Текст книги "Шаг за шагом. От детекторного приемника до супергетеродина"
Автор книги: Рудольф Сворень
Жанр:
Радиоэлектроника
сообщить о нарушении
Текущая страница: 18 (всего у книги 19 страниц)
На переднюю панель выводятся лишь две ручки: переключатель диапазонов и регулятор громкости с выключателем Вк1. Настройка приемника осуществляется поворотом стрелки, которая жестко укреплена на оси ротора блока конденсаторов. Стрелку лучше всего выполнить в виде диска из органического стекла, на котором масляной краской проведена тонкая линия – диагональ. Как видно из схемы (чертеж 23), выключатель разрывает цепь питания накала ламп. При этом одновременно прекращается анодный ток ламп, потребляющий энергию анодной батареи. Однако незначительный разряд анодной батареи все же будет происходить, так как к ней подключено несколько конденсаторов (например, С34 или С9 через сопротивление R5), имеющих изолирующую прокладку между пластинками. Мы уже знаем, что ни один из изоляторов нельзя считать идеальным, так как через него все же проходит какой-то ток (ток утечки). Поэтому, если нужно выключить приемник на длительное время, то лучше вынуть из него идущий от батареи шланг питания, который подключается с помощью контактного разъема, сделанного из ламповой панельки и плоского цоколя от сгоревшей лампы с металлическим баллоном. Несмотря на то что на шасси удобнее было бы установить панельку, мы все же устанавливаем на нем цоколь, а панельку соединим с проводами, идущими к батареям, и тщательно изолируем ее снаружи. Если поступить наоборот, то на открытых ножках будет действовать накальное и анодное напряжение. При этом случайное замыкание ножек (например, две ножки одновременно касаются какого-нибудь металлического предмета) может сильно разрядить батарею. Кроме того, наличие напряжения на открытых ножках цоколя небезопасно: напряжение 40–50 в при определенных условиях может вызвать серьезное поражение электрическим током.
Если вы будете делать переносный вариант приемника, то батареи можно будет расположить в отдельном отсеке в нижней части ящика.
Любую из трех рассмотренных конструкций можно взять за основу для постройки приемника по любой из приведенных выше трех схем. При этом в каждую из конструкций можно вносить свои изменения в зависимости от собственного вкуса и имеющихся в вашем распоряжении деталей. Однако, внося те или иные изменения, нужно всегда помнить несколько основных правил конструирования и монтажа приемника:
• детали на шасси должны быть размещены так, чтобы все соединительные цепи, особенно высокочастотные, имели минимальную длину; в то же время детали сеточных и анодных цепей одного и того же каскада не должны быть слишком сдвинуты, для того чтобы между этими цепями не возникла положительная обратная связь; весьма удобно размещать основные детали (лампы и фильтры ПЧ) «в линейку», подобно тому как это сделано в первом приемнике;
• шасси приемника должны быть достаточно жесткими;
• блок конденсаторов желательно амортизировать с помощью резиновых прокладок;
• детали должны быть размещены так, чтобы в процессе налаживания приемника к любой из них легко было добраться;
• при конструировании ящика необходимо предусмотреть возможность быстрой замены радиоламп и предохранителей, а также свободный доступ к колодке переключения напряжений сети;
• ящик приемника должен иметь строгие и современные формы, а также тщательную отделку;
• при размещении ручек управления на передней панели нужно условно провести ось симметрии, которая может проходить либо через центр ящика, либо через центр шкалы настройки;
• для удобства монтажа в усилителе НЧ и блоке высокочастотных катушек целесообразно использовать монтажные панели из изоляционного материала;
• при монтаже можно пользоваться опорными точками – свободными лепестками ламповых панелей и других деталей, а также специальными лепестками, закрепленными на основании из изолятора;
• все длинные провода в цепях детектора, гнезд, звукоснимателя и сеточной цепи первого каскада усилителя НЧ необходимо экранировать, а экран тщательно заземлить;
• все соединительные цепи, отдельные детали и особенно опорные монтажные лепестки должны быть жестко закреплены с таким расчетом, чтобы не произошло случайного короткого замыкания между цепями или замыкания какой-нибудь детали на шасси;
• особенно внимательным нужно быть при монтаже (а также при налаживании) приемника, где в выпрямителе используются пат у проводниковые диоды, так как даже при кратковременном замыкании какой-нибудь «плюсовой» цепи на шасси^(то есть на «минус») диоды мгновенно выходят из строя.
В заключение можно посоветовать вам, перед тем как начинать конструирование своего приемника, внимательно познакомиться с несколькими образцами промышленных приемников, а также приемников, построенных опытными радиолюбителями. Там вы несомненно найдете для себя много полезного как в самой конструкции шасси и ящика, так и в размещении, креплении и монтаже отдельных деталей.
ЧТО ЖЕ ДАЛЬШЕ?
Построив супергетеродинный радиоприемник, вы прошли первый курс «радиолюбительского университета», научились читать схемы и находить соответствие между принципиальной схемой и монтажом, познакомились с работой ламповых усилителей, с детектором, выпрямителем, генератором (гетеродином), различными фильтрами и другими элементами, которые можно встретить в любом радиоустройстве. В результате многочисленных экспериментов вы приобрели полезные практические навыки, необходимые при монтаже и налаживании радиоаппаратуры. Еще более важно то, что все свои работы вы проводили не «вслепую», не путем бездумного копирования каких-то образцов приемников, а путем внимательного знакомства с различными схемами, путем изучения физических основ работы отдельных деталей, путем объяснения наблюдаемых на практике явлений с помощью законов электротехники и радиотехники. Но, пожалуй, самое главное, что должен был дать вам весь пройденный путь, путь от детекторного приемника до супергетеродина, – это смелость и уверенность.
Смелость при экспериментировании, при замене одних деталей другими, при введении новых схемных элементов в уже действующий аппарат, при объяснении на первый взгляд непонятных явлений. Уверенность в том, что чудес не бывает, что любую правильно составленную и смонтированную схему можно наладить, любую неисправность обнаружить и устранить, в любом сложном вопросе разобраться.
Теперь для вас, по-видимому, не составит особого труда произвести в своем приемнике ряд усовершенствований, ввести в него ряд элементов, с которыми можно встретиться в других схемах.
Для начала давайте попробуем повысить чувствительность и избирательность приемника путем введения положительной обратной связи, как мы это уже делали в приемнике прямого усиления.
Обратную связь удобнее всего ввести в усилителе промежуточной частоты (чертеж 25, а). Для этого достаточно непосредственно на контурную катушку L13 или L14 намотать катушку обратной связи L17, которая может содержать 5—15 витков любого тонкого провода, например ПЭШО-0,15. Высокочастотный сигнал на катушку L'17 можно подать и с анода лампы и с ее катода (пунктирная линия).
Введение положительной и обратной связи может дать огромный эффект. С ее помощью, в частности, можно в пять – десять раз повысить чувствительность приемника, приблизив ее к чувствительности приемников первого класса. Еще больший эффект дает применение регенеративного детектора (диодный детектор при этом, естественно, исключается), одна из возможных схем которого приведена на чертеже 25,б.
Катушка L17 в регенеративном детекторе размещается так же, как и в усилителе ПЧ с обратной связью. Ее нужно намотать поверх горшкообразного сердечника катушки L13 (L14). В процессе налаживания может оказаться возможным упростить схему, например исключить звено фильтра R"8,C"20.Можно ввести и плавную регулировку обратной связи (это весьма удобно при приеме слабых станций) путем изменения напряжения на экранной сетке лампы. Для этой цели, так же как и в приемнике прямого усиления, проще всего использовать переменное сопротивление R16, взяв его из цепи регулировки тембра.
Есть и другой путь повышения чувствительности приемников – увеличение числа усилительных каскадов. Можно, например, ввести еще один каскад усиления промежуточной частоты на лампе 6К4П или 6К1П. Составить схему двухкаскадного усилителя ПЧ сравнительно просто, так как второй каскад будет точной копией первого. В таком усилителе будет шесть контуров ПЧ, то есть три двух контурных фильтра. Совершенно очевидно, что на детектор сигнал нужно подавать со второго контура третьего фильтра ПЧ, а на сетку второго каскада – со второго контура второго фильтра.
Двух каскадный усилитель ПЧ требует весьма тщательного налаживания, так как он больше, чем однокаскадный, склонен к самовозбуждению. Обычно в катодные цепи обеих ламп приходится включать сопротивление по 100–150 ом, на которых возникает напряжение отрицательной обратной связи.
Иногда дополнительный усилительный каскад устанавливают до преобразователя частоты. Это так называемый апериодический, то есть нерезонансный, усилитель ВЧ (чертеж 25, г). Такое название связано с тем, что между усилителем ВЧ и преобразователем (анодная цепь Л7, сеточная цепь Л1) нет настраивающегося колебательного контура.
Если применить в апериодическом усилителе ВЧ высокочастотный пентод с большой крутизной, например 6К4П, 6Ж4 или 6Ж5П, то этот каскад даст дополнительное усиление в пять – пятнадцать раз и, что особенно важно, улучшит условия приема слабых сигналов. Последнее связано с тем, что апериодический усилитель повышает уровень сигнала до преобразователя частоты, где обычно возникают сравнительно сильные «шумы».
На чертежах 25 г, г' и г" показаны три варианта цепи анодной нагрузки апериодического усилителя ВЧ. Обычно отдают предпочтение схеме г". Данные дросселей: Др1 – 80 витков, Др2 – 60 витков и Др3 – 25 витков провода ПЭШО-0,15. Все они намотаны на каркасах диаметром 5 мм и длиной 20 мм, причем у Др3 намотка однослойная, а у Др1 и Др2 – «в навал». Вместо специальных каркасов можно использовать обычные сопротивления на 0,5 вт и более чем 50 ком, Др2 можно намотать непосредственно на сопротивлении R32.
Другое усовершенствование, которое сравнительно легко осуществить, – это растянутая настройка на коротковолновом диапазоне. Дело в том, что на коротких волнах при повороте ротора конденсатора переменной емкости очень резко меняется частота настройки. Так, например, повороту ротора на одни градус на ДВ диапазоне соответствует изменение частоты в среднем на 1,5 кгц, на СВ диапазоне при таком же повороте ротора частота настройки изменится уже на 5 кгц, а на коротких волнах – на 50 кгц. Это значит, что для того чтобы перестроиться с одной станции на другую в длинноволновом диапазоне, необходимо повернуть ротор конденсатора на 7 градусов, в средневолновом на 2, а в диапазоне коротких волн – всего лишь на 1/5 часть градуса. Естественно, что из-за этого сам процесс настройки на КВ диапазоне сильно усложняется, а иногда даже можно «проскочить» мимо нужной станции.
Во многих промышленных и любительских приемниках для того чтобы облегчить настройку на коротковолновом диапазоне, его разбивают на несколько самостоятельных («растянутых») поддиапазонов, каждому из которых соответствует отдельное положение переключателя диапазонов, а значит, и полный поворот ротора конденсатора настройки. При этом на каждый градус поворота ротора приходится уже не 50 кгц, а значительно меньше.
Чтобы «растянуть» настройку на КВ диапазоне, то есть сделать ее более плавной, можно поступить иначе: ввести в приемник еще один элемент настройки, который позволит на любом участке коротковолнового диапазона в небольших пределах менять частоту гетеродина. Частоту входного контура менять не нужно, так как он имеет сравнительно «тупую» резонансную кривую и сразу пропускает большое число станций с близкими частотами.
В качестве элемента «растяжки» можно применить небольшой подстроечный конденсатор емкостью 10–30 пф или катушку индуктивностью 50—500 мкгн, с подвижным сердечником (лист 183). В конструктивном отношении удобнее применить конденсатор – ось его ротора легко вывести на переднюю панель рядом с ручкой основной настройки. Элемент растяжки подключают к части витков контурной катушки, обычно ко второму или третьему витку, считая от заземленного конца. Точку подключения конденсатора Сраст или катушки Lpacт лучше всего подбирать опытным путем.
И, наконец, третье, что можно было бы сравнительно легко сделать в нашем приемнике, – это установить в нем оптический индикатор настройки (только для сетевых приемников). Такой индикатор собирают на специальной лампе 6Е5С или 6Е1П (чертеж 25,б).
Лампа 6Е5С (6Е1П) фактически содержит две лампы: собственно индикатор и вспомогательный триод (рис. 151).
Рис. 151. В приемнике можно установить оптический индикатор на лампе 6Е5С и 6Е1П, облегчающий точную настройку на станцию.
В индикаторе имеется экран, на который подается полное анодное напряжение. Под действием этого напряжения на экран попадают вылетевшие из катода электроны, которые и заставляют экран светиться (экран покрыт специальным светящимся составом).
Не светится лишь один участок экрана – треугольный теневой сектор. Не светится этот участок потому, что против него находится управляющий электрод, или, как его еще называют, «нож», который отталкивает электроны, летящие к экрану.
«Нож» соединен с анодом вспомогательного триода, а в анод, ную цепь этого триода включено довольно большое сопротивление нагрузки Rн-и (R26). Анодный ток триода создает на сопротивлении Rн-и падение напряжения, и поэтому напряжение на аноде, а значит, и на «ноже» будет меньше, чем на экране. Это, в свою очередь, означает, что на «ноже» будет «минус» относительно экрана (если на экране действует напряжение, +200 в относительно катода, а на аноде и «ноже» +150 в, то это значит, что на «ноже» действует – 50 в относительно экрана). Вот из-за этого «минуса», управляющий электрод – «нож» – и отталкивает электроны.
Теперь попробуем подключить управляющую сетку вспомогательного триода к нагрузке детектора (чертеж 25,б) и настроиться на какую-нибудь станцию. Чем точнее настройка, тем сильнее будет высокочастотный сигнал, который подводится к детектору. При увеличении уровня сигнала будет возрастать и постоянное напряжение на нагрузке детектора, а поскольку это напряжение подается «минусом» на сетку вспомогательного триода, то одновременно будет уменьшаться его анодный ток. Это, в свою очередь, приведет к тому, что будет уменьшаться падение напряжения на сопротивлении нагрузки триода Rн-и (R26), а следовательно, все меньше будет становиться «минус» на «ноже». В результате «нож» все слабее будет отталкивать электроны, что, конечно, приведет к сужению теневого сектора.
Отсюда и следует, что чем уже теневой сектор, тем точнее мы настроились на станцию.
Оптический индикатор оказывается очень полезным при настройке контуров приемника. Дело в том, что на слух не всегда удается определить, возрастает или уменьшается сигнал при изменении той или иной индуктивности или емкости, а оптический индикатор весьма точно показывает даже небольшое изменение сигнала. Включенные в сеточную цепь индикатора сопротивление Rф-и (R27), и конденсатор Сф-и (С39), – это не что иное, как обычный развязывающий фильтр, предохраняющий сеточную цепь индикатора от попадания переменных составляющих продетектированного сигнала.
Оптический индикатор настройки можно установить в любом сетевом супергетеродине. Приемник прямого усиления обладает сравнительно невысокой чувствительностью, и большинство станций не создает на нагрузке детектора постоянного напряжения, достаточного для того, чтобы «запереть» триодную часть индикатора.
И, наконец, еще одно, пожалуй, самое простое и в то же время самое эффектное усовершенствование нашего приемника – превращение его в радиолу. Совершенно ясно, что для этого нужен специальный электродвигатель и звукосниматель или, еще лучше, электропроигрыватель. Электродвигатель включается в сеть, причем в разрыв одного из проводов следует ввести выключатель. Звукосниматель можно подключить так, как это показано на чертеже 12. Следует, однако, иметь в виду, что на этом чертеже приведена самая простая схема включения звукоснимателя, имеющая серьезный недостаток: при воспроизведении грамзаписей высокочастотная часть приемника продолжает работать и даже если уйти на свободный участок какого-либо диапазона, где нет ни одной станции, то все равно качество звучания будет заметно ухудшено различного рода помехами и особенно так называемыми «суперными шумами». Для того чтобы этого не было, необходимо при воспроизведении грамзаписей выключать высокочастотную часть приемника. В промышленных и многих любительских приемниках это делается с помощью переключателя диапазонов, в котором имеется специальное положение (или отдельная клавиша) для включения звукоснимателя. В этом положении вход усилителя НЧ отключается от нагрузки детектора и подключается к звукоснимателю. В нашем переключателе имеется всего лишь три положения (ДВ, СВ и КВ), и поэтому его нельзя использовать еще и для включения звукоснимателя. Поэтому нам придется установить непосредственно на шасси (удобнее всего рядом с гнездами «Зв») перекидной выключатель – тумблер (лист 95), с помощью которого можно было бы подключать верхний (по схеме) вывод сопротивления R12, либо к детектору, то есть к сопротивлению R11 (радиоприем), либо к верхнему по схеме гнезду звукоснимателя (воспроизведение грамзаписей). Нижнее по схеме гнездо звукоснимателя всегда остается заземленным.
Нужно помнить, что из-за дополнительных наводок на корпус и детали переключателя может появиться заметный фон переменного тока. Для ослабления его приходится не только тщательнейшим образом экранировать провода, идущие от выключателя к детектору и звукоснимателю, но иногда экранировать и корпус тумблера. Можно, правда, поступить иначе: включать звукосниматель с помощью обычной вилки, а тумблером лишь отключать высокочастотную часть приемника, разрывая, например, цепь питания анодов ламп Л1 и Л2. Не забудьте, что вилку нужно вставить в гнездо «Зв» так, чтобы экран провода, идущего от звукоснимателя, обязательно соединялся с заземленным гнездом; сделав наоборот, то есть подключив экранирующий чулок к верхнему (по схеме) гнезду «3«», вы, кроме фона, вообще ничего не услышите. Электропроигрыватель можно установить в верхней части ящика так же, как это делается почти во всех промышленных радиолах.
На этом, пожалуй, можно закончить перечень простейших изменений и усовершенствований нашего супергетеродина. Это, конечно, не значит, что мы уже сделали все возможное, чтобы получить современный высококачественный приемник. Просто дальнейшее совершенствование приемника, например установка резонансного усилителя ВЧ, введение УКВ диапазона, увеличение мощности усилителя НЧ, потребует таких серьезных изменений в схеме и конструкции, что проще и правильнее, строить новый приемник более высокого класса.
Несколько слов о классификации радиоприемников, в настоящее время все выпускаемые промышленностью сетевые радиоприемники условно разделяют на пять основных классов: высший, первый, второй, третий и четвертый.
Они отличаются друг от друга основными характеристиками (параметрами), к числу которых относят:
Диапазон принимаемых волн (частот). Приемники высшего, первого и второго классов работают на всех диапазонах, приемники третьего класса не имеют УКВ, а четвертого – также и КВ диапазона.
Номинальная выходная мощность. Для приемников высшего и первого классов обычно составляет 4–8 вт, второго – 1,5–3 вт, третьего и четвертого – 0,5–1 вт.
Качество воспроизведения звука. Характеризуется коэффициентом нелинейных искажений при номинальной мощности (0,5–2 % высший класс, 5—12 % четвертый класс) и полосой воспроизводимых частот (50–12 000 гц высший класс, 200—4000 гц четвертый класс).
Чувствительность – минимальное напряжение, при котором приемник развивает на выходе 10 % своей номинальной мощности. Чувствительность различна на разных диапазонах.
Так, например, в приемниках высшего и первого классов она не хуже 4—15 мкв на УКВ диапазоне и 15–50 мкв на остальных.
Второй класс, естественно, имеет худшую чувствительность – 5—15 и 30—100 мкв (чем больше число микровольт, то есть чем больше напряжение нужно подать на вход для нормальной работы приемника, тем хуже его чувствительность).
Приемники третьего и четвертого классов имеют чувствительность 50—250 мкв.
Избирательность по соседнему каналу. На диапазонах ДВ, СВ и КВ для приемников высшего класса может быть не хуже 70–76 дб (сигналы соседней станции ослабляются в 3–6 тысяч раз), для первого класса 40–60 дб (100—1000 раз), второго 35–50 дб (50—300 раз), третьего и четвертого 26–30 дб (20–30 раз).
Избирательность по зеркальному каналу. Для приемника высшего класса не хуже 60 дб на ДВ. 50 дб на СВ и 25 дб на КВ диапазоне. Для приемников второго и третьего классов эти данные заметно хуже: 36, 30 и 12 дб соответственно.
Чувствительность с гнезд звукоснимателя. Для большей части приемников составляет 0,1–0.25 в (100–250 мв).
Мощность, потребляемая от сети. В зависимости от числа ламп и режима их работы может лежать в пределах 40—150 вт.
Совершенно ясно, что различие в параметрах в основном определяется сложностью схемы и в первую очередь числом ламп и колебательных контуров.
Радиолюбители, оценивая свои конструкции, часто сравнивают их по нескольким самым основным параметрам (лист 175). Поступая аналогичным образом, мы можем сказать, что наш приемник соответствует третьему классу. При тщательной наладке можно получить ряд параметров (чувствительность, избирательность, качество воспроизведения), приближающихся ко второму классу.
Постройка многолампового приемника, изучение его схемы и отдельных узлов, знакомство с важнейшими законами электротехники и радиотехники, а также приобретенные практические навыки по монтажу и налаживанию электронных устройств – все это открывает перед вами большие возможности для дальнейшей работы в области радиоэлектроники. Круг вопросов, которыми вы могли бы теперь заняться, очень широк. Мы уже говорили, что желающие и дальше заниматься радиоприемов могли бы приступить к постройке современного многолампового приемника высшего класса. Можно заняться и низкочастотным трактом – постройкой школьных радиоузлов, мощных усилителей НЧ, предназначенных для высококачественного воспроизведения звука. Очень близко к этому примыкает конструирование электронных музыкальных инструментов, простых (электрогитара) и сложных (электронный орган). Постройка ламповых приемников, несомненно, является хорошим фундаментом для работы над транзисторными конструкциями, так как и те и другие приемники работают на одних и тех же принципах и состоят из одних и тех же основных узлов. Однако у транзисторов имеется ряд очень важных особенностей, без знания которых нельзя будет сделать шаг от ламповой аппаратуры к транзисторной.
Для того чтобы завершить перечень «бытовой» аппаратуры, постройкой которой занимаются радиолюбители, следует упомянуть о магнитофонах и телевизорах. Конструированием этих аппаратов занимаются очень многие любители. Однако нужно прямо сказать, что самостоятельное изготовление магнитофона и особенно телевизора можно считать старшим курсом радиолюбительского университета. – работы эти требуют большого опыта и знаний.
Кроме того, для налаживания сложных электронных аппаратов нужны специальные измерительные приборы, которые не всегда можно достать. Очевидно, поэтому многие любители стремятся как можно лучше оснастить лабораторию своего радиоклуба или радиокружка и сами строят измерительные генераторы сигналов, вольтметры, позволяющие измерять самые различные напряжения, и в том числе высокочастотные; приборы для измерения индуктивности, емкости, сопротивления, частоты; осциллографы, на экране которых можно наблюдать графики переменных токов и напряжений, и ряд других приборов.
Все, о чем мы говорили до сих пор, – лишь небольшая часть возможных направлений вашей дальнейшей радиолюбительской деятельности. В этом можно легко убедиться, познакомившись с какой-нибудь радиолюбительской выставкой.
На выставках, наряду с уже знакомыми вам усилителями, телевизорами, измерительной аппаратурой, магнитофонами, радиоузлами, транзисторными и ламповыми приемниками, демонстрируются экспонаты совсем другого рода – электронные автоматы и другие приборы для различных областей промышленности и сельского хозяйства. Здесь можно увидеть простейшую вычислительную машину; прибор для измерения биотоков (электрических токов, возникающих в живом организме) сердца или мозга; установку, ускоряющую рост рассады; устройства «малой автоматизации» – реле времени, счетчики изделий, модели торговых автоматов, влагомеры для измерения влажности зерна и древесины и много других электронных приборов самого различного назначения. Некоторые из них прямо с радиолюбительской выставки переходят в цех завода или лаборатории ученых. Возможность заниматься настоящей электроникой и вносить свою лепту в дело технического прогресса – это. конечно, главная причина того, что разработкой электронных приборов для народного хозяйства с каждым годом занимается все больше и больше радиолюбителей. Кроме того, конструируя «умные машины» – электронные автоматы, – радиолюбители непосредственно знакомятся с той техникой, которую в дальнейшем встретят-на заводах и в научно-исследовательских институтах.
Довольно близко к электронной автоматике примыкает телемеханика – управление на расстоянии. Постройка управляемых по радио действующих моделей кораблей, автомобилей и самолетов – это увлекательнейшее занятие, первый шаг к телеуправлению ракет, спутников и космических кораблей.
После того как радиолюбителями было открыто дальнее распространение коротких радиоволн, этот диапазон стал самым населенным. Здесь работают многие тысячи радиостанций, установленных на кораблях и в самолетах, искусственных спутниках и дрейфующих полярных станциях, в тракторных бригадах и геологических экспедициях. Но, несмотря на страшную «тесноту» на КВ диапазоне, шесть его участков: 10, 14, 20, 40, 80 и 160 м – навсегда закреплены за радиолюбителями как знак благодарности за их замечательное открытие.
Радиолюбители-коротковолновики сами строят небольшие радиостанции – приемники и передатчики – и с их помощью поддерживают связь друг с другом, проводят различные соревнования.
В последние годы наряду с короткими волнами радиолюбители все активнее начинают работать на УКВ. В этом диапазоне также имеется несколько любительских участков, на которых работает большое число радиостанций, в том числе и несколько сот школьных. На некоторых участках УКВ диапазона, так же как и на КВ, можно устанавливать дальние связи. На УКВ диапазоне проводятся такие интересные радиолюбительские соревнования, как «Полевой день» и «Охота на «лис». Участие в этих соревнованиях, также как и работа на КВ и УКВ радиостанциях, – это один из увлекательнейших видов спорта. Здесь радиолюбителям, как и в легкой атлетике или футболе, присваивают спортивные разряды и звания мастеров спорта.
Мы упомянули лишь об основных направлениях, в которых работает великая армия радиолюбителей. Но даже из этого короткого рассказа видно, что вы начали шагать по большому и интересному пути в радиоэлектронику, в одну из самых увлекательных и в то же время самых важных областей науки и техники.