355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Петр Асташенков » Главный конструктор » Текст книги (страница 6)
Главный конструктор
  • Текст добавлен: 18 апреля 2020, 05:01

Текст книги "Главный конструктор"


Автор книги: Петр Асташенков



сообщить о нарушении

Текущая страница: 6 (всего у книги 19 страниц)

И, напротив, перспективу реактивных аппаратов Сергей Павлович видел весьма радужной: «Предел высот и скоростей у реактивных летательных аппаратов, – говорил он, – будет, несомненно, значительно выше, но задать сегодня эти цифры я не берусь из-за значительной пока что еще свежести этого вопроса и по целому ряду других соображений. И если нет у реактивных аппаратов таких близких и низких пределов, как у стратопланов с винтомоторной группой, то все же до реального еще достаточно далеко». И в заключение примечательные слова: «Работа над реактивными летательными аппаратами трудна, но необычайно интересна и многообещающа. Трудности в конечном счете несомненно преодолимы, хотя, быть может, и с несколько большим трудом, чем это кажется на первый взгляд».

О том, какое впечатление на участников конференции произвело выступление С. П. Королева, вспоминает член– корреспондент Академии наук Б. В. Раушенбах: «В 1934 году, будучи студентом, я пробрался в конференц-зал Академии наук. Я запомнил только его доклад. Меня поразила его уверенность в том, что можно и должно летать на аппарате с ракетным двигателем».

Об интересе к докладам ученых-ракетчиков говорит и такой штрих. Когда предоставлялось им слово, Президент Академии наук А. П. Карпинский уходил с председательского места, садился рядом с докладчиками и, приложив руку к уху, внимательно слушал их.

После заседания С. П. Королева и М. К. Тихонравова окружили молодые специалисты по космическим лучам, астрономы. Они хотели знать, когда ракеты поднимут исследователей или хотя бы их приборы повыше, чем самолеты и стратостаты, за пределы атмосферы.

Главное – двигатель

Одними призывами к ученым, конструкторам и инженерам двигать вперед ракетное дело Сергей Павлович не ограничился. Стараясь Сделать строительство ракет общенародным делом, он написал книгу «Ракетный полет в стратосфере», выпущенную в свет Воениздатом в 1934 году. Книга эта популяризировала идеи ракетной техники, делала их доступными красноармейцу, рабочему, школьнику. Сейчас она приобрела новое звучание, как свидетельство формирования и развития идей, воплощению которых Королев посвятил всю свою жизнь.

В предисловии к этой книге обращает на себя внимание категорическое признание ракеты в качестве «исключительного и незаменимого средства для высотных и сверхвысотных полетов и достижения огромнейших скоростей».

И еще в предисловии разъясняется мысль о том, зачем нужно широко популяризировать знания о ракете: «Чтобы избежать всевозможных сюрпризов и неожиданностей», – говорит Королев и предупреждает, что назначение «всех работ, ведущихся в этой области в империалистических странах… для целей войны».

В своей книге С. П. Королев привел классификацию ракет по их устройству.

На первое место он поставил бескрылые ракеты; мы теперь называем их баллистическими, они – основа современного ракетного арсенала. На второе – крылатые ракеты, имеющие ныне громадное распространение.

Особое место (и не без оснований, как покажет потом практика) Королев отводит ракетным аппаратам, состоящим из ряда последовательно действующих ракет. «Причем, – как поясняет Сергей Павлович, – ракета, уже отработавшая, в полете для облегчения отцепляется и сбрасывается».

И наконец, специально выделяет группу управляемых ракет, которые в будущем явятся настоящим новшеством в технике. Предусматривает Сергей Павлович также и управление ракет автоматами или человеком, находящимся на их борту.

В главе «Характеристики ракетных двигателей и аппаратов» подчеркивается мысль, органически вытекающая из очень серьезного отношения Королева к проблемам ракетного полета: «Необычайная простота и даже известная схематичность ракетных устройств не должны служить поводом к излишнему легкомыслию при работах в этой области».


Титульный лист описания реактивной установки, сконструированной С. П. Королевым в 1943 году.

«…Длина пути, проходимого по инерции, без мотора, может составить очень большую величину, в несколько раз превосходящую путь, пройденный с мотором», – пишет Королев. Теперь мы знаем, что его высказывание подтвердилось. У современной баллистической ракеты, имеющей дальность до 13 тысяч километров, активный участок составляет небольшую часть пути, а дальше ракета летит по инерции.

В одной из глав Сергей Павлович рассмотрел возможности применения ракетных аппаратов и в заключение не без юмора заметил: «Достаточно ограничиться приведенным кратким перечнем уже имевших место случаев применения ракетных аппаратов для тех или иных целей, оставляя все прочие вопросы в области фантастики, где им пока что и надлежит по справедливости быть».

Главное внимание в своей книге Сергей Павлович уделил аппаратам и ракетным двигателям на жидком топливе, которые уже тогда обещали поднять человека на большие высоты. А в его словах об ученом из Калуги звучит гордость соотечественника: «Основоположником и теоретиком ракетного полета справедливо считается К. Э. Циолковский, наш ученый, известный своими работами в различных областях науки».

Сергей Павлович уже знал труды К. Э. Циолковского в их историческом развитии: «Ракета, действующая на жидком топливе, была предложена К. Э. Циолковским еще в 1903 году как средство для полета человека в межпланетном пространстве, – пишет в своей книге Королев. – В то время К. Э. Циолковский еще не дает конструктивного проекта своего звездолета, считая необходимой предварительную, более детальную разработку его идеи с принципиальной стороны…

С развитием своих проектов К. Э. Циолковский все больше и больше уделяет внимания самому источнику движения ракеты – ракетному двигателю, вопросам подачи топлива, управления двигателем…»

И далее Сергей Павлович еще раз повторяет вывод: «Только имея двигатель, работающий на новом принципе, притом достаточно надежный и совершенный, можно совершить полет на высоте и, возможно, когда-нибудь даже в межпланетном пространстве».

Развивая мысль о том, что в центре внимания ученых– ракетчиков должен стоять двигатель, Сергей Павлович ссылается на историю авиации, ему хорошо известную: «До тех пор пока не было мотора, все проекты оставались в области фантазии, а практические попытки не шли дальше эпизодически совершаемых прыжков на небольшие расстояния, очень часто оканчивавшихся катастрофой».

Видимо вспоминая свою неудавшуюся попытку создать легкий самолет дальнего радиуса действия, Сергей Павлович предупреждает: «Еще и сейчас, несмотря на огромный прогресс техники авиационного моторостроения, многие задачи не решены из-за несовершенства агрегатов».

Когда он писал эти строки, ему, наверное, вспомнился неяркий летний день, площадка у ангара, где в беспорядке громоздились остатки от его СК-4, и сидящий прямо на траве летчик Кошиц. Да! Велико было тогда огорчение – разбит единственный экземпляр машины. Но с годами боль от той неудачи прошла, и Сергей Павлович позже даже подшучивал над Кошицем, вспоминая аварию:

 
У разбитого корыта
Собралася вся семья,
Лицо Кошица разбито,
Улыбаюсь только я…
 

А в книге он, уже наученный жизнью, еще и еще раз подчеркивает подчиненность всех остальных разделов ракетной техники проблеме двигателя. «Все остальные, – пишет он, – пусть даже самые сложные вопросы в процессе работы с летающими моделями объектов и целыми объектами (а летать они будут наверняка в том случае, если есть надежный двигатель), несомненно, будут своевременно и достаточно полно разрешены».

Далее автор вспоминает о своих расчетах ракетоплана на основе планера, имевшего форму треугольника. Размах его крыла был 12,1 метра, длина планера 3 метра, высота 1,25 метра, площадь крыла 20 кв. метров, вес без ракетного двигателя 200 килограммов. На планер, в его центроплане, были установлены ракетный двигатель, баки и вся проводка. Ракетный двигатель брался с разной тягой – 50 и 100 килограммов.

И что же получилось? В первом случае разгон планера с ракетным двигателем занимал минуту, скорость у земли достигала 139 километров в час, потолок 810 метров, продолжительность полета 6 минут и дальность 13 километров. Во втором случае разгон занимал треть минуты, скорость у земли достигала 200 километров в час, потолок 1400 метров, продолжительность полета 4 минуты и дальность 20 километров.

Из этих примеров Сергей Павлович делал вывод, что при тяге 50 килограммов полет совершается фактически с большим трудом и до ничтожного потолка. Лучше обстоит дело с тягой 100 килограммов, но для более продолжительного полета пришлось бы и в этом случае брать такое количество горючей смеси, что аппарат не поднялся бы в воздух. И снова автор утверждает, что в будущем человек непременно осуществит подъем при помощи жидкостного ракетного летательного аппарата на некоторую высоту от земли и совершит полет в течение более или менее продолжительного промежутка времени по заданному маршруту.

В этой книге Сергей Павлович впервые делает прикидку веса высотного самолета с ЖРД, о чем в дальнейшем выскажется еще более определенно. Пока же он дает лишь отправные данные по весу экипажа (от 100 до 300 килограммов), герметической кабины (около 300 килограммов) и по общему весу аппарата (2000 килограммов).

Беспилотные ракеты, по мнению автора, обгонят самолеты в завоевании высоты. В его устах, устах строгого реалиста, очень убедительно звучат слова о бескрылых ракетах: «Достижение высот в 20–50—100 километров при помощи, например, бескрылых ракет является делом вполне реальным». Это говорилось тогда, когда потолок полета самолетов исчислялся всего несколькими километрами.

«Теоретически, – говорил Сергей Павлович, – ракета потолка не имеет». И тут же подчеркивал совершенно исключительное место ракеты в исследовании стратосферы.

Рассматривая научное значение ракеты, Сергей Павлович уже в 1934 году предупреждал: «Понятно, что в империалистических странах ракета меньше всего будет использована для научных и исследовательских целей. Ее главной задачей будет военное применение, причем значительная высота и дальность ее полета как раз и являются для этой цели наиболее ценными качествами».

Жизнь подтвердила пророческие слова С. П. Королева. Начиная со второй мировой войны значение ракет в военном деле все возрастало, пока они не выдвинулись на первое место среди других видов оружия.

В заключении к книге Сергей Павлович выступает против чрезмерного оптимизма в отношении применения ракет для полетов в стратосфере и межпланетном пространстве: «Принято считать, – замечает он, – что будущее завоевание стратосферы, а сегодняшнее расширение границ земной авиации зависят исключительно лишь от того, как скоро мы захотим поставить на самолет ракетный двигатель. Но дело обстоит далеко не так просто и ясно. Полет человека в ракетном аппарате пока невозможен. Запуски в стратосферу беспилотных бескрылых ракет – задача сегодняшнего дня».

И еще раз Сергей Павлович провозгласил главный лозунг того этапа развития ракет: «В центре внимания – ракетный мотор!» А вслед за этим призывом он бросил и другой: «От общих мест, рисунков и схем – к глубокой научной проработке каждой отдельной темы!» И здесь он дал конкретные темы для исследований и решений, и особенно много по ракетному двигателю.

«Мы уверены, – завершает книгу Сергей Павлович, – что в самом недалеком будущем ракетное летание широко разовьется и займет подобающее место в системе социалистической техники. Ярким примером тому может служить авиация, достигшая в СССР такого размаха и успехов. Ракетное летание, несомненно, может претендовать в своей области применения вряд ли на меньшее, что со временем должно стать привычным и заслуженным».


Самолет Пе-2И.

В настоящее время, в эпоху ракетного оружия и космонавтики, успехи ракет стали действительно привычными и заслуженными.

Книга Сергея Павловича нашла отклик в авиационной прессе. «Вестник Воздушного Флота» поместил на нее благожелательную рецензию. Особо журнал отмечал главу о двигателях. «В этой главе, – говорилось в рецензии, – чрезвычайно кратко и ясно излагается понятие о ракетных двигателях и их элементах и дается краткая классификация существующих ракетных систем. Эта глава является особенно интересной».

Журнал «Самолет» включил книгу Сергея Павловича в список тех книг, иметь которые «необходимо для библиотек аэроклубов».

Тепло отозвался об этой книге и К. Э. Циолковский 8 февраля 1935 года в письме в Стратосферный комитет (В. А. Сытину): «…С. П. Королев прислал мне свою книжку „Ракетный полет“, но адреса не приложил. Не знаю, как поблагодарить его за любезность. Если возможно, передайте ему мою благодарность и сообщите его адрес. Книжка разумная, содержательная и полезная».

Лестная оценка основоположника ракетной техники звучала добрым напутствием автору.

Не только для эксперимента

После слияния двух коллективов – ГИРДа и ГДЛ – в Реактивный научно-исследовательский институт (РНИИ) С. П. Королев еще теснее сблизился с товарищами, которые работали вместе с ним над крылатыми ракетами, – с первым помощником Е. С. Щетинковым, специалистом по гироскопическим автопилотам С. А. Пивоваровым, молодыми инженерами М. П. Дрязговым, Б. В. Раушенбахом и А. В. Палло.

В этом дружном коллективе и родилась идея выпуска целой серии крылатых ракет под индексом 06/1, 06/2 и т. д. (в знаменателе указывался порядковый номер). Эти ракеты, как выяснилось, нужны были не только для экспериментов, они привлекли внимание военных, увидевших в них средство для поражения различных целей на земле и летящих объектов в воздухе. Ракета 06/1, представлявшая собой модель бесхвостого планера с двигателем от ракеты 09, уже испытывалась раньше. Ракета 06/2 являлась копией будущей большой ракеты 06/3 (другое обозначение – 216). «Сердцем» у нее был такой же двигатель, как и у первой жидкостной ракеты 09.

Эта ракета предназначалась для пуска с земли по удаленным целям (крупным объектам и площадям). Она имела длину 2,3 метра, а размах крыла 3 метра. Полетный вес ее доходил до 100 килограммов. Расчетная дальность составляла 15 километров. На вид это был миниатюрный самолет со свободнонесущим крылом толстого профиля и двухкилевым оперением. Баки для окислителя делались в виде труб, они одновременно служили и силовыми элементами крыла. Баки для горючего размещались в фюзеляже. И окислитель и горючее подавались в двигатель под давлением сжатого воздуха из баллона. Двигатель располагался в хвосте, а автоматика и боевой груз – в носовой части.

Вот что вспоминает о полете крылатой ракеты 06/2 М. К. Тихонравов. Кроме него на старте тогда находились Королев, Щетинков и механики. После взлета ракета устремилась вверх и пошла на петлю. Замкнув петлю, она пролетела недалеко от стартовиков на высоте двух метров, пошла на вторую петлю и в конце ее врезалась в землю.

Когда вопросы динамики полета на модели 06/2 были отработаны, началась постройка ракеты 06/3, имевшей вид миниатюрного самолета с размахом крыла в 3 метра. На ней был установлен двигатель 02, который разрабатывали еще при Цандере. Позже стали проектировать и строить четвертую крылатую ракету – 06/4 (другое обозначение – 212). Это была ракета дальнего действия.

По внешнему виду она напоминала небольшой самолет с трапециевидным крылом, хвостовым оперением и рулевым управлением. Длина фюзеляжа составляла 3,16 метра, размах крыла 3,06 и диаметр фюзеляжа 0,3 метра. Полетный вес достигал 210 килограммов, из них 30 отводилось на топливо и еще 30 – на боевой заряд. Внутри фюзеляжа размещались: в носовой части – боевой заряд, далее – аппаратура гироскопической стабилизации и автономного управления. В хвостовой части располагался жидкостный реактивный двигатель ОРМ-65-1. Он устанавливался на специальной раме и закрывался обтекателем-капотом с металлическим козырьком для защиты рулей ракеты от огня реактивной струи.

Построили эту ракету в 1936 году. Расчетная дальность ее была 50 километров. 29 апреля 1937 года было проведено первое огневое испытание. А всего таких испытаний в 1937–1938 годах было 13.

Другие две крылатые ракеты имели индексы 201 и 217. Ракета 201, по современным представлениям, может быть отнесена к классу «воздух – земля», ракета 217 может быть названа зенитной с наведением по лучу прожектора. Кстати, отдел, который возглавил Сергей Павлович, планировал установку на эти крылатые ракеты самонаводящихся устройств.

Ракета 217 была сделана в двух вариантах: один – в форме маленького самолета, другой – с четырьмя крыльями и без хвоста. На обоих вариантах устанавливался пороховой двигатель.

Летные испытания проходили на одном из артиллерийских полигонов вблизи Москвы. Была сделана специальная пусковая установка в виде наклонной трехгранной фермы длиной 10 метров. На ферме имелись специальные угольники, по которым скользила стартующая ракета. Угол наклона фермы можно было менять.

Сначала изготовлялись и пускались модели, а потом и сами ракеты. Модели достигали дальности 2 километра и высоты 700 метров, а ракеты – 1 километр и 500 метров.

В опытных полетах аппаратура управления на ракетах отсутствовала. Миниатюрный самолет уходил в сторону от первоначального направления. Четырехкрылая ракета летела и без телеуправления устойчиво.

После успешных полетов крылатых ракет Сергей Павлович становится руководителем сектора, а потом и отдела.

Чем же примечательны были эксперименты с крылатыми ракетами? Тем, что в этих экспериментах выявлялись особенности проектирования и постройки беспилотных аппаратов. Была найдена и оригинальная методика испытания ракет, для чего построили специальные стенды и приспособления. Так, Королев и его помощники впервые применили старт ракеты с катапульты. Для этого ими был построен длинный рельсовый путь, по которому ходила тележка. На ней – пороховые двигатели. Они служили стартовыми ускорителями, разгоняли тележку и установленную на ней стартующую ракету. После отрыва от тележки ракета летела уже под действием тяги своего собственного двигателя. (Рельсовый путь с реактивной тележкой впоследствии получил широкое применение в США.) Ракета набирала высоту в зависимости от запаса топлива на борту, а после выключения двигателя автоматически переводилась в планирование или пикирование на цель.

Да, много интересного и перспективного содержалось в работах отдела С. П. Королева по управлению и стабилизации полета крылатой ракеты. (Была даже предложена система самонаведения и заказано оборудование, необходимое для этого. Но, к сожалению, оно так и не поступило в РНИИ.) Работа по созданию автоматов стабилизации и управления с каждым днем продолжалась все успешнее. Занимался непосредственно этим в отделе Сергея Павловича инженер Пивоваров. Было построено несколько гироскопических приборов стабилизации (ГПС). Опробовали эти приборы сначала на пороховых ракетах с крыльями. Потом перенесли автоматы на ракеты с ЖРД. Наиболее полно управление с помощью автоматов было применено на ракете 06/4 (212).

Во время огневых пусков ракеты поднимались на километровую высоту и достигали дальности в несколько километров. Наиболее устойчивый полет наблюдался на первом километре до высоты 500 метров. В дальнейшем автопилоты не могли удержать ракету, и она начинала «петлять», делала крутые виражи с набором высоты и наконец переходила в падение. Однако было ясно, что при мощной и хорошо отлаженной автоматике вполне можно обеспечить управление на гораздо больших высотах и дальностях. Что же касается собственно ракетной части, то она работала удовлетворительно. Значит, замысел в принципе был верен!

Ракета 201 предназначалась для пусков с самолета по движущимся воздушным целям, а также и по земным объектам. Для нее создавалась аппаратура радиоуправления. Руководил этой работой профессор Шорин. Автоматы должны были командовать: «правый поворот», «левый поворот», «выше», «ниже», «взрыв».

На практике удалось проверить лишь одну команду, и то на другой ракете – 216. В нее вмонтировали приемник и, когда она находилась в полете, передали команду «взрыв». Была взорвана дымовая шашка. И Королев с товарищами наблюдал, как в небе по радиосигналу образовалось дымное облачко.

Интересно также то, что на многих ракетах вместо взрывчатого вещества в носовую часть закладывали небольшой парашют. В определенный момент парашют выстреливался, и ракета плавно спускалась на землю. Позже этот принцип был распространен Королевым на более мощные научные ракеты.

Сергей Павлович при проектировании проводил продувку моделей и самих ракет в аэродинамических трубах. С целью снятия в полете необходимых данных по его заданию были разработаны различные приборы-самописцы для регистрации скорости полета, ускорения при включенном ракетном двигателе, углов подъема. Эти приборы объективного контроля за летящим аппаратом полное свое развитие получили спустя десятилетие – в век реактивной авиации и космических ракет.

Погруженный в работу над беспилотными крылатыми ракетами. Королев по-прежнему не упускал перспективы постройки ракетоплана. Наиболее детальный анализ существовавших в то время возможностей для создания такого аппарата содержится в его выступлении на I Всесоюзной конференции по применению ракетных аппаратов для исследования стратосферы, состоявшейся 2 марта 1935 года в ЦДКА имени М. В. Фрунзе.

В этом выступлении Королев впервые четко определил особенности и возможные схемы пилотируемой ракеты, рассчитал ее весовые и летные характеристики.

«Различными изобретателями, – говорил Сергей Павлович, – было предложено в разное время множество всяческих ракетных аппаратов, которые, по мысли авторов, должны были внести переворот в технику. В большинстве своем эти схемы были очень слабо и в собственно ракетной своей части малограмотно разработаны. В последнее время многие предложения сводились к простой постановке ракетного двигателя (на твердом или на жидком топливе) на общеизвестные типы самолетов. Нет надобности много говорить о всей несостоятельности подобного механического перенесения ракетной техники в авиацию».

Тогда же С. П. Королев пояснил, что при всем сходстве ракетного и винтового летательных аппаратов есть различие в динамике их полета, траектории и весовых данных. Ракетоплан представлялся Королеву в виде свободнонесущего моноплана с центрально расположенным фюзеляжем и хвостовым оперением на нем. Ракетоплану присущи малый размах, малое удлинение, малая несущая поверхность. Фюзеляж будет иметь значительную длину, и в нем расположатся в основном двигатели и баки, питающие двигательные устройства. Возможно, что крыло также будет использовано для размещения различных агрегатов двигателя и приборов.

Сергей Павлович в своем выступлении точно указал те узловые пункты в создании пилотируемой ракеты, от которых зависит успех дела. Первый – создание мощного двигателя на жидком топливе. Именно от решения этой задачи, считал Королев, зависит «осуществление стратосферного полета человека на ракетном аппарате». Второй – создание герметической кабины больших габаритов, что представляет собой серьезную трудность. Третий – создание и эксплуатация «такого громадного высотного аппарата и необычайная трудность работы с громадными количествами жидких газов».

Сергей Павлович рассмотрел пути преодоления этих трудностей. И сделал он это на основе точного расчета, иллюстрируя свои выводы многочисленными графиками. Концентрированное выражение его мысль нашла в приведенных им данных простейшей крылатой ракеты для полета человека в стратосферу при условии ее минимального веса. Таким весом Сергей Павлович назвал 2 тонны. Пилоту в скафандре он отводил 5,5 процента всего веса аппарата, двигателю – 2,5, аккумулятору давления —10, бакам – 10, конструкции – 22 процента. Остальную половину веса составляло топливо. Сергей Павлович считал, что при тяге 2000 килограммов ракета такого веса смогла бы поднять человека на высоту 20 километров.

Полет ракет с более совершенным двигателем рисовался Королеву в таком виде: ракета разгоняется по земле отбрасываемыми пороховыми ускорителями до скорости 80 метров в секунду, взлетает и начинает набор высоты под углом 60 градусов на собственном двигателе. После выработки всего топлива ракета переводится в вертикальный полет по инерции и достигает высоты 32 000 метров. С этой высоты она пикирует на скорости 600–700 метров в секунду (т. е. на скорости вдвое выше звуковой). Время полета предполагалось 18 минут и дальность 220 километров.

«В итоге наших расчетов, – говорил Сергей Павлович, – мы получили очень скромные высоты, порядка 20 километров. Заглядывая несколько вперед, отказываясь от технически невыгодных конструкций, совершенствуя двигатель, мы видим возможность достижения высот порядка 30 километров. Даже и эти, сравнительно небольшие, высоты не даются легко».

Сергей Павлович объяснил далее, что при своих расчетах он исходил из предельных величин скорости взлета, посадки и т. д. «Реальная ракета, – говорил он, – может оказаться хуже, чем проект».

«Что же можно сделать еще? – задавал он себе вопрос и отвечал: – Надо искать новые схемы». Сергей Павлович предлагал попробовать комбинированные и составные ракеты. «Большая ракета, – пояснял он, – имеет на себе меньшую до высоты, скажем, 5000 метров. Далее эта ракета поднимает еще более меньшую на высоту 12 000 метров, и, наконец, эта третья ракета или четвертая по счету уже свободно летит на несколько десятков километров вверх».


Герой Социалистического Труда, лауреат Ленинской премии генерал– майор-инженер В. М. Мясищев.

Выдвинул он и другое предложение: «Возможно, будет выгодным подниматься вверх без крыльев, а для спуска и горизонтального полета выпускать из корпуса ракеты плоскости, которые развивали бы подъемную силу».

Дальше он вновь и вновь повторяет: «Самое основное – это надо не только совершенствовать двигатель и его агрегаты, но и искать новые схемы и применять новые топлива».

Листая материалы конференции, на которой выступал Сергей Павлович, читая сборники статей по ракетам того времени, видишь, что не он один занимался проблемой ракетных аппаратов. В. И. Дудаков, например, анализировал взлет с ракетными ускорителями, В. П. Ветчинкин разбирал характеристики вертикального полета аппарата.

Но в выступлении Королева было свое, отличавшее его от других. Он остро чувствовал злобу дня, самое насущное в ракетных делах и умел доступно и ясно сказать об этом даже неспециалистам. В своих теоретических трудах он выступает не просто исследователем, а пропагандистом идей ракетного летания и организатором борьбы за их скорейшее осуществление.

И в докладе на конференции, и в статье в журнале «Техника Воздушного Флота» Сергей Павлович из своих расчетов сделал практический вывод: надо строить ракетоплан-лабораторию. При этом Сергей Павлович ссылался на опыт ГИРДа, занимавшегося установкой ракетного двигателя на аппарат для полетов экспериментального характера. Докладчик показал чертеж, на котором был изображен планер, построенный инженером Черановским для ГИРДа в 1932 году. «Планер был рассчитан, – пояснил Королев, – под опытный двигатель системы инженера Цандера. Несовершенство двигателя не позволило произвести его испытания в полете».

Далее Сергей Павлович объяснил: «Если не задаваться установлением каких-либо особых рекордов, то, несомненно, в настоящее время уже представляет смысл постройка аппарата-лаборатории, при посредстве которой можно было бы систематически производить изучение работы различных ракетных аппаратов в воздухе.

На нем можно было бы поставить первые опыты с воздушным реактивным двигателем и целую серию иных опытов, забуксируя предварительно аппарат на нужную высоту. Потолок такого аппарата может достигнуть 9– 10 километров.

Осуществление первого ракетоплана-лаборатории для постановки ряда научных исследований в настоящее время хотя и трудная, но возможная и необходимая задача, стоящая перед советскими ракетчиками уже в текущем году».

В заключение Сергей Павлович еще раз отметил огромное значение правильного подхода к проблеме ракетного полета:

«Крылатая ракета имеет большое значение для сверхвысотного полета человека и для исследования стратосферы.

Задача дальнейшего заключается в том, чтобы упорной повседневной работой, без излишней шумихи и рекламы, так часто присущих, к сожалению, еще и до сих пор многим работам в этой области, овладеть основами ракетной техники и занять первыми высоты страто– и ионосферы. Задачей всей общественности, задачей Авиавнито и Осоавиахима является всемерное содействие в этой области, а также правильная постановка тематики по ракетному делу низовым организациям общества и отдельным изобретателям и грамотная популяризация идеи ракетного полета».

К тому времени, когда Сергей Павлович работал над проектом крылатой ракеты, относится обращение к нему популяризатора ракетных идей писателя Я. И. Перельмана с просьбой рассказать о себе и товарищах по РНИИ. 18 апреля 1935 года Сергей Павлович так ответил на эту просьбу:

«Глубокоуважаемый Яков Исидорович!

Ваша просьба поставила меня в довольно затруднительное положение, так как что, собственно, можно сказать рядовому инженеру о своей личной работе? Характеризовать работу моих товарищей по институту (Глушко, Тихонравов и др.) мне тоже не хотелось бы. Могу только сказать, что оба они очень знающие люди, глубоко преданные ракетному делу и мечтающие о будущих высоких путях наших советских ракет. Я лично работаю главным образом над полетом человека, о чем 2 марта с. г. я делал доклад на I Всесоюзной конференции по применению ракетных аппаратов для исследования стратосферы в гор. Москве…

Полагаю, что для Вашей работы он представил бы известный интерес своим изложением и выводами, тем более что весь материал оглашался впервые. Конференция решила строить в текущем году крылатую ракету-лабораторию для полетов человека на небольших высотах (до 6–8 километров). Вот сейчас и работаю над этой темой.

Очень большое значение придаю воздушным реактивным двигателям, над которыми работает Юрий Александрович Победоносцев (у нас же в РНИИ)…

РНИИ занимается полным комплексом вопросов по созданию разных ракетных летательных аппаратов, по ряду частных прикладных случаев использования ракетных двигателей плюс многочисленные побочные и сопутствующие исследования. Работаем над созданием ракетных двигателей на разных топливах; над стратосферными ракетами и над крылатыми ракетами для полета человека…»

В заключении письма к Я. И. Перельману можно найти подтверждение тому, какие заботы взвалил на свои плечи уже в то время Сергей Павлович. «Простите, – пишет он, – что заболтался я на такие общепонятные темы. Всегда буду рад получить от Вас известие о Вашей работе и, хоть и загружен я выше человеческой меры, с удовольствием отвечу Вам.


    Ваша оценка произведения:

Популярные книги за неделю