355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Рудольф Сворень » Шаг за шагом. От детекторного приемника до супергетеродина » Текст книги (страница 11)
Шаг за шагом. От детекторного приемника до супергетеродина
  • Текст добавлен: 16 октября 2016, 20:35

Текст книги "Шаг за шагом. От детекторного приемника до супергетеродина"


Автор книги: Рудольф Сворень



сообщить о нарушении

Текущая страница: 11 (всего у книги 19 страниц)

Рис. 88. В результате нелинейных искажений меняется форма усиливаемого сигнала – в нем появляются составляющие, которых не было при передаче. При этом воспроизводимый звук становится хриплым и дребезжащим.

Источником нелинейных искажений в усилителях низкой частоты являются лампы и трансформаторы со стальными сердечниками. Именно в этих элементах и может искажаться форма сигнала из-за того, например, что при большой амплитуде усиливаемого напряжения на управляющей сетке лампа может оказаться запертой (то есть ее анодный ток прекратится) или из-за того, что в стальном сердечнике трансформатора наступит насыщение – сердечник намагнитится до предела и увеличение тока в обмотке не будет усиливать его магнитного поля.

Подобрав необходимые напряжения на электродах лампы и правильно рассчитав трансформаторы, через которые проходит усиливаемый сигнал, нелинейные искажения в усилителе НЧ можно заметно уменьшить.

Наряду с частотной характеристикой при оценке любого звуковоспроизводящего устройства указывается также коэффициент нелинейных искажений kн, или, как еще называют, коэффициент гармоник. Раньше этот показатель называли «клирфактор», что в переводе означает «показатель ясности». Коэффициент нелинейных искажений показывает, сколько процентов мощности полезного звукового сигнала составляет мощность посторонних звуков – всех этих шумов и хрипов, появившихся в результате нелинейных искажений.

Предположим, что скрипач, стоя перед микрофоном, медленно проводит смычком по струне и при этом на микрофон воздействуют звуковые колебания с частотой 500 гц, а в приемнике этот звук воспроизводится с мощностью 1 вт. Предположим также, что, в результате нелинейных искажений в передатчике, приемнике и других элементах тракта, громкоговоритель, кроме звука с частотой 500 гц, воспроизводит еще и другие звуки, которых не было при передаче, и что мощность этих посторонних звуков составляет 0,1 вт. В этом случае коэффициент нелинейных искажений kн всего тракта от микрофона до громкоговорителя, или, как говорят акустики, «от уха до уха», составляет 10 %. Небольшие нелинейные искажения (1–3 %) наше ухо не обнаруживает. Искажения 8—12 % сильно ухудшают качество звука, а при нелинейных искажениях в 15–25 % передача оказывается настолько искаженной, что слушать ее очень неприятно.

В каждом из элементов радиовещательного тракта в отдельности искажения невелики, но радиослушатель практически воспринимает сумму всех искажений. Это заставляет вести серьезную борьбу за уменьшение нелинейных искажений во всех элементах тракта: в передатчике, в детекторе, усилителе низкой частоты и т. д. Нелинейные искажения у громкоговорителей составляют 2–3 %, а у хороших усилителей 0,5–1,5 %. В простом усилителе НЧ можно допустить kн около 3–6 %.


УСИЛИТЕЛЬНЫЙ КАСКАД

Наряду с электронной лампой и источником ее питания одним из важнейших элементов усилительного каскада является анодная нагрузка. Именно в нагрузке и выделяется «мощная копия» усиливаемого сигнала.

Как уже отмечалось, в качестве нагрузки может использоваться головной телефон, громкоговоритель, обычное сопротивление, колебательный контур, дроссель (лист 131) и другие элементы. Нагрузка, как правило, включается непосредственно в анодную цепь лампы, и через нее к аноду подводится положительное напряжение. Рассмотрим вкратце работу усилительного каскада, в котором в качестве анодной нагрузки используется обычное сопротивление (лист 132).


Если напряжение на управляющей сетке неизменно, то в анодной цепи лампы протекает постоянный ток – ток покоя. Если же к управляющей сетке подвести усиливаемый сигнал, то анодный ток станет пульсирующим: под действием сигнала, приложенного к сетке, будет изменяться величина анодного тока, однако направление его всегда будет одним и тем же – от анода к катоду. Электроны, конечно, двигаются от катода к аноду, но при рассмотрении схем мы пользуемся условным направлением тока.

Пульсирующий анодный ток содержит постоянную Iа= и переменную Iа~– составляющие, которые в случае необходимости можно разделить с помощью фильтров (лист 124). Основную роль в процессе усиления играет переменная составляющая Iа~ анодного тока, появившаяся под действием усиливаемого сигнала: именно Iа~, проходя по нагрузке, создает «мощную копию» этого сигнала.

На чертеже 11 более подробно показан путь переменяй составляющей анодного тока в усилительном каскаде.

Через лампу и нагрузку переменная составляющая Iа~ проходит вместе с постоянной Iа=, а затем пути их расходятся: переменная составляющая возвращается к лампе через конденсатор фильтра выпрямителя Сф2(С34), а постоянная составляющая проходит через повышающую обмотку трансформатора через вентиль и сопротивление фильтра (Rф, R19). При батарейном питании анодной цепи обе составляющие Iа= и Iа~ проходят через батарею, причем последнюю рекомендуется шунтировать конденсатором большой емкости, чтобы облегчить путь для Iа~.

Переменная составляющая анодного тока Iа~, переходя по анодной нагрузке, создает на ней переменное напряжение и выделяет определенную мощность (лист 133).


Практически можно считать, что напряжение Uвыx равно Uн~, так как емкостное сопротивление переходного конденсатора Сс(С28) сравнительно невелико.

Чем больше сопротивление анодной нагрузки Rн, тем больше будет переменное напряжение Uн~,а следовательно, и Uвыx. Иными словами: чем больше сопротивление анодной нагрузки, тем больше и усиление каскада (рис. 89).


Рис. 89. Переменная составляющая анодного тока, проходя по сопротивлению анодной нагрузки, создает на нем переменное напряжение – усиленный сигнал. Чем больше сопротивление анодной нагрузки, тем больше и переменное напряжение на нем, тем больше усиление каскада.

Однако беспредельно увеличивать анодную нагрузку нельзя, так как это может привести к появлению сильных искажений сигнала и к уменьшению переменного напряжения.

Одна из причин, ограничивающих увеличение сопротивления нагрузки Rн, связана с тем, что постоянная составляющая анодного тока Iа=, проходя по сопротивлению Rн, создает на нем постоянное падение напряжений. Чем больше ток и чем больше сопротивление Rн, тем большая часть напряжения, поступающего с выпрямителя, теряется на нагрузке и тем, следовательно, меньше постоянное напряжение, действующее между анодом и катодом лампы (анодное напряжение). При очень большом сопротивлении нагрузки анодное напряжение может уменьшиться настолько, что каскад вообще перестанет усиливать (рис. 90).


Рис. 90. На анодной нагрузке теряется часть постоянного анодного напряжения, и поэтому при чрезмерно большом сопротивлении нагрузки напряжение на аноде лампы становится настолько низким, что усиление каскада уменьшается.

Сказанное можно пояснить и иначе. Лампа и нагрузка образуют своеобразный делитель напряжения, подключенный к анодному выпрямителю. Чем больше сопротивление верхней части делителя, то есть сопротивления Rн, тем меньшая часть напряжения остается на участке анод – катод.

Максимально допустимая величина Rн определяется также переменным напряжением, которое действует между анодом и катодом лампы. В некоторые моменты времени полярность переменного напряжения на аноде такова, что оно действует против постоянного напряжения и общее напряжение на аноде очень мало (лист 130). В эти моменты анод плохо «притягивает» электроны, анодный ток резко уменьшается и перестает «подчиняться» управляющему напряжению на сетке. В результате этого форма кривой анодного тока становится не похожей на форму кривой управляющего напряжения, то есть появляются нелинейные искажения.

Для того чтобы не было всех этих неприятных явлений, минимальное напряжение, которое остается на аноде, даже в самом неблагоприятном случае должно составлять не меньше чем 10–30 % постоянного анодного напряжения. Поэтому сопротивление нагрузки нужно выбирать с таким расчетом, чтобы амплитуда переменного напряжения на нагрузке не превышала бы 70–90 % постоянного анодного напряжения.

Для каждого типа лампы имеется некоторая оптимальная (наивыгоднейшая) величина сопротивления анодной нагрузки, которая указывается в числе параметров лампы или определяется расчетным путем. Ориентировочно можно считать, что для триодов оптимальное сопротивление нагрузки должно быть в два-три раза больше, а для пентодов в два – десять раз меньше внутреннего сопротивления лампы Ri (лист 133).


Подбирая анодную нагрузку опытным путем, следует начинать с небольших сопротивлений и увеличивать Rн до тех пор, пока не прекратится рост выходного напряжения или пока не появятся искажения.

Иногда в качестве анодной нагрузки применяют дроссели (лист 131). В этом случае переменное напряжение Uн~ на нагрузке определяется в основном индуктивным сопротивлением xLдросселя. Сопротивление это легко сделать большим, применяя, например, стальной сердечник. В то же время дроссель обладает сравнительно небольшим сопротивлением для постоянного тока, и падение постоянного напряжения на нем невелико. Поэтому в усилительном каскаде с дросселем в качестве нагрузки почти все напряжение выпрямителя действует на аноде лампы.

Этим же свойством отличается и усилительный каскад, в анодную цепь которого включен трансформатор или колебательный контур. Несмотря на указанное достоинство, дроссель редко применяется в качестве нагрузки в усилителе НЧ, так как он вносит сильные частотные искажения: сопротивление нагрузки xL, а следовательно, усиление каскада резко меняется с частотой.

В усилителях ВЧ анодной нагрузкой обычно служит колебательный контур, настроенный в резонанс с частотой усиливаемого сигнала (лист 131).

Важным элементом любого усилительного каскада является сопротивление утечки Rc, включенное в сеточную цепь лампы.

Необходимость включения этого сопротивления объясняется тем, что часть вылетевших из катода электронов всегда попадает на управляющую сетку. Накапливаясь на сетке, электроны создают на ней большой отрицательный заряд, который может препятствовать движению электронов от катода к аноду, так как на сетке появляется «минус» и лампа оказывается запертой (рис. 91).


Рис. 91.На сетку лампы всегда попадает некоторое количество электронов. Накапливаясь, они могут создать значительный отрицательный заряд, который «запрёт» лампу (анодный ток прекратится).

Для борьбы с этим явлением между сеткой и катодом и включают сопротивление Rc, по которому электроны, попадающие на сетку, возвращаются обратно на катод (рис. 92).


Рис. 92. Управляющую сетку соединяют с катодом через какое-либо сопротивление («утечка»), по которому попавшие на сетку электроны возвращаются обратно на катод.

Величину сопротивления Rc выбирают довольно большую – от нескольких сот килоом до нескольких мегом. При меньших значениях Rc это сопротивление будет заметно шунтировать источник усиливаемого сигнала (цепь детектора, колебательный контур и т. п.). При больших значениях Rc переход электронов с сетки на катод затруднится. В тех случаях, когда между сеткой и катодом включен какой-нибудь элемент цепи, пропускающий постоянный ток (угольный микрофон, обмотка трансформатора, контурная катушка и т. п.), необходимость в сопротивлении Rc отпадает (лист 134).

Рассматривая работу усилительного каскада, обратимся к так называемой динамической характеристике лампы. Динамическая характеристика отличается от рассмотренной нами раньше (рис. 65) тем, что в ней учитывается изменение напряжения на аноде лампы при подаче сигнала на ее сетку. Совмещая график изменения напряжения на сетке с динамической характеристикой, можно легко получить график, показывающий, как изменяется анодный ток с течением времени. Пример построения такого графика показан на рис. 93.


Рис. 93. Для иллюстрации работы усилительного каскада обычно совмещают два графика: характеристику лампы и график изменения напряжения на сетке. В результате можно получить третий график, показывающий, как изменяется анодный ток.

Для каждого значения напряжения на сетке Uс по динамической характеристике находим соответствующее значение тока Iа и наносим его на график, показывающий зависимость Iа от времени t. Так, например, в момент «5 сек» Uc = – 1,5 в. Как видно из динамической характеристики, при Uc = – 1,5 в, анодный ток Iа = 3 ма. Отсюда следует, что на график тока для момента «5 сек» можно нанести значение Iа= 3 ма. Проделав подобную операцию для всех значений Uс, мы получим график изменения тока I а. Построение графиков, как это уже много раз было и раньше, помогает нам сравнительно легко описывать сложные процессы, происходящие в усилительном каскаде.

Для упрощения рисунка при построении графика анодного тока была допущена одна неточность: мы не учли, что при положительных напряжениях на сетке появляется сеточный ток и поэтому несколько уменьшается число электронов, идущих к аноду. В результате появления сеточного тока изменяется форма анодного тока (в некоторые моменты анодный ток оказывается меньше, чем должен быть), то есть появляются нелинейные искажения (рис. 94).


Рис. 94. В те моменты, когда на сетке действует положительное напряжение, появляется сеточный ток, а из-за этого искажается форма анодного тока, то есть возникают нелинейные искажения.

Чтобы не было искажений, связанных с появлением сеточного тока, на сетке не должно быть положительного напряжения. Добиться этого можно сравнительно просто: подав на сетку (относительно катода!) вместе с усиливаемым сигналом постоянное отрицательное напряжение – отрицательное смещение (рис. 95, 96).


Рис. 95. Чтобы на сетке не появлялся «плюс», на нее вместе с переменным напряжением подают смещение – постоянное отрицательное напряжение. При слишком большом смещении искажения могут появиться из-за того, что лампа моментами окажется запертой.


Рис. 96. Чтобы избавиться от искажений, нужно прежде всего так подобрать начальное смещение («рабочую точку»), чтобы напряжение на сетке не становилось положительным и в то же время чтобы лампа не запиралась.

В этом случае напряжение на сетке будет меняться так же, как и раньше, в такт с сигналом, однако оно всегда будет оставаться отрицательным.

Величину отрицательного смещения нужно подбирать тщательно. При очень большом смещении лампа в некоторые моменты может оказаться запертой (это явление называется отсечкой), что, конечно, вызовет искажение формы анодного тока (рис. 95). Отрицательное смещение нужно выбирать с таким расчетом, чтобы ток покоя Iпок соответствовал середине прямолинейного участка ламповой характеристики. Этот участок с одной стороны ограничен положительным напряжением на сетке, а с другой стороны – нижним загибом характеристики (рис. 96, лист 135).

Существует несколько способов подачи отрицательного смещения на управляющую сетку. Один из них состоит в том, что в сеточную цепь лампы «минусом» к сетке включают специальную батарею смещения (лист 136). Если Uсм должно быть меньше, чем напряжение батареи, можно применить обычный делитель напряжения.

При другом способе, получившем очень широкое распространение, используются падение напряжения на сопротивлении, RK (не путайте с сопротивлением потерь в контуре), специально включенном для этой цели в катодную цепь (лист 137). Проходя по сопротивлению /?*, катодный ток /* (сумма постоянных составляющих анодного Iа= и экранного Iэ= токов) создает на нем напряжение Uсм. «Плюс» этого напряжения приложен к катоду лампы, а минус – к корпусу (или к общему проводу). С корпусом соединяется также и нижний (по схеме) конец сопротивления Rc, и, таким образом, напряжение на сопротивлении Rк фактически действует между сеткой и катодом. Необходимая величина отрицательного смещения устанавливается подбором сопротивления Rк: чем больше Rк, тем больше отрицательное смещение на сетке.

Для того чтобы на сопротивлении Rк не появилось переменного напряжения, это сопротивление шунтируют конденсатором Ск. Емкость конденсатора Ск подбирают с таким расчетом, чтобы даже на самой низкой из усиливаемых частот его емкостное сопротивление хс было в десять – пятнадцать раз меньше, чем Rк. Если же конденсатор Ск легко пропускает самые низкие частоты, то более высокие он пропустит еще легче.

Иногда для получения отрицательного смещения используют сопротивление утечки Rc (лист 138). Дело в том, что небольшой, порядка нескольких микроампер, сеточный ток существует всегда, даже при отрицательных напряжениях на сетке. Если выбрать Rc достаточно большим (10–20 Мом), то на этом сопротивлении можно получить довольно большое, порядка нескольких вольт, напряжение, «минус» которого будет приложен к сетке.


В большинстве промышленных приемников для получения различных напряжений смещения используют сопротивление, включаемое в так называемую минусовую цепь выпрямителя (лист 139).

Общий анодный ток всех ламп, проходя по этому сопротивлению, создает на нем определенное падение напряжения. Если заземлить катоды ламп, а также заземлить точку а, то в точке б будет отрицательное, относительно катода, напряжение, которое можно подавать на сетку лампы в качестве смещения. Включив между точками а и б несколько сопротивлений, то есть сделав делитель напряжения, можно получить разные по величине отрицательные напряжения для подачи на сетки различных ламп.

Рассматривая перечисленные способы получения смещения, нужно всегда помнить о направлении тока. Электроны в лампе двигаются от катода к сетке и аноду, а если ввести в баллон положительный заряд, то он будет двигаться от анода или от сетки к катоду. Мы уже знаем, что это направление принято считать направлением тока в лампе, так как вообще за направление электрического тока принято направление Движения положительных зарядов. Между прочим, как бы мы ни рассматривали процессы в лампе, исходя из условного направления тока или фактического направления движения электронов, результат мы получим один и тот же. Взять, например, схему, изображенную на листе 138. Условное направление тока на этой схеме – от сетки к катоду внутри лампы, затем по внешней цепи от катода к нижнему концу сопротивления Rc (по шасси) снизу вверх через сопротивление Rc и с верхнего конца Rc обратно на сетку. При таком направлении тока на нижнем конце сопротивления будет «плюс», а на верхнем – «минус», так как ток (имеются в виду положительные заряды) течет от «плюса» к «минусу».

Теперь давайте рассмотрим эту схему, исходя из реального движения электронов. Они, как известно, двигаются от катода к сетке и далее сверху вниз по сопротивлению Rc. Совершенно ясно, что электроны будут двигаться по этому сопротивлению только в том случае, если вверху будет их избыток, а внизу недостаток, или, иными словами, если вверху будет «минус», а внизу «плюс». Теперь видно, что, из чего бы мы ни исходили – из условного или из фактического направления тока, несмотря на то что эти направления противоположны, результат получится одинаковым. Да иначе и быть не может – ведь положительные заряды двигаются от «плюса» к «минусу», а электроны от «минуса» к «плюсу». Попробуйте проверить полярность напряжения смещения на других схемах для условного и фактического направления тока. Умение быстро определять направление тока и полярность напряжения на отдельных участках цепи – это одно из обязательных условий свободного чтения схем.

Все описанные выше элементы – нагрузка, источник смещения, сопротивление утечки – являются общими для усилителей низкой и высокой частоты, независимо от их мощности. Сейчас мы посмотрим, как практически выглядят эти элементы в двух каскадном усилителе низкой частоты.


УСИЛИТЕЛЬ МОЩНОСТИ И УСИЛИТЕЛЬ НАПРЯЖЕНИЯ

Чтобы обеспечить сравнительно большую мощность, необходимую для нормальной работы громкоговорителя, в последнем, выходном каскаде усилителя НЧ (этот каскад часто называют усилителем мощности) применяются специальные лампы, получившие название выходных ламп.

В радиоприемниках наиболее широко используются выходные пентоды и лучевые тетроды, реже – выходные триоды. Отличительной особенностью выходных ламп является значительный анодный ток 40–70 ма (лист 209–213). Анодный ток других ламп, применяемых в приемниках и усилителях, как правило, не превышает 5—10 ма.

Оптимальное сопротивление анодной нагрузки Ra[13]13
  Оптимальное сопротивление анодной нагрузки обозначают по-разному. В таблицах параметров ламп чаще всего встречаются обозначения Ra и Roпт. Наряду с величиной выходной мощности Рвых, которую может развить та или иная лампа, в таблицах параметров часто указывают допустимую величину мощности, рассеиваемой на аноде Ра. Эту величину приходится учитывать при различных расчетах и, в частности, при проверке теплового режима лампы.


[Закрыть]
для выходных пентодов и лучевых тетродов указывается в таблице параметров этих ламп и обычно составляет 3—10 ком. В то же время сопротивление звуковой катушки громкоговорителя не превышает нескольких ом. Поэтому, если включить громкоговоритель непосредственно в анодную цепь выходной лампы, то из-за малой анодной нагрузки выходная мощность составит всего несколько миллионных долей ватта.

Для того чтобы получить необходимое сопротивление нагрузки при небольшом сопротивлении громкоговорителя, он включается в анодную цепь выходной лампы через трансформатор, который получил название выходного трансформатора (рис. 97).


Рис. 97. Использование низкоомного громкоговорителя с понижающим выходным трансформатором равносильно включению в анодную цепь лампы сравнительно большого сопротивления.

Переменная составляющая анодного тока, проходя по первичной обмотке выходного трансформатора, наводит в его вторичной обмотке переменный ток, под действием которого и возникают колебания звуковой катушки.

В процессе работы громкоговоритель потребляет определенную электрическую энергию, которая в конечном итоге поступает из анодной цепи лампы. Поэтому громкоговоритель с выходным трансформатором можно условно заменить включенным непосредственно в анодную цепь лампы обычным сопротивлением R'н, которое называют сопротивлением нагрузки, приведенным к анодной цепи. Сопротивление R'н и является реальной анодной нагрузкой, которая определяет выходную мощность лампы.

Выходной трансформатор всегда делают понижающим: число витков вторичной обмотки меньше, чем первичной. Поэтому и переменное напряжение на вторичной обмотке меньше, чем на первичной, а переменный ток, который проходит по звуковой катушке, больше переменной составляющей анодного тока.

Еще резче отличается приведенное сопротивление нагрузки R'н от сопротивления звуковой катушки громкоговорителя. И это вполне понятно: ведь напряжение на первичной обмотке больше, чем на вторичной, а ток по ней протекает меньший. Это возможно лишь в том случае, если приведенное сопротивление нагрузки R'н будет во много раз больше, чем Rзв.Зная коэффициент трансформации n выходного трансформатора, легко подсчитать величину R'н с помощью простой формулы:

R'н = n2·Rзв

Здесь коэффициент трансформации n – это отношение числа витков первичной обмотки w1 к числу витков вторичной обмотки w2. Трансформатор понижающий, и поэтому n всегда больше единицы. Соответствующим подбором коэффициента трансформации можно добиться того, что сопротивление нагрузки R'н будет составлять несколько килоом при сопротивлении звуковой катушки Rзв несколько ом (лист 140).


При постройке приемника часто возникает необходимость переделать какой-нибудь фабричный трансформатор, приспособив его для данной лампы или данного громкоговорителя. При этом желательно знать, на какую лампу и на какой громкоговоритель был рассчитан трансформатор. Если окажется, что трансформатор подходит по мощности (а это, кстати, можно проверить по сечению сердечника и по диаметру провода первичной обмотки), то переделку можно свести к изменению числа витков вторичной обмотки. Этим самым мы получим коэффициент трансформации, необходимый для включения нового громкоговорителя (лист 141).

Если окажется, что данные переделываемого трансформатора неизвестны, то необходимое число витков вторичной обмотки можно найти, измерив коэффициент трансформации n и подсчитав число витков вторичной обмотки w2 (до переделки!). Для измерения коэффициента трансформации к первичной обмотке подводят переменное напряжение 5—20 в и измеряют напряжение на вторичной обмотке.

Сборка сердечника выходного трансформатора осуществляется «встык» (лист 115). Для создания зазора между двумя частями сердечника – стержневой и Ш-образной прокладывают полоску тонкой бумаги.

В заключение отметим, что сопротивление анодной нагрузки Rн у мощных выходных ламп, как правило, в несколько раз меньше, чем у маломощных пентодов и триодов. Однако на этом сравнительно небольшом сопротивлении выходная лампа развивает значительно большие, чем другие лампы, переменное напряжение Uа~ мощность Рвых. Происходит это за счет большого анодного тока, в частности, большой переменной составляющей Iа~. Значительный анодный ток как раз и является особенностью выходных ламп (лист 142).


Указывая величину переменного напряжения или тока, обычно имеют в виду их эффективное значение. Как известно, амплитуда – это наибольшее значение переменного напряжения или тока, которое появляется лишь на мгновение. Эффективное же значение говорит о способности переменного тока совершать работу в среднем за весь период (листы 143, 144). Совершенно очевидно, что эффективное значение тока Iэф или напряжения Uэф меньше амплитудного: ведь амплитуда бывает лишь дважды за весь период, а все остальное время ток значительно меньше и моментами даже становится равным нулю. Для переменного тока, протекающего в сети, эффективное напряжение в 1,4 раза меньше амплитуды. Это значит, что при эффективном напряжении 220 в амплитуда достигает 308 в. Напряжение сети, напряжение на обмотках трансформаторов, токи и напряжения на шкале измерительных приборов всегда указываются в эффективных значениях.

Для нормальной работы усилителя мощности (лист 146) к сетке выходной лампы необходимо подвести управляющее напряжение Uвx в несколько вольт (обычно 3—15 в). В то же время напряжение, которое развивает источник усиливаемого сигнала, оказывается намного меньше: напряжение на выходе большинства звукоснимателей не превышает нескольких десятых долей вольта. Широко распространенные микрофоны дают напряжение несколько милливольт, напряжение низкой частоты на выходе детектора в простых ламповых приемниках часто также не превышает одного вольта.


Учитывая это, в усилитель НЧ вводят еще один каскад (лист 145), а иногда два-три каскада. Их задача – усилить напряжение сигнала в десять – пятьдесят раз и таким образом довести это напряжение до величины, которая обеспечит нормальную работу выходного каскада.

Анодной нагрузкой в усилителе напряжения, как правило, служит обычное сопротивление. В этом случае подавать переменное напряжение с анода лампы усилителя напряжения прямо на сетку лампы выходного каскада нельзя, так как на аноде, кроме переменного, действует еще и постоянное напряжение. Усиленный сигнал подводится к выходному каскаду через конденсатор (Сс), который, как известно, постоянного тока не пропускает. Этот конденсатор получил название разделительного или переходного (рис. 98).


Рис. 98. Переменное напряжение («возбуждение») на сетку лампы выходного каскада подается с анода лампы усилителя напряжения через разделительный переходный конденсатор.

Давайте посмотрим, из каких соображений выбираются основные элементы усилителя (см. листы 133, 145, а также практическую схему, чертеж 12).

Предположим, что в таком каскаде используется пентод с внутренним сопротивлением 500 ком. В этом случае можно включить в качестве анодной нагрузки Rн (R13) сопротивление порядка 200 ком, то есть в два с половиной раза меньше, чем Ri. Разделительный конденсатор С"с (C28) вместе с сопротивлением утечки сетки выходного каскада R"c (R17) образуют делитель напряжения, подключенный к сопротивлению анодной нагрузки Rн. Нижний по схеме конец нагрузки Rн соединен непосредственно с цепочкой R"cС"с верхний по схеме конец сопротивления Rн заземлен через конденсатор фильтра выпрямителя (чертеж 11) и, таким образом, также подключен к цепочке R"cС"с (R17C28). Та часть поступающего с анодной нагрузки усиленного напряжения, которая выделяется на сопротивлении R17 и подводится к сетке усилителя мощности, фактически является выходным напряжением первого каскада Uвых, лист 133).

Общее сопротивление делителя R"cС"с должно быть достаточно большим, иначе он будет сильно шунтировать сопротивление анодной нагрузки. Обычно R"c делают в несколько раз больше, чем Rн. В нашем случае мы можем сделать R17 равным 0,5 Мом, то есть в пять раз больше R13.

Емкость конденсатора С"с должна быть достаточно большой, иначе он будет иметь значительное сопротивление на низших частотах и завалит частотную характеристику. Действительно, чем больше емкостное сопротивление конденсатора С"с, тем большая часть усиленного напряжения теряется на нем, тем меньше будет напряжение Uвых действующее на сопротивлении R"c.

Наиболее часто встречающиеся данные деталей усилительного каскада приведены на его типовой схеме (лист 145).

К конденсатору С"с приложено не только переменное, но и постоянное напряжение, действующее на аноде первой лампы Поэтому конденсатор С"с должен быть рассчитан на большое напряжение (200–300 в), иначе может произойти пробой – короткое замыкание обкладок – этого конденсатора. В результате пробоя С"с на сетке выходной лампы появится большое положительное напряжение, возникнет сеточный и резко возрастет анодный ток, из-за чего выходная лампа может выйти из строя (рис. 99).


Рис. 99. Если переходный конденсатор окажется пробитым, то на сетку выходной лампы попадает «плюс», анодный ток резко возрастет, каскад прекратит работу, а сама выходная лампа выйдет из строя.

В сеточную сеть усилителя напряжения, как правило включают регулятор громкости (рис. 100, 101, лист 147), которые представляет собой обычный делитель напряжения (потенциометр). Кроме того, в усилителях имеются регуляторы тембра которые дают возможность изменять частотную характеристику в зависимости от вкусов слушателя и характера передачи.


Рис. 100. Регулятор громкости – это делитель напряжения, выполненный виде переменного сопротивления (потенциометр).


Рис. 101. С регулятора громкости на сетку первой лампы подается большая или меньшая часть переменного напряжения, поступающего на вход усилителя.

Простейший регулятор тембра (рис. 102), позволяющий уменьшить усиление на высших частотах, может представлять собой цепь из переменного сопротивления RТ и конденсатора СТ. Конденсатор должен иметь сравнительно небольшое (5—10 ком емкостное сопротивление на высших частотах и большое на низших.


Рис. 102. Простейший регулятор тембра – это цепь, которая в той или иной степени шунтирует анодную нагрузку для токов высших звуковых частот.

Если такую цепь включить между анодом и катодом выходной лампы, то при малом сопротивлении RT (верхнее по схеме положение движка) токи высших частот будут замыкаться, минуя громкоговоритель, что приведет к соответствующему изменению тембра. При большом сопротивлении (нижнее по схеме положение движка) цепь регулятора тембра практически не будет шунтировать выходную лампу, а это равносильно тому, что регулятор тембра вообще отсутствует.


    Ваша оценка произведения:

Популярные книги за неделю