355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Рудольф Сворень » Шаг за шагом. От детекторного приемника до супергетеродина » Текст книги (страница 3)
Шаг за шагом. От детекторного приемника до супергетеродина
  • Текст добавлен: 16 октября 2016, 20:35

Текст книги "Шаг за шагом. От детекторного приемника до супергетеродина"


Автор книги: Рудольф Сворень



сообщить о нарушении

Текущая страница: 3 (всего у книги 19 страниц)

ПОЗНАКОМЬТЕСЬ – СОПРОТИВЛЕНИЕ!

В радиоаппаратуре очень широкое применение находят детали, единственное назначение которых, оказывается, сопротивление электрическому току. Эти детали так и называются – «сопротивления» и на схеме обозначаются прямоугольником, так же как и любое сопротивление, действующее в цепи (рис. 17).


Рис. 17. В радиоаппаратуре широко применяются специальные детали – постоянные сопротивления.

Сопротивления являются одной из самых распространенных радиодеталей. Они могут использоваться и для образования делителей напряжения, и для шунтирования отдельных участков цепи, и для многих других целей. Все сопротивления можно разделить на две основные группы – проволочные и непроволочные. В каждой из этих групп можно встретить сопротивления постоянные (лист 36) и переменные (лист 37).

Проволочные сопротивления, как об этом говорит само название, делают из проволоки, которую обычно наматывают на керамический каркас. Иногда проволочное сопротивление заливают стеклом (остеклованное сопротивление).

В любом проволочном переменном сопротивлении имеется так называемая дужка из изоляционного материала, на которую и намотан провод. К этому проводу прижат подвижной контакт, закрепленный на оси переменного сопротивления. От подвижного контакта, так же как и от обоих концов проволоки, сделаны выводы в виде латунных лепестков, к которым можно легко подпаять монтажные провода. При поворачивании оси подвижной контакт перемещается по намотанному на дужку проводу, и при этом меняется сопротивление между подвижным контактом и крайними выводами. Существуют два способа включения переменных сопротивлений – в качестве реостата и в качестве потенциометра (делителя напряжений). В первом случае переменное сопротивление используется для регулировки тока в цепи, во втором – для регулировки напряжения, снимаемого с делителя, в роли которого и выступает переменное сопротивление.

Из проволоки, как правило, выполняются сопротивления от долей ом до нескольких десятков, а иногда и сотен ом. Непроволочные сопротивления имеют более широкие пределы – от нескольких ом до сотен тысяч мегом.

Основой непроволочного сопротивления обычно является небольшая керамическая трубка, на которую нанесен тончайший проводящий слой. Толщина этого слоя и его состав и определяют сопротивление детали. На концах керамической трубки закреплены металлические выводы, создающие надежный контакт с проводящим слоем. Снаружи вся деталь покрыта специальной краской (обычно красной или зеленой), предохраняющей проводящий слой.

В непроволочных переменных сопротивлениях проводящий графитовый слой нанесен непосредственно на дужку, по которой двигается подвижной контакт (ползунок). Эти сопротивления всегда помещают в металлический корпус, на котором иногда закреплен еще и выключатель, связанный с осью сопротивления. Это позволяет в приемнике управлять выключателем и сопротивлением с помощью одной ручки.

Величина сопротивлений (и постоянных и переменных) указывается непосредственно на их корпусе в омах (ом), килоомах (ком) или мегомах (Мом). Кроме того, указывается возможное отклонение от указанной величины, которое может составлять 5, 10 или 20 %.

На схемах величину сопротивления указывают с сокращениями (лист 38). Так, буква «к» обозначает ком, отсутствие букв говорит о том, что величина указана в омах, а величины, выраженные в мегомах, обозначаются в виде десятичной дроби (например 1,5 или 2,0).

Важной характеристикой любого сопротивления является его допустимая мощность.

Когда мы говорим о работе, выполняемой тем или иным устройством, очень важно знать, за какое время эта работа выполняется. Так, например, если вам предлагают насос, о котором известно только то, что он может перекачать 100 л воды, то представить себе такой насос совершенно невозможно, так как неизвестно, сколько времени понадобится, чтобы с его помощью выполнить эту работу. Если вся работа может быть выполнена за год, то, значит, это не насос, а игрушка, а если 100 л воды перекачивается за одну секунду, то, значит, нам достался очень мощный насос.

Работа, которая выполняется тем или иным устройством за единицу времени, называется мощностью (обозначается буквой Р). Единицей измерения мощности служит ватт (вт), который соответствует работе в 1 дж, выполненной за 1 сек (рис. 18, листы 39, 40).


Рис. 18. Мощность – это работа, выполненная электрическим током за одну секунду. Одну и ту же мощность можно получить при большом напряжении и малом токе или при малом напряжении и большом токе.

Если какое-либо устройство выполняет за 1 сек работу более чем 1 дж или работа 1 дж выполнена менее чем за 1 сек, то мощность устройства больше чем 1 вт. Более крупной единицей мощности является киловатт (квт), более мелкими единицами – милливат (мвт) и микроватт (мквт).

Мощность является также характеристикой потребителей энергии. Так, например, если на осветительной лампочке указано, что ее мощность 200 вт, значит, потребляя меньшую мощность, она будет светиться недостаточно ярко. При большей мощности нить лампочки будет перегреваться и может даже перегореть.

На каждом сопротивлении указывается максимально допустимая для него мощность, при которой сопротивление не перегревается. Конечно, если подвести к сопротивлению меньшую мощность, то оно будет работать в еще более легких условиях, но если превысить допустимую мощность, указанную на сопротивлении, то проводящий слой перегреется и может совсем разрушиться (рис. 19).


Рис. 19. Выбирать сопротивление для какого-либо участка цепи нужно так, чтобы мощность, развиваемая на этом участке, не превышала бы величину, допустимую для данного сопротивления.

О допустимой мощности можно судить по внешнему виду сопротивления – чем больше его размеры, тем лучше оно рассеивает тепло, тем большую мощность можно подвести к этому сопротивлению. На схемах радиоаппаратуры мощность, допустимая для того или иного сопротивления, обозначается определенной комбинацией черточек (лист 36). Само собой разумеется, что на практике можно использовать сопротивления, рассчитанные на мощность большую, чем это указано на схеме.

Мощность, потребляемая каким-нибудь участком цепи, определяется следующей формулой (лист 39):

где U – напряжение на этом участке, а I – проходящий по нему ток.

Объясняется эта формула очень просто: напряжение U – это работа, выполняемая при перемещении одного кулона, а ток I – количество кулонов, проходящих за 1 сек. Поэтому произведение тока на напряжение показывает полную работу, выполненную за 1 сек, то есть мощность (рис. 18).

Анализируя приведенную формулу, можно сделать очень важный вывод: поскольку мощность Р в одинаковой степени зависит и от тока I и от напряжения U, то одну и ту же мощность можно получить либо при большом I и малом U, либо, наоборот, при большом U и малом I. И это вполне понятно, так как при увеличении той работы, которую выполняет каждый заряд, можно уменьшить число «работающих» зарядов и общая работа останется неизменной.

Подставляя в формулу для мощности значения U и I, взятые из закона Ома, можно получить очень удобные расчетные формулы, позволяющие определить мощность Р, если известно U и R или I и R (лист 39).


Рассмотренные нами процессы, происходящие в электрических цепях, законы, которым подчиняются эти процессы, и формулы, которые их выражают, еще окажут вам очень большую помощь при разборе схем приемников, магнитофонов, телевизоров и другой радиоаппаратуры.

Дело в том, что после знакомства с полной схемой того или иного устройства изучают отдельные его элементы, которые в конечном итоге можно рассматривать как сравнительно простые цепи с последовательно или параллельно включенными сопротивлениями. Для того чтобы приобрести опыт в разборе таких схем, попробуйте рассмотреть схему, изображенную на листке 41, и по известным формулам (лист 42) подсчитать токи напряжения в различных участках, а также мощность в каждом из сопротивлений. Все решения этой задачи сведены в таблицу (лист 41).


Рассказывая об электрической цепи и происходящих в ней процессах, мы очень часто приводили вспомогательные примеры: падение топора, спуск саней, движение воды в трубе и т. п. Но, конечно, все эти примеры не заставили вас забыть о том, что в действительности мы имели дело с явлениями совсем другого рода, явлениями электрическими, которые имеют совершенно особую природу и лишь внешне напоминают приведенные нами простые аналогии.

На этом, пожалуй, мы могли бы закончить свое первое знакомство с электротехникой, хотя многие очень важные вопросы мы даже не затронули. Так, например, во всех случаях мы считали, что источником тока является батарейка и в цепи протекает постоянный ток, то есть ток, величина и направление которого не меняются. А ведь на практике мы очень часто имеем дело с переменным током, источником которого являются специальные генераторы. У такого тока непрерывно меняется не только величина, но и направление движения зарядов (рис. 20).


Рис. 20. В технике широкое распространение получили генераторы переменной э.д.с., на выходных зажимах которых знак и количество избыточных зарядов непрерывно меняются. Такие генераторы создают в цепи переменный ток.

Так, например, направление тока в электрической сети, которая приходит в наш дом с городской электростанции, меняется несколько десятков раз в течение секунды. Переменный ток, так же как и постоянный, может выполнять полезную работу. Ведь заряды, движущиеся то в одну, то в другую сторону, нагревают проводник и создают вокруг него магнитное поле, так же как и заряды, двигающиеся в одном направлении.

Переменный ток имеет ряд серьезных преимуществ перед постоянным. Главное из них, пожалуй, состоит в том, что переменный ток легко трансформировать, то есть с помощью специальных устройств – трансформаторов – можно в любом участке сложной цепи повысить или понизить напряжение до нужной нам величины.

Другое достоинство переменного тока: вокруг проводника, где он протекает, возникают радиоволны, с помощью которых и осуществляется радиопередача. Но об этом мы поговорим уже в следующей главе.

Глава 2
О РАДИОПЕРЕДАЧЕ И САМОМ ПРОСТОМ ПРИЕМНИКЕ


Все вы, наверное, знаете одно из самых сложных спортивных соревнований – марафонский бег – состязание в беге на дистанцию 42 километра 195 метров. Столь необычная дистанция, так же как и само название «марафонский бег» связано с древней легендой о греческом воине, пробежавшем такое расстояние из города Марафон в Афины с вестью о победе полководца Мильтиада над персами. Напрягая последние силы, изнемогая от непомерной физической нагрузки добежал гонец до окраины Афин, задыхаясь, сообщил радостную весть и упал бездыханный.

Еще каких-нибудь двести лет назад гонцы, скороходы, всадники, мчащиеся на взмыленных лошадях, почтовые тройки, неделями пробирающиеся к месту назначения со срочной депешей, представляли собой единственную возможность для передачи сообщений. Для того чтобы сообщения о событиях в столице могли дойти до отдаленных районов Сибири или Дальнего Востока, иногда могло пройти несколько месяцев! Лучшие петербургские газеты публиковали свежие зарубежные новости надельной давности. А какими оторванными от мира чувствовали себя в далеком плавании моряки, лишенные каких бы то ни было средств связи с землей!

Это кажется смешным и странным в наши дни, когда телеграмма, отправленная из Москвы, уже менее чем через час вручается адресату во Владивостоке, когда зимовщики Антарктиды в любой момент могут узнать погоду на Северном полюсе, когда московские редакции газет в нужную минуту могут вызвать по телефону своих корреспондентов в Париже или Пекине, в Тамбове или Сан-Франциско и получить у них самые последние новости, когда, сидя у своего телевизора, вы видите и слышите то, что в данное мгновение происходит за несколько десятков и даже сотен километров от вас.

Все это стало возможным благодаря тому, что для передачи сообщений стали использовать самого быстрого гонца – электрический сигнал (рис. 21).


Рис. 21. Используя простейшую электрическую цепь, можно передавать сообщения с помощью условного кода.

Если бы древние греки располагали обычным карманным фонариком и необходимым количеством провода, то они смогли бы передать сообщение о победе своих войск из Марафона в Афины, не прибегая к помощи скорохода. Для этого нужно было бы в Афинах установить лампочку и соединить ее двумя проводами с установленным в Марафоне выключателем и батарейкой. Если сопротивление соединительных проводов (лист 43) не слишком велико, то при замыкании цепи с помощью выключателя, расположенного в Марафоне, немедленно загорелась бы лампочка в Афинах[5]5
  При большой протяженности соединительной линии сопротивлением проводов уже пренебрегать нельзя и всю цепь тогда следует рассматривать как делитель напряжения, состоящий из трех участков – двух проводов и лампочки. Лампочка для карманного фонаря, рассчитанная на 3,5 в, светится даже в том случае, если к ней подвести напряжение окаю 2 в. Предположим, что сопротивление такой лампочки 100 ом, и для того, чтобы эта лампочка светилась при напряжении батареи 4,5 в, сопротивление обоих проводов должно быть не более 100–125 ом. В этом случае падение напряжения на обоих проводах составит около 2 в (по одному вольту на каждом проводе), и на лампочке будет действовать примерно такое же напряжение. При большем сопротивлении проводов напряжение на лампочке будет слишком мало, и она светиться не будет.


[Закрыть]
. Она могла бы играть роль простейшего телеграфа. Нужно было бы лишь договориться об условном коде (например, короткий сигнал – «поражение», продолжительный – «победа») и, замыкая цепь с помощью выключателя, передавать сообщение.


Самое замечательное, что расстояние 42 км, которое лучшие бегуны преодолевают более чем за два часа (рекорд около 2 часов 18 минут), электрический сигнал пройдет всего лишь за 0,00015 секунды! Вы только не подумайте, что за это время электроны успеют пройти из Марафон в Афины. Электроны двигаются очень медленно – в среднем их скорость не превышает нескольких километров в час. Но благодаря тому, что при замыкании электрической цепи ток начинается почти одновременно во всех ее участках, лампочка в Афинах загорится почти одновременно с тем, как будет замкнут выключатель в Марафоне. Слово «почти» мы применили здесь не случайно, так как в действительности лампочка загорится с некоторым опозданием. Попытаемся пояснить это подробней.

Вы, наверное, видели, как трогается с места железнодорожный состав: паровоз делает рывок, медленно начинает двигаться и почти одновременно с ним начинают двигаться все вагоны. Это несколько напоминает то, что происходит в электрической цепи: сами вагоны, подобно электронам, двигаются медленно, но почти одновременно начинается движение всего состава, так же как почти одновременно начинается электрический ток во всех участках цепи.

Рассказывая о поезде, мы опять не случайно применили слово «почти», и вы можете сами убедиться в том, что без этого слова обойтись нельзя. Движение паровоза не сразу передается всему составу: сначала сдвигается с места первый вагон, за ним – второй, тот увлекает за собой третий, затем сдвигается четвертый, и так, передаваясь от вагона к вагону, рывок, который сделал паровоз, доходит до конца состава.

Лишь через некоторое время последний вагон как бы получит сигнал о том, что паровоз сдвинулся с места. Для железнодорожного состава время это, конечно, невелико, и поэтому мы говорим, что все вагоны начинают двигаться одновременно, но для точности прибавляем слово «почти».

В отдаленных участках электрической цепи электроны начинают двигаться с некоторым опозданием, так же как и отдаленные от паровоза вагоны. Однако, сравнивая электрический ток с движением железнодорожного состава, необходимо отметить два существенных момента.

Во-первых, движение от электрона к электрону передается не благодаря непосредственным толчкам, а в результате взаимодействия электрических сил, а точнее, в результате движения вдоль проводника электрического поля, о котором мы еще поговорим.

И во-вторых, скорость распространения рывка паровоза по железнодорожному составу (обычно несколько десятков километров в час) даже в сравнение не может идти со скоростью распространения по проводу электрического «толчка» – электрический сигнал движется со скоростью 300 000 километров в секунду! Это так называемая скорость света, которая присуща всем без исключения электрическим и магнитным процессам, в том числе и свету, имеющему, как известно, электромагнитную природу (рис. 22).


Рис. 22. Сами электроны (или положительные ионы), образующие ток, двигаются сравнительно медленно, но их движение начинается практически одновременно во всех точках цепи. Скорость распространения «электрического толчка» – 300 000 км/сек (скорость света).

Скорость света является самой высокой скоростью, встречаемой в природе. Она настолько велика, что электрический сигнал, двигающийся со скоростью света из Москвы, через 0,03 секунды придет во Владивосток и менее чем за полторы секунды десять раз обогнет земной шар или доберется до Луны. Да что говорить! Если построить космический корабль, который будет двигаться с такой же скоростью, как и электрический сигнал, то на этом корабле можно будет за каких-нибудь пять минут добраться до Марса!

Наряду с исключительно высокой скоростью у электрического сигнала есть еще одно замечательное достоинство – он очень легко поддается самым различным преобразованиям. Именно это и определило появление таких средств связи, как буквопечатающий телеграф, телефон, фототелеграф. Очень интересные преобразования электрического сигнала лежат в основе радиопередачи и радиоприема. С некоторыми из этих преобразований мы сейчас и познакомимся.


ПЕРВЫЙ РАЗГОВОР О РАЗГОВОРЕ

Задумывались ли вы когда-нибудь над тем, что представляет собой звук? Каким образом слова, которые вы произносите, доходят до собеседника?

Звуки вашего голоса, так же как и все окружающие нас звуки, представляют собой колебания воздуха или, иначе, звуковые волны (рис. 23).


Рис. 23. Звуки нашего голоса, как и все окружающие нас звуки, представляют собой колебания воздуха или так называемые звуковые волны.

Вы тронули гитарную струну, она пришла в движение и увлекла за собой окружающий воздух: под действием колеблющейся струны воздух вблизи нее то сжимается, то, наоборот, становится разреженным. Эти изменения давления воздуха передаются все дальше и дальше, и во все стороны от струны движутся звуковые волны, подобно тому как по поверхности пруда расходятся волны от брошенного в воду камня.

Примерно то же самое происходит и при разговоре, когда воздушный поток, выдыхаемый легкими, формируется в звуковые колебания с помощью голосовых связок, губ, языка, зубов, гортани и носовой полости. Возникающие при разговоре звуковые волны доходят до вашего собеседника, в ушах которого расположены органы, чувствительные к звуковым колебаниям. Оттуда по тончайшим нервам сигнал поступает прямо в мозг, вызывая у человека определенное ощущение услышанного звука.

То, что звук представляет собой колебания воздуха, доказывают простые опыты. Так, например, если электрический звонок поместить в баллон, из которого выкачан воздух, то никакого звонка слышно не будет, так как в безвоздушном пространстве звук появиться не может.

Самая толстая струна гитары колеблется медленно и создает такие же медленные колебания воздуха. Чем тоньше струна, тем она подвижнее, тем быстрее будут ее колебания и тем, следовательно, чаще (то есть выше по тону) будут создаваемые этой струной колебания воздуха (лист 48). Точно так же мы можем создавать быстрые и медленные звуковые колебания, управляя нашими органами речи в процессе разговора. А из этих колебаний при самом разнообразном их сочетании уже образуются слова.

Для того чтобы не пользоваться такими расплывчатыми понятиями, как «быстрые колебания» или «медленные колебания», введено точное понятие «частота колебаний», которое указывает, сколько колебаний произошло за единицу времени. Единицей измерения частоты служит один герц (сокращенно гц), соответствующий одному колебанию в секунду (лист 46).


Струна, которая в секунду совершает 600 колебаний, создает звук с частотой 600 гц, а если такое же число колебаний произойдет за одну минуту, то есть за 60 секунд, то частота составит 10 гц.

Более крупные единицы частоты – килогерц (кгц) и мегагерц (Мгц). Все эти единицы используются для измерения частоты любых колебаний, независимо от их физической природы. В герцах измеряется и частота колебаний струны, и частота звука, и частота переменного тока.

Воспринимая звуки, мы различаем их по нескольким признакам, в том числе по длительности, громкости и частоте. Определенные сочетания звуков различной длительности, громкости и частоты и образуют прекрасную мелодию, знакомое слово, рокот мотора или шум морского прибоя.

Ухо человека способно слышать звуковые колебания с частотами от 20 гц до 20 000 гц (20 кгц). Звуки с частотой более 20 кгц (ультразвук) и менее 20 гц (инфразвук) мы не слышим (лист 47). Указанные границы, конечно, не являются строгими – для каждого человека они могут отклоняться в ту или иную сторону.

Обычно мы не всегда полностью используем возможности нашего слуха. Так, например, музыкальные инструменты, входящие в симфонический оркестр, в основном создают звуковые колебания с частотами от 25 гц до 13 кгц, и поэтому, слушая оркестр, нам не обязательно воспринимать звуки с более высокими частотами, хотя они и создают определенную «окраску» звучания оркестра.

Если же несколько снизить требования к естественности звучания, то при слушании музыкальных произведений можно ограничиться максимальной частотой 10, иногда даже 5 кгц и минимальной частотой 50—100 гц. Для того же: чтобы удовлетворительно воспринимать разговорную речь, достаточно слышать звуковые колебания с частотами от 300 до 3400 гц. Речь будет оставаться разборчивой даже в том случае, если будут воспроизводиться звуки с частотами всего лишь до 1500 гц.

Все эти данные получены в результате опытов, при которых качество звучания оценивалось большим числом людей. Полученные результаты учитывают при разработке звуковоспроизводящей аппаратуры. Так, например, радиоприемники высшего класса воспроизводят звуки с максимальной частотой 10–12 кгц, в более дешевых приемниках ограничиваются максимальной частотой 5–6 кгц. Это хотя несколько ухудшает качество звучания, но зато позволяет упростить приемник, а значит, и снизить его стоимость. Для аппаратуры телефонной связи верхняя граница воспроизводимых частот всего 2–2,5 кгц.

Человеческое ухо – замечательный прибор. Оно ощущает самые незначительные изменения частоты звука: достаточно частоте измениться всего на несколько десятых долей процента, как ухо тотчас же это услышит. Ухо отличается очень высокой чувствительностью к слабым звукам: оно слышит даже такие слабые звуки, которые оказывают на поверхность барабанной перепонки давление с силой 0,0000003 грамма. Под действием этих звуков сама барабанная перепонка колеблется с «размахом» не более одной десятимиллионной доли миллиметра!

И все же, несмотря на столь высокую чувствительность нашего слухового аппарата, мы можем разговаривать с собеседником, находясь лишь на сравнительно близком расстоянии от него. Можно крикнуть так, чтобы вас услышали на противоположной стороне улицы, но как бы громко вы ни кричали в Москве, вас все равно не услышат в Ленинграде. Это в первую очередь связано с тем, что звуковые волны по мере своего продвижения вперед очень быстро ослабевают.


ЭЛЕКТРИЧЕСКИЙ ГОНЕЦ

Вы разговариваете по телефону, и на другом конце линии далекий собеседник слышит ваш голос. Каким же образом человеческая– речь, которая обычно не слышна дальше чем на несколько десятков метров, проходит по телефонной линии сотни и тысячи километров? Неужели небольшой телефонный аппарат передаст возникающие при разговоре колебания воздуха на такие огромные расстояния? Конечно, нет! Звуковые колебания практически не выходят за пределы комнаты, где вы говорите, а для передачи разговора используется электрический ток, который проходит по проводам, соединяющим телефонные аппараты.

В трубке нашего аппарата имеется угольный микрофон – небольшая коробочка с угольным порошком и крышкой в виде тонкой угольной пластинки (лист 44). Микрофон вместе с батареей включен в телефонную цепь таким образом, что через угольный порошок все время проходит ток. При разговоре под действием звуковых волн меняется давление воздуха на порошок, а следовательно, и плотность порошка. При этом меняется и электрическое сопротивление микрофона: плотно сжатые крупинки угольного порошка намного легче пропускают электрический ток, чем тогда, когда они находятся в разрыхленном состоянии. Изменение сопротивления микрофона, в свою очередь, приводит к соответствующему изменению тока (в полном соответствии с законом Ома!), и поэтому при разговоре ток в цепи микрофона изменяется, в точности повторяя все изменения звукового давления.

На другом конце цепи включена намотанная тонким проводом катушка телефона (слово «телефон» имеет два значения; здесь под телефоном понимается прибор для воспроизведения звука, часто называемый наушником), к которой прилегает мембрана – тонкая стальная пластинка (лист 45). Под действием тока, проходящего по катушке (вы еще не забыли, что проводник с током – это тот же магнит?), мембрана телефона намагничивается и притягивается к ней. А так как при разговоре ток в цепи меняется, то меняется и сила притяжения мембраны.

Вследствие этого мембрана колеблется и создает звуковые колебания, почти в точности соответствующие звуку, произнесенному перед микрофоном.

Таким образом, при телефонном разговоре происходят два основных преобразования: на передающей стороне с помощью микрофона звуковые колебания преобразуются в электрические, а на приемной стороне электрические колебания преобразуются в звуковые. Между микрофоном и телефоном циркулирует только электрический ток (рис. 24).


Рис. 24. При разговоре меняется звуковое давление на угольный порошок микрофона, меняется его сопротивление, а значит, и ток в цепи. Это, в свою очередь, приводит к тому, что меняется сила притяжения мембраны к катушке (электромагниту) телефона, мембрана начинает колебаться и создает звуковые волны.

Целесообразность этих преобразований очевидна: электрический сигнал – это надежный, быстрый и неутомимый гонец: он проходит огромные расстояния с молниеносной быстротой, почти в миллион раз быстрее звука.

Но как быть, если нужно установить связь без проводов, например с самолетом, с кораблем, бороздящим моря у берегов Антарктики, или получить сообщение с борта космической ракеты?

Здесь-то и проявляются замечательные преимущества линий радиосвязи, на которых передача электрических сигналов осуществляется без проводов, с помощью электромагнитных волн, распространяющихся в пространстве со скоростью света.


НЕСКОЛЬКО СЛОВ О САМОМ СЛОЖНОМ

Наиболее сложные понятия, с которыми приходится сталкиваться при изучении электротехники и радиотехники, – это понятия об электрическом, магнитном и электромагнитном пале. И дело здесь, пожалуй, не в том, что электрическое или магнитное поля нельзя увидеть или потрогать рукой. Ведь мы довольно четко, хотя и упрощенно, представляем себе атом, несмотря на то что посмотреть на него не можем.

Основная трудность состоит в том, что невозможно представить себе какую-нибудь модель поля подобно тому, как мы рисуем в своем воображении упрощенную модель атома.

Понятие об электрическом, магнитном и электромагнитном полях лучше всего, взять из простейших опытов. Затем можно будет дополнить и развивать эти понятия, используя огромные достижения математики и физики в области изучения полей.

Электрическое поле возникает вокруг всякого электрического заряда или вокруг предмета, на котором имеется избыток зарядов какого-нибудь одного знака. Мы потерли о шерсть пластмассовую палочку или обычную гребенку, создав на ней избыток отрицательных зарядов, и пространство вокруг гребенки приобрело какие-то особые свойства: мелкие клочки бумаги, попадая в это пространство, начинают притягиваться к ней. Каким образом наэлектризованная гребенка действует на клочки бумаги? Может быть, действие электрических сил передается через частицы окружающего воздуха?

Ни в коем случае! Если мы проделаем свой опыт в пустоте, то клочки бумаги будут так же притягиваться к гребенке, как и в воздухе или в каком-либо другом газе (рис. 25).


Рис. 25. С электрическим зарядом связаны невидимые и неосязаемые, но реально существующие особые формы материи: вокруг неподвижного заряда всегда существует электрическое поле, а если заряд движется, то вокруг него возникает еще и магнитное поле.

Значит, дело здесь не в молекулах, атомах или других частицах окружающей среды. Значит, вокруг электрического заряда (в данном случае вокруг наэлектризованной гребенки) существует какое-то особое состояние пространства, какая-то особая форма материи, через которую и передается действие электрических сил. Эта особая форма материи, существующая наряду с такой известной нам формой материи, как вещество, и есть электрическое поле.

Науке уже многое известно об электрическом поле. Известно, например, что оно обладает определенной массой и запасом энергии (в нашем опыте эта энергия расходуется на перемещение к гребенке клочков бумаги). Многого об электрическом поле мы еще не знаем, однако факт его существования, подтвержденный многочисленными опытами, не может вызывать никаких сомнений.

Другая особая форма материи, существование которой также подтверждается опытами, – это магнитное поле. Магнитное поле появляется как следствие движения электрических зарядов. В этом легко убедиться, если поднести компас к проводнику, по которому течет постоянный ток (рис. 7). Под действием магнитного поля, возникающего вокруг проводника с током, стрелка компаса несколько отклонится, так же как она отклонилась бы под действием обычного магнита. Магнитное поле, как и электрическое, обладает запасом энергии (в нашем примере часть этой энергии расходуется на поворот стрелки компаса).

Электрическое и магнитное поля тесно связаны с электрическим зарядом или его движением: уберите заряд – и электрическое поле исчезнет; прекратите ток в цепи – и магнитного поля нет. Но можно получить электрическое и магнитное поля, а точнее, более сложное, электромагнитное поле, не связанное с электрическими зарядами, как бы оторванное от них.

Электромагнитное поле имеет черты как электрического поля (как говорят, имеет электрическую составляющую), так и магнитного поля (магнитная составляющая). Это значит, что электромагнитное поле могло бы при определенных условиях и поворачивать стрелку компаса, подобно магнитному полю, и перемещать электрические заряды, подобно электрическому полю.

Электрическая и магнитная составляющие тесно связаны между собой, и каждая из них обладает запасом энергии, определяющим энергию всего электромагнитного поля.

Электромагнитное поле возникает при любом, даже незначительном изменении тока в проводнике. Изменяясь вместе с током, оно воздействует на соседние участки пространства, передает им свою энергию, и в этих, соседних участках также образуется электромагнитное поле. Таким образом, во все стороны от проводника, со скоростью света – 300 000 км/сек – все дальше и дальше движется волна электромагнитного поля, перенося с собой запасы энергии, которые она получила еще в месте своего возникновения.


    Ваша оценка произведения:

Популярные книги за неделю