355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Рудольф Сворень » Шаг за шагом. От детекторного приемника до супергетеродина » Текст книги (страница 14)
Шаг за шагом. От детекторного приемника до супергетеродина
  • Текст добавлен: 16 октября 2016, 20:35

Текст книги "Шаг за шагом. От детекторного приемника до супергетеродина"


Автор книги: Рудольф Сворень



сообщить о нарушении

Текущая страница: 14 (всего у книги 19 страниц)

Глава 7
СУПЕРГЕТЕРОДИН


В предыдущей главе мы познакомились со схемой и устройством приемника прямого усиления и одновременно отметили ряд серьезных недостатков этого приемника. Один из недостатков состоит в том, что избирательность приемника по соседнему каналу резко ухудшается с увеличением частоты принимаемой станции. Так, например, если приемник с двумя контурами средней добротности (Q = 50) на длинных волнах ослабляет сигнал соседней мешающей станции в десять – сто раз, то на средних волнах такой приемник ослабляет соседнюю станцию всего в три – пять раз. Что же касается коротких волн, то здесь приемник прямого усиления практически вообще не обладает избирательностью по соседнему каналу, то есть не может отделить сигнал нужной нам принимаемой станции от сигналов соседних станций.

Все это объясняется тем, что с повышением частоты контуру все «труднее» различать две соседние станции, так как разница в частотах этих станций – 10 кгц – становится все меньше и меньше по сравнению с резонансной частотой контура. По сравнению с частотами длинноволнового диапазона (150–420 кгц) различие в 10 кгц оказывается значительным: частоты соседних станций отличаются одна от другой на 2–7 %. На средних волнах (520—1600 кгц) отличие между частотами соседних станций значительно меньше – около 0,7–2 %. Что же касается коротковат нового диапазона (4—12,5 мгц), то здесь различие между частотами соседних станций по сравнению с рабочими частотами станций составляет всего лишь 0,08—0,2 %.

Есть у приемника прямого усиления еще один недостаток: на средних и особенно на коротких волнах в таком приемнике трудно получить хорошую чувствительность. Одна из причин этого состоит в том, что с повышением частоты усиливается действие «паразитных» обратных связей. Так, например, с повышением частоты усиливается обратная связь через между электродную проходную емкость Сас и через емкость между анодными и сеточными цепями лампы усилителя высокой частоты. Для того чтобы предотвратить возможное самовозбуждение усилителя ВЧ, приходится искусственно снижать его усиление.

Несколько недостатков приемника прямого усиления обусловлено тем, что в процессе настройки этого приемника на станцию приходится перестраивать все имеющиеся в нем контуры. При изменении емкости конденсаторов настройки меняется добротность контуров, так как меняется соотношение между индуктивностью и емкостью контура. Из-за изменения добротности чувствительность и избирательность приемника также резко изменяются в пределах диапазона.

Если для получения хорошей избирательности в приемнике прямого усиления используется несколько колебательных контуров (чем больше контуров, тем лучше избирательность приемника), то для их настройки необходимо иметь сложный блок конденсаторов переменной емкости. Представьте себе пятиконтурный приемник. Ведь в нем нужно иметь блок конденсаторов с пятью отдельными секциями, а также пять комплектов катушек каждого диапазона, переключаемых весьма сложным переключателем.

От многих из перечисленных недостатков свободен приемник прямого усиления с фиксированной настройкой на одну заранее выбранную станцию («эфирная радиоточка»). Поскольку все контуры такого приемника всегда настроены на одну и ту же частоту, то в них применяются конденсаторы постоянной емкости, а катушки включены и настроены раз и навсегда. Это облегчает использование в приемнике с фиксированной настройкой большого числа контуров. А если еще такой приемник настроен на станцию, работающую на сравнительно небольшой частоте, например на длинных волнах, то в нем легко получить и высокую избирательность и хорошую чувствительность. Мы уже говорили, что на длинных волнах контуру намного легче ослабить мешающую станцию, чем на средних или коротких волнах.

Вы можете удивиться: зачем мы расхваливаем «эфирную радиоточку»? Ведь прием одной радиостанции мало кого из радиолюбителей устроит! Но хвалили мы приемник с фиксированной настройкой не напрасно. Дело в том, что, применив сравнительно простое приспособление, можно сделать так, что этот приемник, сохраняя все свои преимущества, будет принимать большое число станций, работающих на длинных, средних и коротких волнах. Такое приспособление, позволяющее превратить «эфирную радиоточку» во всеволновый приемник с плавной настройкой, называется преобразователем частоты. Приемник с фиксированной настройкой вместе с преобразователем частоты и образуют высококачественное приемное устройство, получившее название «супергетеродин».

Смысл этого названия пояснить довольно трудно. Дело в том, что сравнительно давно был предложен так называемый гетеродинный метод радиоприема, который позволил получить более высокие результаты, чем с обычными приемниками прямого усиления. Затем гетеродинный приемник был усовершенствован, в результате чего появился новый замечательный тип радиоприемника, который и был назван «супергетеродин», что в переводе означает «намного лучше гетеродинного», а точнее, «сверхгетеродин».

Но дело, конечно, не в названии. Как бы ни назывался приемник, выполненный по супергетеродинной схеме, он и в наше время остается самым совершенным типом радиоприемного устройства.


ПРЕОБРАЗОВАНИЕ ЧАСТОТЫ – ОСНОВА СУПЕРГЕТЕРОДИННОГО ПРИЕМА

В самой различной радиоаппаратуре важнейшую рать играют так называемые нелинейные процессы, к числу которых относятся уже знакомые нам детектирование, модуляция, выпрямление переменного тока, а также усиление сигнала в случае, когда появляются нелинейные искажения. Основным признаком всякого нелинейного процесса является изменение формы электрического сигнала, в результате чего в этом сигнале и появляются новые составляющие (рис. 77, 88, 107). Так, например, при детектировании и выпрямлении переменного тока форма сигнала резко изменяется – переменный ток превращается в пульсирующий. При этом появляется возможность выделить низкочастотную (детектирование) или постоянную (выпрямление) составляющую сигнала. Изменяется форма сигнала в результате нелинейных искажений и в усилителе низкой частоты. Появляющиеся при этом новые составляющие воспринимаются нами в виде посторонних шумов и хрипов, искажающих передачу.

Нелинейный процесс можно получить лишь в том случае, если в цепи имеется какой-либо элемент, изменяющий форму сигнала (нелинейный элемент), например полупроводниковый или вакуумный диод, электронная усилительная лампа, работающая в определенном режиме, полупроводниковый триод и др. В обычных электрических цепях, не искажающих форму сигнала, нам никогда не удалось бы осуществить ни модуляцию, ни детектирование, ни выпрямление переменного тока.

К числу нелинейных процессов относится и преобразование частоты, которое лежит в основе работы супергетеродинного приемника.

Если к нелинейному элементу, например к полупроводниковому диоду или электронной лампе, одновременно подвести два электрических сигнала с разными частотами, то в цепи этого элемента появятся самые различные составляющие каждого из этих сигналов. Среди них будет и переменная составляющая разностной или, как ее еще называют, промежуточной частоты. Такое название эта составляющая получила потому, что ее частота численно равна разности частот двух сигналов, подведенных к нелинейному элементу. Так, например, если к диоду подвести сигналы с частотами f1 = 1800 кгц и f2 = 1300 кгц, то в цепи диода появится новая переменная, составляющая с разностной (промежуточной) частотой fпр= 1800 – 1300 = 500 кгц. Выделить эту составляющую можно с помощью обычного колебательного контура LпрCпр, настроенного на частоту 500 кгц.

Появление сигнала промежуточной частоты можно упрощенно объяснить с помощью графиков (рис. 122, 123).


Рис. 122. Если подключить к какой-либо цепи два генератора с двумя различными частотами f1 и f2, то из общего тока можно будет выделить только две составляющие I1 и I2 с частотами f1 и f2.


Рис. 123. Однако, если в цепь включить нелинейный элемент, например полупроводниковый диод или электронную лампу, то произойдет преобразование частоты (своего рода нелинейное искажение), кроме I1 и I2 в цепи появятся новые составляющие и в том числе составляющая Iпр с разностной (промежуточной) частотой fпр, которую можно выделить с помощью контура.

Протекая в общей цепи, переменные токи I1 и I2 различных частот f1 и f2 суммируются. В некоторый момент времени t1 оба тока протекают в одном и том же направлении, и амплитуды их складываются. Но постепенно положительная амплитуда тока I2 с меньшей частотой f2 будет все больше и больше «запаздывать», и наконец наступит момент t2, когда оба тока будут протекать в разных направлениях, а амплитуда общего тока Iобщ будет равна разности I1 и I2. Дальнейшее «запаздывание» тока I2 приведет к тому, что в момент t3 направления обоих токов вновь совпадут, и общий ток возрастет. Таким образом, амплитуда общего тока Iобщ  будет периодически изменяться, чем-то напоминая модулированный сигнал (рис. 122). Частота изменения амплитуды общего тока как раз и равна разности частот f2 – f1. Это легко доказывается простейшим примером: если частота f1, равна 10 гц, а частота f2 = 8 гц, то в течение каждой секунды второе колебание «отстает» от первого на два полных периода, или, иными словами, в течение каждой секунды второе колебание дважды отстает от первого на целый период. Это значит, что дважды в течение каждой секунды амплитуды токов I1 и I2 совпадут, и амплитуда общего тока достигнет наибольшей величины. Таким образом, частота изменения амплитуды общего тока равна 2 гц, то есть равна разности f1 и f2 (10 – 8 = 2 гц).

Рассмотренный нами пример относится к низким частотам, но совершенно то же самое произойдет, если f1 и f2 будут измеряться килогерцами или мегагерцами.

Если в общую цепь, где протекает суммарный ток Iобщ, включить детектор, то переменный ток будет преобразован в пульсирующий (рис. 123) и можно будет выделить сигнал с разностной частотой, подобно тому как мы выделяли низкочастотную составляющую продетектированного сигнала.

Напомним, что без детектора или другого нелинейного элемента получить сигнал промежуточной частоты невозможно, точно так же как без детектора из модулированного сигнала невозможно получить низкочастотную составляющую. Объясняется это тем, что сигнал промежуточной частоты, как и низкочастотная составляющая, при детектировании появляется лишь в результате изменения формы сигнала, то есть в результате нелинейных процессов. До того как модулированный сигнал попал на детектор, это был только высокочастотный сигнал, не содержащий никакой низкочастотной составляющей. Да это и понятно. Ведь низкая частота, если бы она даже поступила в антенну передатчика, не образовала бы радиоволн и тем более не прошла бы через контуры приемника. Точно так же без нелинейного элемента в общей цепи двух генераторов протекал суммарный ток, который с помощью фильтров можно только разделить на две составляющие I1 и I2. Выделив эти две составляющие, мы не обнаружили бы в цепи никаких признаков сигнала промежуточной частоты. Этот сигнал может появиться только после включения в цепь нелинейного элемента.

Сигнал промежуточной (разностной) частоты несет на себе следы каждого из «породивших» его двух сигналов: если один из этих двух сигналов будет модулированным, то и сигнал промежуточной частоты окажется промодулированным точно так же (рис. 124).


Рис. 124. В супергетеродине имеется вспомогательный генератор – гетеродин, который вместе с сигналом принимаемой станции создает сигнал ПЧ (промежуточной частоты). В дальнейшем сигнал ПЧ усиливается и детектируется.

Используя преобразование частоты, можно построить приемник по супергетеродинной схеме (см. рис. 124, 134). В таком приемнике сигнал принимаемой станции Uc (раньше это обозначение соответствовало напряжению на сетке) с частотой fсподается на преобразователь частоты, в качестве которого в простейшем случае может быть использован точечный полупроводниковый диод. Одновременно к преобразователю подводится еще один высокочастотный сигнал UГ с частотой IГ. Этот сигнал создается специальным вспомогательным генератором (гетеродином), расположенным в самом приемнике. В результате нелинейных процессов в цепи преобразователя появляется сигнал промежуточной частоты Uпр с частотой fпр, равной разности частот fГ– fс, или, наоборот, fсfГ (в зависимости оттого, какая из частот больше). Так, например, если мы принимаем станцию с частотой fс = 1300 кгц, а частота гетеродина составляет fГ = 1800 кгц, то мы получим промежуточную частоту fпр= 500 кгц (1800–1300). Такую же промежуточную частоту мы получим если возьмем частоту гетеродина fГ = 800 кгц (1300—800). При этом очень важно еще раз отметить, что если сигнал принимаемой станции (1300 кгц) окажется модулированным, то сигнал промежуточной частоты (500 кгц) будет промодулирован точно так же. Сигнал промежуточной частоты выделяется специальным колебательным контуром LпpCпp и подается на вход усилителя промежуточной частоты (усилитель ПЧ).

Усилитель промежуточной частоты ничем не отличается от обычного приемника прямого усиления с фиксированной настройкой на одну частоту. Фиксированная настройка позволяет сравнительно легко установить в усилителе ПЧ значительное количество колебательных контуров (обычно от трех до шести).

После усиления сигнал промежуточной частоты Uпр подводится к обычному детектору, и полученная в результате детектирования низкочастотная составляющая Uнч ничем не отличается от НЧ составляющей, которую мы получили бы после детектирования сигнала, поступившего в антенну (рис. 124).

Таким образом, вместо непосредственного усиления и детектирования сигнала, как это делалось в приемнике прямого усиления, в супергетеродине мы сначала преобразовали сигнал принимаемой станции Uc в сигнал промежуточной частоты Uпр, а затем усилили и продетектировали этот сигнал. Конечно, введение преобразователя частоты и вспомогательного генератора (гетеродина) заметно усложнило приемник. Оправдано ли такое усложнение?

На этот вопрос мы сможем ответить лишь после того, как более подробно познакомимся с работой супергетеродина, с его достоинствами и недостатками.


ДОСТОИНСТВА…

Прежде всего следует отметить, что супергетеродинный приемник довольно просто можно перестраивать с одной станции на другую – для этого достаточно лишь изменять частоту гетеродина.

Предположим, что усилитель ПЧ нашего приемника настроен на частоту 465 кгц (стандартная промежуточная частота, принятая для отечественных приемников) и нам нужно принять станцию, работающую на частоте 190 кгц. В этом случае мы устанавливаем частоту гетеродина 655 кгц и преобразуем сигнал принимаемой станции в сигнал промежуточной (разностной) частоты (615 кгц – 150 кгц = 465 кгц). Если нам нужно принять другую станцию, например работающую на частоте 200 кгц, то достаточно изменить частоту гетеродина, сделав ее равной 665 кгц. В этом случае сигнал промежуточной частоты будет образован с сигналом нужной нам станции: 665 кгц – 200 кгц = 465 кгц.

Изменяя частоту гетеродина, мы будем получать сигнал промежуточной частоты то с одной, то с другой, то с третьей станции и таким образом будем осуществлять плавную настройку приемника (рис. 125, 126).


Рис. 125. После преобразователя будет огромное число промежуточных частот, созданных сигналами различных станций. Однако к детектору пойдет лишь тот сигнал, частота которого совпадет с резонансной частотой контуров усилителя ПЧ. Все остальные сигналы, в том числе сигналы соседних станций, будут ослаблены в усилителе ПЧ.


Рис. 126. Для настройки супергетеродинного приемника изменяют частоту гетеродина. При этом промежуточную частоту, на которую настроены контуры усилителя ПЧ, будут создавать сигналы то одной, то другой, то третьей станции.

Другое важное достоинство супергетеродина то, что в нем можно получить хорошую избирательность по соседнему каналу на всех диапазонах, включая короткие волны и УКВ. Мы уже отмечали, что количество контуров в усилителе ПЧ может быть очень большим, так как эти контуры всегда настроены на одну и ту же частоту и выполнить их сравнительно просто. Таким образом, появляется реальная возможность практически доказать правильность лозунга: «Чем больше контуров, тем лучше избирательность» (рис. 127).


Рис. 127. Контуры усилителя ПЧ всегда настроены на одну и ту же частоту, а это позволяет сравнительно просто использовать большое число контуров и получить хорошую избирательность по соседнему каналу.

Но это еще не все. Огромное значение имеет то, что сама частота настройки контуров ПЧ сравнительно невелика, обычно она составляет 465 кгц, то есть находится ниже самой низкой частоты СВ диапазона. Сигналы разностной частоты образует не только принимаемая, но и все остальные станции и в том числе соседние станции. Совершенно очевидно, что все эти разностные частоты отличаются одна от другой так же, как отличаются по частоте сигналы, поступающие в антенну. Лишь одна из станций дает ту частоту, на которую настроены контуры усилителя ПЧ, а все остальные сигналы, в том числе и сигналы соседних станций, будут ослаблены этими контурами.

Так, например, если промежуточная частота приемника (частота настройки контуров усилителя ПЧ) равна 465 кгц, то для приема станций с частотой 200 кгц частота гетеродина должна составлять 665 кгц. Взаимодействуя с гетеродином, принимаемые сигналы различных радиостанций создадут на выходе преобразователя переменные токи разностных частот. Для соседних станций 190 кгц и 210 кгц эти частоты составят 455 кгц и 475 кгц. Они-то и будут представлять собой помехи по соседнему каналу, которые будут ослаблены контурами усилителя промежуточной частоты, настроенными на 465 кгц. На каком бы диапазоне мы ни вели прием, соседние мешающие станции в супергетеродине, у которого fпр = 465 кгц, всегда будут создавать сигналы ПЧ с частотами 455 и 475 кгц. Иными словами, частоты помех по соседнему каналу в таком супергетеродине всегда будут отличаться от принимаемой (промежуточной) частоты примерно на 2 %. Такого различия оказывается достаточно для эффективного ослабления соседних помех. Во всяком случае это намного лучше, чем в приемнике прямого усиления, в котором даже на средних волнах, не говоря уже о коротких, приходится «бороться» с соседними помехами, частоты которых отличаются от принимаемой всего лишь на 0,7–2 % (рис. 128).


Рис. 128. В приемнике прямого усиления с увеличением частоты все труднее (а на коротких волнах вообще невозможно) становится разделить сигналы принимаемой и соседней радиостанций. В супергетеродине сигналы соседней станции ослабляются контурами усилителя ПЧ, и поэтому избирательность по соседнему каналу одинакова на всех диапазонах.

Таким образом, в супергетеродин ном приемнике избирательность по соседнему каналу зависит от числа контуров в усилителе ПЧ, добротности этих контуров, а также от выбранной промежуточной частоты. Чем меньше выбранная частота fпр, тем больший процент в сравнении с ней будет составлять различие в частотах соседних станций (10 кгц), тем, следовательно, лучше избирательность приемника по соседнему каналу. Здесь, правда, существует ряд ограничений, с которыми мы познакомимся несколько позже.

Используя в усилителе ПЧ четыре контура, настроенных на частоту 465 кгц, при добротности каждого из этих контуров Q = 100, можно ослабить соседнюю станцию в несколько сот раз. Чтобы получить такую избирательность при работе на средних волнах, в приемнике прямого усиления пришлось бы использовать десять – двенадцать контуров, причем каждый из них пришлось бы перестраивать с помощью отдельной секции блока конденсаторов переменной емкости (рис. 121, 127). А в коротковолновом приемнике прямого усиления об избирательности в двести – триста раз нельзя даже мечтать.

Важным достоинством супергетеродина является также и то, что в нем сравнительно легко можно получить хорошую чувствительность, если, конечно, промежуточная частота не слишком велика.

И, наконец, нельзя не отметить еще одного серьезного преимущества супергетеродинного приемника по сравнению с приемником прямого усиления. В супергетеродине основное усиление сигнала до детектора осуществляется в усилителе ПЧ и практически не зависит от частоты принимаемого сигнала. Точно так же и избирательность приемника остается неизменной на всех диапазонах, поскольку соседние станции в основном ослабляются контурами усилителя ПЧ.

Таким образом, основные достоинства супергетеродина можно определить так: высокая избирательность и хорошая чувствительность на всех диапазонах.

Теперь несколько слов о недостатках супергетеродинного приемника.


… И НЕДОСТАТКИ

Основные недостатки супергетеродина заключаются в том, что в нем появляются два новых вида помех, которых не было в приемнике прямого усиления.

Сточки зрения помех в приемнике прямого усиления наиболее «опасными» являются соседние станции – их сигналы легче всего могут «пролезть» через колебательные контуры вместе с сигналом принимаемой станции. В супергетеродине, помимо помех по соседнему каналу, могут возникнуть два совершенно новых вида помех – это так называемая зеркальная помеха и помеха с частотой, равной промежуточной.

Во всех наших примерах мы считали, что при настройке супергетеродина на станцию частота гетеродина fГ выше частоты принимаемой станции fс. Однако в большинстве случаев и, в частности, на средних и коротких волнах можно получить стандартную промежуточную частоту 465 кгц, сделав частоту гетеродина fГ ниже частоты принимаемой станции. Так, например, если промежуточная частота fпр= 465 кгц, то прием станции с частотой fс = 10 000 кгц можно вести как при частоте гетеродина fГ = 10 465 кгц, так и при fГ = 9545 кгц: в обоих случаях разностная частота составит 465 кгц.

Принципиально не имеет значения, будет ли частота гетеродина больше или меньше частоты сигнала, важно лишь, чтобы эти частоты отличались одна от другой на 465 кгц, то есть на промежуточную частоту. Поэтому, если постепенно уменьшать частоту гетеродина, то можно дважды настроиться на одну и ту же станцию: первый раз, когда fГ будет больше fс на 465 кгц, и второй раз, когда fГ будет меньше fс на 465 кгц. Первую из этих настроек обычно называют основной, а вторую – зеркальной (рис. 129).


Рис. 129. В супергетеродине на одну станцию можно настроиться дважды: когда частота гетеродина fГ больше частоты сигнала fс (основная настройка) и когда частота гетеродина fГ меньше частоты сигнала fс (зеркальная настройка).

На первый взгляд может показаться, что наличие зеркальной настройки не таит в себе никаких опасностей. Недостаточно опытные любители иногда даже радуются появлению зеркальной настройки, так как при этом создается впечатление, что супергетеродин принимает в два раза больше станций. Но в действительности же наличие зеркальной настройки является серьезным недостатком супергетеродина, так как она может явиться помехой (зеркальная помеха или помеха по зеркальному каналу) для другой станции. Для того чтобы убедиться в этом, достаточно проделать несколько простейших арифметических операций

Так, например, если ведется прием станции с частотой 10 000 кгц, частота гетеродина должна быть равна 10 465 кгц. При этом одновременно может быть слышна станция, работающая на частоте 10 930 кгц, которая, так же как и принимаемая станция, создаст сигнал промежуточной частоты (10 930 кгц – 10 465 кгц = 465 кгц). Эта станция будет представлять собой зеркальную помеху – мы одновременно будем слышать две станции, причем в большинстве случаев прием будет сопровождаться сильным «свистом». Для основной настройки на станцию с частотой 10 930 кгц частота гетеродина должна быть равна 11 395 кгц (11 395 кгц – 10930 кгц = 4б5 кгц). В этом случае также возможно появление зеркальной помехи – прием станции, работающей на частоте 11 860 кгц (11 860 кгц – 11 395 кгц = 465 кгц). Другой пример зеркальной помехи приведен на рисунке 130.


Рис. 130. Любой частоте гетеродина fГ может соответствовать прием двух станций, для одной из которых настройка будет основной (fГ больше fс), а для другой – зеркальной (fГ меньше fс). Иными словами, создать сигнал промежуточной частоты могут одновременно две станции: одна с частотой fс ниже частоты гетеродина (принимаемая станция), другая с частотой fзп – выше частоты гетеродина (зеркальная помеха).

Из приведенных примеров видно, что частота зеркальной помехи всегда отличается от частоты принимаемой станции на две промежуточные частоты – на 930 кгц. Следует, правда, заметить, что зеркальная помеха существует не всегда. Может же случайно оказаться так, что частота, на которой должна появиться эта помеха, «пустует» или на этой частоте работает очень слабая станция. Однако рассчитывать «на авось», конечно, нельзя, и поэтому в супергетеродине ведется борьба с зеркальной помехой.

Борьба с зеркальной помехой после преобразователя частоты невозможна, так как и принимаемая станция, и зеркальная помеха создают одинаковые по частоте (465 кгц) сигналы, которые одинаково хорошо проходят через контуры усилителя ПЧ. Отсюда следует, что бороться с зеркальной помехой нужно на входе приемника, до преобразователя частоты. Для этого используется обычный колебательный контур (входной контур), который настраивается на частоту принимаемой станции и, таким образом, ослабляет зеркальную помеху (рис. 131).


Рис. 131. Бороться с зеркальной помехой можно только до преобразователя частоты. Для этого используют контур, настроенный на частоту принимаемой станции. Он и ослабляет сигнал, который мог бы создать зеркальную помеху.

Входной контур супергетеродина практически ничем не отличается от входного контура приемника прямого усиления: в обоих случаях используются катушки индуктивности и конденсаторы переменной емкости, а также применяются одни и те же схемы связи с антенной. Однако входной контур супергетеродинного приемника, если можно так выразиться, находится в более выгодном положении: его задачей является ослабление зеркальной помехи, частота которой отличается от резонансной частоты контура на 930 кгц, в то время как в приемнике прямого усиления входной контур должен ослаблять соседнюю станцию, отличающуюся от принимаемой всего лишь на 10 кгц.

Здесь уместно сказать несколько слов о выборе промежуточной частоты. Принципиально можно построить супергетеродинный приемник с промежуточной частотой от нескольких десятков килогерц до нескольких мегагерц. Для того чтобы получить хорошую избирательность по соседнему каналу, желательно, чтобы промежуточная частота fпр была как можно ниже: чем ниже величина fпр, тем сильнее будет проявляться различие в частотах принимаемой и соседней станций, тем легче будет контурам ПЧ подавить помеху по соседнему каналу. Так, например, при fпр = 100 кгц сигналы ПЧ принимаемой и соседней станции отличаются на 10 %, при fпр = 465 кгц это различие составит уже 2 %, а при fпр = 2000 кгц – всего лишь 0,5 %. Совершенно очевидно, что в первом случае, то есть при низкой промежуточной частоте, избирательность по соседнему каналу будет лучше.

С другой стороны, желательно, чтобы fпр  была как можно больше, так как при этом увеличится различие между частотами зеркальной помехи и принимаемой станции, а это, в свою очередь, усилит подавление зеркальной помехи с помощью входного контура.

Как уже отмечалось (стр. 261), частоты зеркальной помехи и принимаемой станции отличаются на величину 2·fпр. Для промежуточных частот 100, 465 и 2000 кгц частота зеркальной помехи будет отличаться от частоты принимаемой станции соответственно на 200, 930 и 4000 кгц. Отсюда следует, что входной контур лучше всего будет ослаблять зеркальную помеху в последнем случае, то есть при высокой промежуточной частоте.

В зависимости от назначения приемника и предъявляемых к нему требований для этого приемника может быть выбрана низкая (обычно 110–130 кгц) или высокая (обычно 1400–1800 кгц и более) промежуточная частота. В подавляющем большинстве радиовещательных приемников промежуточная частота равна стандартной – 465 кгц. При этой величине fпр удается получить удовлетворительную избирательность как по соседнему, так и по зеркальному каналу. Правда, при fпр = 465кгц ослабление зеркальной помехи на КВ диапазоне не всегда оказывается достаточным.

Стандартная промежуточная частота находится в середине «свободного» участка между вещательными диапазонами длинных и средних волн. На стандартной промежуточной частоте и на частотах, близких к ней, не работают ни вещательные станции, ни передатчики радиосвязи. Связано это с тем, что для сигналов с частотой, равной fпр, супергетеродин представляет собой обычный приемник прямого усиления с фиксированной настройкой. Прием этих сигналов осуществляется независимо от частоты гетеродина и даже более того – при выключенном гетеродине (рис. 132).


Рис. 132. В супергетеродине может появиться помеха с частотой, равной промежуточной, для которой все контуры усилителя ПЧ оказываются настроенными в резонанс.

Несмотря на то что на промежуточной частоте радиостанции не работают, в приемную антенну все же попадают помехи, имеющие частоту 465 кгц. Они появляются в результате грозовых разрядов и в процессе работы различных электрических устройств: коллекторных двигателей, сварочных аппаратов и т. п. Легко проникая в приемник, помехи с частотой fпр будут мешать нормальному приему всех без исключения станций. Для борьбы с этим видом помех в антенной цепи приемника устанавливаются различные фильтры (лист 163). Один из таких фильтров, получивший название «фильтр-пробка», представляет собой обычный параллельный колебательный контур Lф-пр, Сф-пр, настроенный на частоту fпр и включенный в цепь антенны (рис. 133, лист 163).


Рис. 133. Для борьбы с помехой, частота которой равна промежуточной, на входе приемника можно установить заграждающий фильтр («фильтр-пробку»).

Как известно (см. лист 152), на резонансной частоте такой контур имеет большое сопротивление, поэтому он и не пропускает на вход приемника помехи с частотой fпр. Можно применить и последовательный контур (лист 151), который будет накоротко замыкать сигнал с частотой fпр, не пропуская его ко входному контуру.

К недостаткам супергетеродинного приемника иногда относят некоторую сложность его схемы (например, необходимость вспомогательного генератора – гетеродина) и трудность налаживания приемника. Что касается усложнения схемы, то оно с лихвой окупается высокими качественными показателями приемника, который удается получить при сравнительно небольшом числе ламп.


    Ваша оценка произведения:

Популярные книги за неделю