355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Рудольф Сворень » Шаг за шагом. От детекторного приемника до супергетеродина » Текст книги (страница 5)
Шаг за шагом. От детекторного приемника до супергетеродина
  • Текст добавлен: 16 октября 2016, 20:35

Текст книги "Шаг за шагом. От детекторного приемника до супергетеродина"


Автор книги: Рудольф Сворень



сообщить о нарушении

Текущая страница: 5 (всего у книги 19 страниц)

Рис. 36. Диод периодически шунтирует телефон, и в его цепи появляются импульсы (толчки) тока одного направления. Если сигнал модулирован, то амплитуда импульсов меняется, мембрана «медленно» перемещается и создает звуковые волны.

Для детекторного приемника желательно сделать наружную антенну высотой 8—10 м (листы 59, 60). Заземление сделать обязательно. Приемник можно собрать на небольшой фанерной панели (лист 62), а гнезда для подключения телефонов, антенны и заземления сделать из белой жести.

Все соединения в электрических цепях следует осуществлять только путем пайки (лист 57), причем в процессе пайки ни в коем случае не следует применять кислоту. Соединяемые контакты, лепестки, провода и т. п. сначала тщательно зачищают, затем залуживают – покрывают тонким слоем олова и уже после этого припаивают. На всех стадиях пайки нужно пользоваться канифолью, которая очищает место спая от вредных окислов.



Пайку лучше всего вести небольшим электрическим паяльником «жало», который необходимо тщательно залудить. Более подробно о монтаже, пайке, подготовке деталей, столярных и слесарных работах, с которыми приходится сталкиваться радиолюбителю, можно прочесть в «Справочнике начинающего радиолюбителя», изданном в 1961 году.

Теперь поговорим о том, как работает наш приемник (лист 61). Мы уже знаем, что детектор пропускает ток только в одном направлении. Поэтому переменный ток, наведенный в антенне (IА), будет проходить через детектор (IД) только в течение одной половины периода. Ток обратного направления детектор не пропустит, и поэтому в течение второго полупериода ток пройдет через цепь телефона (IТ).

Диод можно рассматривать как своеобразный шунт, подключенный параллельно телефону. Особенность такого шунта состоит в том, что он действует «через такт»: в те полупериоды, когда диод пропускает ток, он сильно шунтирует телефон, и ток IТ практически отсутствует. Однако в следующий полупериод диод уже обладает очень большим сопротивлением, и весь ток, наведенный в антенне, идет через телефон. Таким образом, в цепи детектора, так же как в цепи телефона, протекает пульсирующий (импульсный) ток – импульсы (толчки) тока в этих цепях чередуются. Импульсы тока в цепи телефона, также, впрочем, как и в цепи детектора, всегда имеют одно направление, причем величина импульсов меняется в соответствии с модуляцией. Когда модуляции нет (молчание перед микрофоном), все импульсы тока одинаковы.

Благодаря медленному изменению импульсного тока, изменению, которое является следствием модуляции, мембрана телефона будет медленно перемещаться и создавать звуковые волны. Так, например, если в процессе модуляции ток в антенне передатчика увеличивается, то будет увеличиваться и ток в антенне приемника, а это значит, что будут возрастать импульсы тока через телефон, и при этом каждый последующий импульс будет все дальше смещать мембрану. Если же ток в антенне передатчика уменьшается, то будут уменьшаться и импульсы тока через телефон, и его мембрана будет медленно возвращаться в среднее положение. Мембрана следует за всеми изменениями амплитуды тока и воспроизводит «копию» звука, с помощью которого на передатчике осуществляется модуляция.

Какова же в этом процессе роль детектора? Если бы не было детектора, то через телефон протекал бы не импульсный (пульсирующий) ток, а переменный ток высокой частоты. Этот ток с очень большой частотой толкал бы мембрану то в одну, то в другую сторону, и в результате она стояла бы на месте, так как не успевала бы следовать за изменением тока. Благодаря детектору через телефон проходит ток только одного направления, и мембрана смещается только в одну сторону, следуя за медленным изменением амплитуды этого тока. Нужно признаться. что слово «медленно» в данном случае выбрано не совсем удачно. Действительно, ведь сила импульсов меняется в соответствии с модуляцией, а модулирующий сигнал может совершать свой полный цикл (период) за несколько тысячных долей секунды, то есть иметь частоту в несколько тысяч герц. Такую частоту колебаний мембраны уже нельзя назвать медленной. Оправданием для нас может служить лишь то, что эта частота все же невелика по сравнению с частотой тока в антенне, которая составляет сотни и тысячи килогерц.

Подведем некоторый итог. На передающей стороне звуковые колебания были преобразованы с помощью микрофона в электрический ток низкой частоты (НЧ). Этим низкочастотным током мы модулировали полученный от специального генератора ток высокой частоты (ВЧ). Модулированный ток ВЧ был направлен в передающую антенну и создал модулированные радиоволны. Они навели в приемной антенне точно такой же модулированный ток, какой был в антенне передатчика. С помощью детектора мы преобразовали переменный ток в пульсирующий. Под действием этого пульсирующего тока мембрана телефона пришла в движение и создала такие же низкочастотные звуковые колебания, какие воздействовали на микрофон в передатчике. Таковы основные процессы, происходящие при радиотелефонной передаче.

Построенный нами простейший приемник обладает серьезными недостатками. Прежде всего он мало чувствителен и позволяет принимать только местные и притом достаточно мощные станции. Может быть, у некоторых из вас, особенно у тех, кто живет далеко от мощных радиостанций, простейший приемник из-за его малой чувствительности вообще ничего, кроме грозовых разрядов, принимать не будет. Другой недостаток простейшего приемника состоит в том, что если слышны передачи нескольких станций, то нет никакой возможности отделить одну передачу от другой.

Таким образом, перед нами стоят две задачи. Во-первых, нужно повысить чувствительность приемника и сделать возможным прием станций, радиоволны которых приходят к антенне сильно ослабленными. Во-вторых, нужно сделать так, чтобы из всех слышимых радиостанций приемник мог выбирать только одну, нужную нам.

Задачи эти можно решать по-разному, но мы начнем с самых простых решений.



Глава 3
КОЛЕБАТЕЛЬНЫЙ КОНТУР


Как уже отмечалось, у простейшего детекторного приемника, описанного в предыдущей главе, имеются серьезные недостатки. Во-первых, у него очень плохая чувствительность. Это значит, что простейший приемник принимает только сильные сигналы. Во-вторых, простейший приемник практически не обладает никакой избирательностью, то есть не позволяет выделить сигнал нужной нам станции среди других сигналов, действующих в приемной антенне. Это значит, что если к приемной антенне придет несколько достаточно сильных сигналов от разных радиостанций, то передачи всех этих станций будут слышны одновременно.

Первое, что можно сделать для борьбы с такими недостатками, это ввести в приемник колебательный контур – устройство, которое может повысить высокочастотное напряжение, подводимое к детектору. Но основное достоинство колебательного контура состоит не только в том, что он увеличивает слабые напряжения высокой частоты, а в том, что напряжение какой-то определенной частоты он повышает больше всех других. Тем самым колебательный контур как бы выбирает из множества высокочастотных сигналов один сигнал, принадлежащий определенной радиопередающей станции. Это замечательное свойство контура называется избирательностью. Оно связано с происходящими в нем электромагнитными колебаниями (отсюда название «колебательный контур»).

Прежде чем знакомиться с электромагнитными колебаниями в контуре, вспомним о хорошо известных нам механических колебаниях – колебаниях маятника, гитарной струны, качелей, стальной линейки, зажатой в тисках, и т. п. Хотя в основе электромагнитных и механических колебаний лежат совершенно различные физические явления, но законы, по которым протекают эти колебания, очень похожи. Вот почему знакомство с механическими колебаниями поможет нам при изучении колебаний электромагнитных.


КОЛЕБАНИЯ МЕХАНИЧЕСКИЕ…

Футболист сильно ударил по мячу, и он «свечой», то есть почти вертикально, пошел вверх (рис. 37).


Рис. 37. Мяч поднимается вверх, и его кинетическая энергия (энергия движущегося тела) переходит в потенциальную (энергия, запасенная телом, поднятым на высоту).

Поднявшись на довольно большую высоту, мяч на секунду «замер», а затем, постепенно набирая скорость, стал падать вниз (рис. 38).


Рис. 38. Когда мяч падает, его потенциальная энергия вновь переходит в кинетическую.

Тот, кто знаком с физикой, знает, что, пока мяч поднимался и опускался, произошло два превращения энергии. При движении мяча вверх его кинетическая энергия (энергия движущегося тела; поднимаясь, мяч замедляет движение, и его кинетическая энергия уменьшается) перешла в энергию потенциальную (энергия, запасенная телом, поднятым на высоту; чем выше поднимается мяч, тем больше его потенциальная энергия), а затем по мере падения мяча его потенциальная энергия перешла в кинетическую.

Интересные взаимные превращения кинетической и потенциальной энергии можно наблюдать и в качающемся маятнике.

Когда грузик маятника находится в одном из крайних положений, его потенциальная энергия максимальна. По мере того как грузик опускается, его потенциальная энергия уменьшается, а кинетическая растет за счет увеличения скорости движения. Одним словом, при движении маятника к средней точке его потенциальная энергия переходит в кинетическую, и при прохождении средней точки потенциальная энергия маятника равна нулю, а кинетическая максимальна. Когда, проскочив по инерции среднюю точку, маятник двигается вверх, его кинетическая энергия постепенно переходит в потенциальную. Благодаря непрерывному переходу потенциальной энергии в кинетическую, а кинетической в потенциальную маятник совершает колебания – периодически отклоняется то в одну, то в другую сторону от своего среднего положения (рис. 39).


Рис. 39. В процессе колебаний маятника непрерывно происходит переход одного вида энергии в другой – потенциальная энергия (энергия поднятого маятника) периодически переходит в кинетическую (энергию движущегося маятника), кинетическая – обратно в потенциальную и т. д. При этом с определенной частотой меняется скорость движения маятника и его отклонение.

Аналогичными процессами сопровождаются и другие виды механических колебаний (лист 64).


Попробуем записать все, что происходит с маятником в процессе его колебаний. Такую запись удобнее всего произвести с помощью особого рисунка – графика (рис. 40). Мы уже встречались с графиками в предыдущей главе.


Рис. 40. График – это очень удобный и наглядный способ записи зависимости одной величины от другой и, в частности, зависимости какой-либо величины от времени.

Основой графика являются две взаимно-перпендикулярные прямые линии, называемые осями. По горизонтальной оси мы будем в определенном масштабе отмечать время, для чего разметим эту линию-ось в единицах времени, подобно циферблату секундомера (рис. 40). По вертикальной оси, также в определенном масштабе, будем отмечать отклонение маятника от его среднего положения, и эту ось разметим в единицах длины.

Теперь будем через определенные промежутки времени (например, через каждую секунду) измерять отклонение маятника и делать соответствующие отметки-точки. При отклонении маятника вправо будем делать отметки вверх от нулевой точки, а при отклонении влево – вниз от этой точки. Такой выбор сделан совершенно условно: можно было бы принять и обратное направление. По отметкам-точкам, которые мы будем наносить па графике, можно будет построить кривую (так обычно называют линию, соединяющую отдельные точки графика), которая и расскажет о том, как перемещается маятник с течением времени. Из графика, например, можно увидеть, что колебания маятника постепенно ослабевают («затухают») – амплитуда[6]6
  Как уже отмечалось ранее, амплитуда – это наибольшее (максимальное) значение какой-либо переменной величины. Рассматривая колебания маятника, мы отмечаем амплитуду скорости (когда грузик проходит точку б), амплитуду отклонения (например, расстояние между точками а и б или б и в), амплитуды потенциальной и кинетической энергии. Каждая из этих величин в течение одного периода дважды достигает амплитудного значений.


[Закрыть]
 отклонений становится все меньше и меньше (рис. 48), уменьшается и амплитудная (максимальная) скорость движения грузика. Колебания затухают потому, что энергия, запасенная при первом толчке, постепенно расходуется на преодоление сопротивления воздуха на трение в подшипнике или изгиб нити. Чем меньше эти потери энергии, тем медленнее затухают колебания.

Время, в течение которого маятник совершает полный цикл колебаний, называетсяпериодом и обычно, подобно периоду переменного тока, обозначается буквой Т. Зная период, легко подсчитать частоту колебаний f и, наоборот, зная f, подсчитать Т:

Так, например, если Т = 8 сек, то f = 0,125 гц, если колебания имеют частоту 100 гц, то период равен 0,01 сек (лист 65). Частота колебаний маятника, так же как и частота любых колебаний, зависит от того, насколько быстро в процессе этих колебаний энергия переходит из одного видав другой (в данном случае потенциальная энергия в кинетическую и обратно).

Лучше всего проследить указанную зависимость на примере колебаний гитарной струны. Эти колебания – результат перехода потенциальной энергии натянутой струны (когда струна натянута, то внутренние силы упругости стремятся вернуть ее в среднее положение) в кинетическую энергию движущейся струны и обратно.

Частота колебаний струны зависит от ее массы: чем толще струна, тем больше ее инерция, тем медленнее она накапливает и отдает кинетическую энергию, тем, следовательно, меньше частота колебаний. Частота колебаний зависит и от упругости струны, то есть практически от се натяжения: чем сильнее натянута струна (чем больше ее упругость), тем быстрее она отдает и накапливает потенциальную энергию, тем выше частота колебаний.


…И ЭЛЕКТРОМАГНИТНЫЕ

Электромагнитные колебания, так же как и любые другие колебания, – это результат периодического перехода энергии из одного вида в другой, а конкретно – результат перехода энергии электрического поля в энергию магнитного поля и наоборот.

Для накопления этих видов энергии могут использоваться специальные устройства: для накопления энергии электрического поля – конденсатор, а для накопления энергии магнитного поля – катушка индуктивности (иногда ее называют катушкой самоиндукции или просто катушкой). Электрическая цепь, состоящая из конденсатора и катушки, и представляет собой контур, в котором могут происходить электромагнитные колебания.

Мы уже знаем, что вокруг проводника, но которому течет ток, возникает магнитное поле. Если же разместить рядом несколько таких проводников, то мы получим более сильное магнитное поле, так как магнитные поля отдельных проводников суммируются (рис. 41).


Рис. 41. В магнитном поле, окружающем проводник с током, запасается энергия. Разместив рядом несколько проводников, можно усилить магнитное поле, а значит, и запасы энергии.

Есть и другой путь для усиления магнитного поля – можно свернуть проводник в спираль, то есть намотать из него катушку. В этом случае суммируются магнитные поля отдельных витков. Чем больше витков в катушке и чем ближе они друг к другу расположены, тем сильнее результирующее магнитное поле. Наиболее сильное поле образуется внутри катушки (рис. 42).


Рис. 42. Чтобы усилить магнитное поле, проводник можно свить в спираль и изготовить катушку. Чем больше витков в катушке (чем больше индуктивность), тем больше энергии накапливается в ее магнитном поле при прохождении тока.

Способность катушки создавать магнитное поле характеризуется ее индуктивностью. Индуктивность обозначается буквой L, и этой же буквой обозначаются катушки на схемах радиоаппаратуры. Единицей индуктивности является генри (гн). Имеются более мелкие единицы: миллигенри (мгн) – одна тысячная доля генри и микрогенри (мкгн) – одна миллионная генри (лист 66). Генри – это очень большая величина – катушка с такой индуктивностью содержит несколько десятков тысяч витков. В колебательных контурах наиболее часто встречаются катушки с индуктивностью от долей мкгн до нескольких мгн. Можно в десятки и сотни раз увеличить индуктивность L катушки, если вставить в нее стальной стержень, обычно называемый сердечником (рис. 43).


Рис. 43. Можно резко увеличить индуктивность катушки, вставив в нее стальной сердечник. Сердечник сам намагничивается и усиливает общее магнитное поле.

Увеличение индуктивности в этом случае объясняется тем, что под действием магнитного поля катушки сердечник намагничивается и создает свое собственное поле, которое усиливает поле самой катушки. Резко увеличивает индуктивность катушки не только сталь, но и ряд других материалов, получивших общее название ферромагнитных (от латинского слова «феррум» – железо). Чем больше ферромагнитный сердечник и чем сильнее он охватывается магнитным полем катушки, тем больше ее индуктивность. С катушками различных типов, применяемыми в приемниках, мы еще встретимся в дальнейшем.

На образование магнитного поля катушки затрачивается энергия движущихся зарядов (тока), то есть, в конечном итоге, энергия батареи. Если отключить батарею, то ток в катушке сразу не прекратится: исчезая, магнитное поле будет отдавать свои запасы энергии движущимся зарядам, поддерживая некоторое время ток в цепи. Чем больше индуктивность L катушки, тем больше энергии накопится в ее магнитном поле, тем, следовательно, дольше будет существовать ток в цепи после отключения батареи. При неизменной индуктивности магнитное поле катушки будет тем сильней, а запасенная в нем энергия будет тем больше, чем сильнее ток, проходящий по этой катушке.

Следует отметить, что катушки часто помещают в металлический (чаще всего алюминиевый) экран – чехол прямоугольной или цилиндрической формы (лист 67). Делают это для того, чтобы на катушку не влияли внешние магнитные и электрические поля или, наоборот, для того, чтобы магнитное поле катушки не влияло на другие цепи. Экран несколько изменяет индуктивность катушки.

Теперь несколько слов о конденсаторе.

Простейший конденсатор (лист 68) представляет собой две металлические пластинки (обкладки), между которыми находится слой изолятора (воздух, бумага, слюда, керамика и т. п.).


Если подключить конденсатор к источнику тока, например к батарее, то он зарядится: на обкладках соберутся электрические заряды (рис. 44) и вокруг этих обкладок (и особенно между ними) появится электрическое поле.


Рис. 44. При подключении конденсатора к батарейке (заряд конденсатора) на его обкладках накапливаются заряды, а между обкладками появляется электрическое поле, то есть конденсатор запасает энергию.

При зарядке конденсатора на той обкладке, которая подключена к «минусу» батареи, появится избыток электронов (обкладка с отрицательным зарядом), а на другой обкладке во многих атомах будет наблюдаться нехватка электронов (обкладка с положительным зарядом). Заряды на обкладках, а следовательно, и электрическое поле конденсатора останутся и после того, как мы отключим батарею, так как через слой изолятора заряды не смогут перейти с одной обкладки на другую. Конденсатор отдаст запасенную им энергию лишь в том случае, если его разрядить – соединить обкладки проводником, по которому полученные от батареи «лишние» электроны смогут перейти на противоположную обкладку и занять имеющиеся там «свободные места» (рис. 45).


Рис. 45. При подключении к заряженному конденсатору нагрузки (разряд конденсатора) он отдает запасенную энергию – избыточные заряды уходят с обкладок, а в цепи в этот момент появляется ток.

Необходимо отметить, что идеальных изоляторов не существует и всякий изолятор хоть плохо, но все же проводит электрический ток. Поэтому если даже не соединять проводником обкладки конденсатора, то он все равно постепенно разрядится, со временем заряды перейдут с одной обкладки на другую через изолятор и окружающий воздух. Конденсатор как накопитель электрической энергии используется в так называемых лампах-вспышках, применяемых в фотографии. Конденсатор сравнительно долго – несколько секунд – накапливает энергию от батареи, а затем очень быстро, в течение сотых долей секунды, выдает эту энергию специальной осветительной лампе. Но при заряде и при разряде конденсатора электрический ток выполняет одну и ту же работу, а за счет быстроты разряда лампа развивает большую мощность и дает яркую вспышку. Вспомните, что мощность это и есть работа, отнесенная к единице времени.

Принципиально можно было бы построить лампу-вспышку не с конденсатором, а с катушкой, которая накапливала бы энергию в магнитном поле. Однако такая установка будет очень громоздкой и неудобной.

Способность конденсатора накапливать заряды, а следовательно, и накапливать энергию в виде электрического поля характеризуется емкостью этого конденсатора. Емкость обозначается буквой С – этой же буквой на схемах обозначаются сами конденсаторы. Единицей емкости является фарада (ф). Имеются и более мелкие единицы: микрофарада (мкф) – миллионная доля фарады и пикофарада (пф) – миллионная доля микрофарады (лист 69). Пикофараду иногда называют микромикрофарадой (мкмкф). Фарада – это чрезвычайно большая величина, и конденсаторы такой емкости в практике никогда не встречаются. Обычно в радиоаппаратуре используются конденсаторы емкостью от нескольких пикофарад до нескольких десятков, реже – сотен микрофарад.

Емкость конденсаторов на схемах указывается сокращенно (лист 70). Если емкость конденсатора составляет доли пикофарады, то она выражается десятичной дробью с прибавлением букв «пф» (например, 0,5 пф). Целое число пикофарад, не более тысячи, выражается обычным числом без каких-либо добавлений (например, цифра 500 соответствует емкости 500 пф). Если емкость превышает 1000 пф, то она уже выражается в микрофарадах в виде десятичной дроби. Например, обозначение 0,002 соответствует емкости 0,002 мкф или, что то же самое, 2000 пф.

Десятичной дробью выражается и емкость конденсаторов более одной микрофарады. Так, например, обозначение 20,0 соответствует емкости 20 мкф.

Наряду с емкостью важной характеристикой конденсатора является его рабочее напряжение, то есть напряжение, которое можно без опасений прикладывать к его обкладкам. Если к конденсатору приложить напряжение больше, чем это разрешается, то может произойти пробой (разрушение) изолятора и как следствие этого короткое замыкание между обкладками.

Величина рабочего напряжения обычно указывается на корпусе конденсатора одновременно с его емкостью.

Емкость конденсатора зависит от площади его обкладок и расстояния между ними: чем больше эта площадь и чем ближе друг к другу расположены обкладки, тем больше С. У конденсаторов малой емкости обкладки обычно выполняют в виде прямоугольных пластин или дисков, а также в виде двух трубок, расположенных одна внутри другой. У конденсаторов большой емкости обкладки представляют собой длинные ленты из тончайшего металла (фольги), которые вместе с изолирующей прокладкой свернуты в трубку и размещены в корпусе из керамики или металла.

Емкость конденсатора сильно зависит от примененного в нем изолятора. По сравнению с воздухом бумага дает увеличение емкости в три-четыре раза, слюда в пять – восемь раз, а некоторые сорта керамики – в несколько тысяч раз.

Материал диэлектрика и конструктивные особенности конденсатора сокращенно отражаются в его названии (листы 71, 72).


Так, например, если обкладки конденсатора представляют собой трубки, вставленные одна в другую, а между ними находится слой керамики, то такой конденсатор называется КТК – конденсатор трубчатый керамический. Аналогично КДК означает: конденсатор дисковый керамический, КСО – конденсатор слюдяной опрессованный (в пластмассу). Перечисленные конденсаторы обычно имеют емкость от нескольких пикофарад до нескольких тысяч пикофарад.

Различные типы бумажных конденсаторов: КБ (бумажные), КБГ (бумажные герметизированные), КБГМ (бумажные герметизированные малогабаритные) – могут иметь емкость от тысячи пикофарад (0,001 мкф) до нескольких микрофарад. Особую группу составляют электролитические конденсаторы (КЭ), о которых будет рассказано в четвертой главе.

Зарядим конденсатор от батареи и подключим его к катушке. В созданном нами контуре сразу же начнутся электромагнитные колебания (рис. 46).


Рис. 46. В процессе электромагнитных колебаний в контуре происходит непрерывный переход потенциальной энергии электрического поля конденсатора в кинетическую энергию магнитного поля катушки и обратно. При этом с определенной частотой меняется напряжение на элементах контура и ток в нем.

Разрядный ток конденсатора, проходя по катушке, создает вокруг нее магнитное поле. Это значит, что во время разряда конденсатора энергия его электрического поля переходит в энергию магнитного поля катушки, подобно тому как при колебаниях маятника или струны потенциальная энергия переходит в кинетическую.

По мере того как конденсатор разряжается, напряжение на его обкладках падает, а ток в контуре растет, и к тому моменту, когда конденсатор полностью разрядится, ток будет максимальным (амплитуда тока). Но и после окончания разряда конденсатора ток не прекратится – убывающее магнитное поле катушки будет поддерживать движение зарядов, и они вновь начнут накапливаться на обкладках конденсатора. При этом ток в контуре уменьшается, а напряжение на конденсаторе растет. Этот процесс обратного перехода энергии магнитного поля катушки в энергию электрического поля конденсатора несколько напоминает то, что происходит, когда маятник, проскочив среднюю точку, поднимается вверх.

К моменту, когда ток в контуре прекратится и магнитное поле катушки исчезнет, конденсатор окажется заряженным до максимального (амплитудного) напряжения обратной полярности. Последнее означает, что на той обкладке, где раньше были положительные заряды, теперь будут отрицательные, и наоборот. Поэтому, когда вновь начнется разряд конденсатоpa (а это произойдет немедленно после того, как он полностью зарядится), то в цепи пойдет ток обратного направления.

Периодически повторяющийся обмен энергией между конденсатором и катушкой и представляет собой электромагнитные колебания в контуре. В процессе этих колебаний в контуре протекает переменный ток (то есть изменяется не только величина, но и направление тока), а на конденсаторе действует переменное напряжение (то есть изменяется не только величина напряжения, но и полярность зарядов, накапливающихся на обкладках). Одно из направлений напряжения тока условно называют положительным, а противоположное направление – отрицательным.

Наблюдая за изменениями напряжения или тока, можно построить график электромагнитных колебаний в контуре (рис. 46), подобно тому как мы строили график механических колебаний маятника (рис. 39). На графике значения положительного тока или напряжения откладывают выше горизонтальной оси, а отрицательного – ниже этой оси. Ту половину периода, когда ток протекает в положительном направлении, часто называют положительным полупериодом тока, а другую половину – отрицательным полупериодом тока. Можно говорить также и о положительном и отрицательном полупериоде напряжения.

Хочется еще раз подчеркнуть, что слова «положительный» и «отрицательный» мы используем совершенно условно, лишь для того чтобы отличить два противоположных направления тока.

Электромагнитные колебания, с которыми мы познакомились, называют свободными или собственными колебаниями. Они возникают всякий раз, когда мы передаем контуру некоторый запас энергии, а затем даем возможность конденсатору и катушке свободно обмениваться этой энергией. Частота свободных колебаний (то есть частота переменного напряжения и тока в контуре) зависит от того, насколько быстро конденсатор и катушка могут накапливать и отдавать энергию. Это, в свою очередь, зависит от индуктивности Lк и емкости Ск контура, подобно тому, как частота колебаний струны зависит от ее массы и упругости. Чем больше индуктивность L катушки, тем больше времени нужно, чтобы создать в ней магнитное поле, и тем дольше это магнитное поле сможет поддерживать ток в цепи. Чем больше емкость С конденсатора, тем дольше он будет разряжаться и тем больше времени понадобится, чтобы этот конденсатор перезарядить. Таким образом, чем больше Lк и Ск контура, тем медленнее происходят в нем электромагнитные колебания, тем ниже их частота. Зависимость частоты f0 свободных колебаний от Lк до Ск контура выражается простой формулой, которая является одной из основных формул радиотехники:

Смысл этой формулы предельно прост: для того чтобы увеличить частоту собственных колебаний f0, нужно уменьшить индуктивность Lк или емкость Ск контура; чтобы уменьшить f0, индуктивность и емкость нужно увеличить (рис. 47).


Рис. 47. Частота собственных электромагнитных колебаний в контуре зависит от индуктивности его катушки и емкости конденсатора. При уменьшении индуктивности или емкости частота растет.

Из формулы для частоты можно легко вывести (мы это уже делали с формулой закона Ома) расчетные формулы для определения одного из параметров контура Lк или Скпри заданной частоте и известном втором параметре. Удобные для практических расчетов формулы приведены на листах 73, 74 и 75.



БОРЬБА ЗА ДОБРОТНОСТЬ

Стечением времени амплитуды напряжения и тока в контуре уменьшаются – электромагнитные колебания затухают, подобно тому как затухают колебания маятника или струны (рис. 48, 49).


Рис. 48. Колебания маятника затухают потому, что запасенная при толчке энергия постепенно расходуется.


Рис. 49. Чтобы продлить свободные колебания маятника, то есть ослабить их затухание, необходимо уменьшить потери энергии (например, потери из-за трения).

Затухание электромагнитных колебаний в контуре связано с тем, что всякий раз при «перекачивании» энергии из конденсатора в катушку и обратно часть этой энергии безвозвратно теряется. Основные потери энергии в контуре – это потери в проводе катушки, в соединительных проводах, в изоляции проводов, потери в диэлектрике конденсатора и каркасе катушки, а также на излучение электромагнитных волн. Таким образом, если мы хотим нарисовать реальную схему контура, то, помимо контурной катушки Lк и конденсатора Ск, мы должны включить в нее и сопротивления, которые будут характеризовать потери энергии (лист 76). В действительности никаких сопротивлений (имеется в виду отдельная деталь) в контуре, конечно, нет. Но потери энергии в катушке, конденсаторе и т. д. существуют реально. Для того чтобы не забывать об этом, мы и рисуем на схеме не только катушку Lк и конденсатор Ск, но и условные сопротивления, которые отображают фактически существующие потери энергии.

Основные виды потерь – потери в катушке, потери на излучение и другие – условно характеризуются сопротивлением Rк, включенным последовательно, с Lк и Ск (лист 76, упрощенные схемы). Во время колебаний по сопротивлению Rк проходит весь контурный ток и, чем больше Rк, тем больше энергии на нем теряется.


    Ваша оценка произведения:

Популярные книги за неделю