обозначается буквой R, первой буквой латинского глагола resistere – сопротивляться.

В ряде случаев для отдельных элементов электрической цепи достаточно знать только их сопротивление – сопротивление нити лампочки, обмотки электродвигателя, соединительных проводов и т. п. В подобных случаях все эти элементы на схемах изображают в виде небольших прямоугольников, которые являются условными обозначениями любых сопротивлений (лист 18).


    Ваша оценка произведения:

Популярные книги за неделю