355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Петер Шпорк » Читая между строк ДНК. Второй код нашей жизни, или Книга, которую нужно прочитать всем » Текст книги (страница 4)
Читая между строк ДНК. Второй код нашей жизни, или Книга, которую нужно прочитать всем
  • Текст добавлен: 5 октября 2016, 03:34

Текст книги "Читая между строк ДНК. Второй код нашей жизни, или Книга, которую нужно прочитать всем"


Автор книги: Петер Шпорк


Жанры:

   

Биология

,

сообщить о нарушении

Текущая страница: 4 (всего у книги 18 страниц)

Мир РНК

Когда Ханс Йорнваль, секретарь стокгольмского Нобелевского комитета, 2 октября 2006 года объявил новых лауреатов этой премии по медицине, по залу прокатился ропот. Такого решения ожидали немногие зрители: лауреатами оказались двое активных ученых лет по сорок с небольшим, чьи важнейшие публикации появились за восемь лет до того. Обычно награждают более заслуженных специалистов.

Тем не менее, по мнению большинства коллег, американцы Эндрю Файер из Стэнфордского университета (Калифорния) и Крейг Мелло из Медицинской школы Массачусетского университета получили высшее признание в своей области совершенно заслуженно. Все-таки они открыли абсолютно неизвестный до этого метод контроля активности генов – так называемую РНК-интерференцию.

РНК – сокращенное название рибонуклеиновой кислоты. Так называется младшая и чрезвычайно разносторонняя сестра ДНК (дезоксирибонуклеиновой кислоты). Молекулы РНК по химической структуре почти не отличаются от ДНК, но состоят из значительно более коротких цепочек нуклеотидов и менее устойчивы к изменениям. Они выполняли роль наследственного материала первых живых организмов на Земле, а простые вирусы по-прежнему используют их в этих целях.

Все виды РНК в основном имеют четко разграниченные функции и чрезвычайно важны для биохимии клетки. В отличие от ДНК они могут состоять не из двух цепочек с попарно связанными основаниями, но из одной нити с открытыми основаниями, а порой имеют форму петли. Ввиду многообразия молекул РНК биологи благоговейно говорят о целом мире РНК, который исследован еще далеко не полностью. Самые важные представители этого мира – уже упоминавшиеся матричные (информационные) и транспортные РНК. Появились и новые звезды – микро-РНК.

До открытия Файера и Мелло последних считали побочным продуктом, своего рода информационными РНК без информации, которые образуются, когда считывающие белки по ошибке переводят какой-нибудь участок мусорной ДНК в информационную РНК. Сегодня уже известно, что этот процесс происходит не случайно, а соответствующие участки ДНК – вовсе не мусор. Скорее они представляют собой третью важную систему переключателей эпигенетического кода.

Сначала клетка синтезирует две зеркальные нити микро-РНК, которые объединяются в так называемую двухцепочечную РНК. Эти молекулы, напоминающие короткую веревочную лестницу, выглядят точно так же, как наследственный материал вторгшихся в клетку вирусов, стремящихся размножиться с помощью биохимического аппарата инфицированных клеток и таким образом вызвать болезнь. Клетка борется с РНК таким же способом, как и с вирусами: появляется фермент под названием дайсер (гранулятор) и разбивает их на кусочки длиной от 21 до 27 нуклеотидов.

Большинство таких фрагментов уничтожаются клеткой. Но некоторые соединяются с мультибелковым комплексом RISC, [4]4
  RISC (RNA-induced silencing complex) – комплекс подавления экспрессии, вызванный РНК. ( Прим. ред.).


[Закрыть]
который спасает их от уничтожения. Затем эти соединения отправляются на поиски подходящей им матричной РНК. Последняя в значительной степени идентична одной из цепочек исходной микро-РНК, а потому в ней где-то обязательно найдется участок, парный одному из многих получившихся фрагментов. Как только нужная молекула обнаруживается, она приклеивается к соответствующему фрагменту РНК, как бедная муха к липучке. В заключение по-прежнему присоединенный к фрагменту RISC осуществляет быструю расправу – он превращает матричную РНК в кучку нуклеотидного мусора, который мгновенно собирают и перерабатывают пустые транспортные РНК.

Теперь клетка не может синтезировать белок, закодированный в матричной РНК. Соответствующий ген молчит, хотя на уровне ДНК постоянно происходит его считывание.

Но и это еще не все. С помощью своих микро-РНК клетка может не только запустить или остановить синтез того или иного белка, как она это делает при помощи других эпигенетических переключателей. Клетка способна также немного подавить активность гена. Чем больше липучек она выкладывает против конкретной матричной РНК, тем меньше соответствующих ей закодированных молекул достигает цели и тем меньше конкретного белка будет синтезировано.

Крейг Мелло и Эндрю Файер назвали этот механизм генной регуляции РНК-интерференцией, потому что в ходе процесса две отвечающие друг другу молекулы – матричная РНК и микро-РНК – выключают друг друга точно так же, как во время физической интерференции взаимно ослабляются встречные волны. Исследователи выявили этот принцип в результате опыта: они вводили круглым червям двухцепочечные РНК и установили, что после этого синтез определенных белков идет на убыль.

Сначала никто не догадывался о далеко идущих последствиях открытия. Все это, вероятно, «какой-то странный механизм, свойственный только червям», решили сами исследователи. Скорее всего, в нормальной жизни животных он не играет никакой роли, поскольку происходит только в рамках эксперимента. Однако ученые сильно ошибались. Многие специалисты бросились изучать этот эффект и за короткое время выявили множество новых подробностей.

Очевидно, еще в незапамятные времена своего рода праклетка выработала механизм взаимного выключения рибонуклеиновых кислот, чтобы помешать вирусным генам, спасшимся от фермента дайсера и успешно внедренным в ДНК, реализовать свои «монтажные схемы» и вызвать болезнь. Видимо, некоторое время спустя другие клетки пришли к тому, чтобы с помощью микро-РНК регулировать и собственную систему считывания генов.

Одна из основных задач РНК-интерференции заключается в отключении транспозонов. Это те самые заново собранные, чрезвычайно подвижные гены и их фрагменты, которые активируются только в случае экстремального ухудшения внешней среды, чтобы помочь эволюции выкрутиться из этой ситуации.

«На сегодняшний день точно определены около трехсот пятидесяти микро-РНК, вероятно, окончательное число окажется в диапазоне от пятисот до тысячи», – заявил в интервью журналу «Спектрум дер виссеншафт» («Спектр науки») немецкий биохимик Томас Тушль из Рокфеллеровского университета (Нью-Йорк), один из ведущих исследователей РНК-интерференции в мире. Помимо прочего Тушль обнаружил, что выключатели из рибонуклеиновой кислоты есть и в человеческих клетках.

РНК-интерференция. Геном содержит не только гены, но и коды для микро-РНК. С помощью ферментов они разрушают соответствующие им матричные РНК и таким образом блокируют перевод гена в белок.

Сегодня уже известно, что принцип РНК-интерференции работает практически во всех живых организмах. А самые последние результаты свидетельствуют, что мир РНК куда важнее и разнообразнее, чем предполагалось. Выяснилось, что малые РНК служат также следопытами, указывая белкам вокруг ДНК те места, которые следует надежно блокировать или перепрограммировать. «Есть основания полагать, что РНК могут выполнять функцию якоря для различных белков, присоединяющих к хроматину метильные или ацетильные группы или снова удаляющих их», – разъясняет швейцарский эпигенетик Ренато Паро.

Происходит следующее: некоторые фрагменты микро-РНК попадают обратно в клеточное ядро и становятся великими устроителями эпигенома. Отрезки РНК уверенно и точно присоединяются к определенным участкам ДНК, прежде всего к своим зеркальным копиям. Причем эти удальцы тянут за собой на буксире специальные белки, побуждающие наследственное вещество, например, свернуться в клубок – деактивированный, плотно упакованный гетерохроматин. Таким образом они могут на долгое время отключать целые участки ДНК.

Томас Тушль считает, что микро-РНК способны и на большее. Вероятно, они – «важный фактор возникновения различных заболеваний». «Перспективная цель» его собственного исследования – «изобразить карту микро-РНК во всем геноме, для всех здоровых и больных тканей, и определить их функции».

В системе РНК-интерференции Тушля особенно вдохновляет то, что, наряду с метилированием ДНК и гистоновым кодом, обнаружен третий путь воздействия внешних факторов на активность генов. «Возникает вопрос, нельзя ли объяснить большую часть генетических заболеваний через процесс регуляции и можно ли как-то управлять ими, – говорит ученый. Звучит сложно, но исследователь поясняет на примере: – Гипотеза такова: возможно, чтобы добиться небольшого, но действенного изменения модели активации гена против депрессии, достаточно регулярно заниматься спортом, стабилизируя уровень дофамина, ведь это вещество – важный фактор в лечении депрессии».

Этот пример возвращает нас к главному посылу науки о втором коде: тот, кто начинает жить по-новому, меняет свой обмен веществ и гормональную систему. А эти перемены оказывают долговременное воздействие на модели метилирования, модификации гистонов и микро-РНК, что, в свою очередь, может благотворно повлиять на тело и психику. Кстати, тот факт, что физическая активность часто уменьшает депрессии, уже доказан во многих научных работах. Эпигенетика позволяет объяснить подобные положительные эффекты, наступающие в результате изменения образа жизни.

2
Влияние окружающей среды: почему у нас есть власть над собственным геномом
Метаморфоза

Когда мне было 13 или 14 лет, я принес в детскую биологическое чудо. На соседской живой изгороди я нашел гусеницу бражника сиреневого. Она была толстой и мясистой, чуть длиннее моего среднего пальца, и отливала насыщенным светло-зеленым цветом. По бокам у нее были типичные фиолетово-белые косые полоски, а на хвостовом конце – угрожающий на вид, но безобидный на деле рог, который есть у всех гусениц бражников.

Я посадил насекомое в террариум и следил за тем, чтобы у него не было недостатка в свежих листьях бирючины. Гусеница росла, росла и приблизительно через две недели стала длинной (почти с мою ладонь) и жутко толстой. Я уже привык к ее круглой приплюснутой голове с большими глазами, но однажды осенним вечером она зарылась в землю. Там она превратилась в какую-то твердую, на вид неживую, коричневую штуку со складками на концах. Это странное создание больше походило на какой-нибудь экзотический орех, чем на ярко-зеленую личинку насекомого. Нужно было очень внимательно присматриваться, чтобы заметить на чуть более мягких, гладких боках медленную, довольно ритмичную пульсацию. Единственный признак жизни.

Гусеница бражника окуклилась. Она продолжала жить, совсем не нуждаясь в пище. Внешне она казалась совершенно безжизненной, но внутри происходили невероятные изменения: чудесное превращение гусеницы в бабочку. Весь ее организм перестраивался. Исчезли рог и ложноножки, и как будто из ничего появились крылья, волоски, ножки и усики. Нервная система сформировалась заново, связала чрезвычайно развитые органы чувств с гораздо более сложным мозгом, а его, в свою очередь, с мышцами и органами в остальном теле.

В таком виде моя гусеница перезимовала. Я следил за тем, чтобы земля была влажной, – больше я ничего не мог сделать. А затем весенним утром свершилось чудо: проснувшись, я подошел к террариуму и увидел огромную бабочку – изящное серо-коричневое создание, украшенное щегольским и одновременно скромным рисунком из черных и розовых полос, с длинными грациозно расставленными усиками в черно-белую полоску. Когда позднее, в своей второй жизни, бражник, быстро взмахивая крыльями, зависал над цветком, подобно колибри, он вытягивал свой невероятно длинный сосущий хоботок, погружал его глубоко в чашечку цветка и как будто через соломинку пил нектар. Это существо великолепно владело искусством полета, оно было безукоризненно согласованным организмом, настоящим чудом природы.

Трудно поверить, что высокоспециализированные органы движения, чувственного восприятия и питания, даже план строения нервной и двигательной систем уже были заложены в той гусенице, которая казалась все-таки довольно примитивной. Простое червеобразное создание, умевшее лишь ползать и есть, в каждой своей клетке имело тот же набор генов, что и это великолепное существо, демонстрирующее неповторимое искусство полета и столь совершенно приспособленное к своему образу жизни.

Изменились лишь эпигенетические программы. За одну зиму в миллиардах клеточных ядер свершилась стремительная перестройка – трансформировались метильные и ацетильные группы, изменилась форма гистонов, выстроились РНК. После этого почти каждая клетка получила новую функцию – стала синтезировать совершенно новый набор белков, приобрела абсолютно иной образ.

Великим чудом метаморфозы бражник обязан не столько геному, сколько способности самым радикальным образом реорганизовать этот геном практически во всем организме. Превращение гусеницы в бабочку – настоящий шедевр эпигенетической системы.

Когда ученые стали лучше разбираться в подоплеке таких процессов, они поняли: судьба клетки определяется совместными усилиями эпигенома и генома. Генетическая и эпигенетическая информация хранится в молекулярной смеси, состоящей из ДНК и окружающих ее многочисленных разнообразных белков. Геном и белки функционируют как одна огромная библиотека: ДНК содержит тексты, а эпигенетические структуры выполняют функции библиотекарей, каталогов и указателей, распоряжающихся информацией и упорядочивающих ее.

Итак, в ДНК каждой клетки бражника содержатся генетические коды гусеницы и бабочки. А какую «монтажную схему» в конце концов выбрать, клетка решает с помощью своего второго, эпигенетического кода.

Эти знания заставляют задуматься: может быть, наше наследственное вещество тоже содержит гораздо больше, чем мы обычно из него извлекаем? Это вовсе не означает, что мы можем превратиться в бабочку. Но ни в коем случае нельзя недооценивать выгоду, которую можно извлечь из второго кода путем серьезного изменения образа жизни.

Эпигенетика дарит надежду, что и мы можем преобразиться, что у нас есть власть над собственным геномом. По всей вероятности, в генах большинства людей заключен потенциал здоровой долгой жизни и обаятельной личности. Нужно только найти способ разбудить его.

«Королевское желе» и его действие

Бабочка и гусеница демонстрируют, насколько огромным может быть различие между эпигенетическими программами. И все же факторы, запускающие изменения эпигенома клетки, часто весьма незначительны. Нагляднее всего – пример развития медоносных пчел. Самки появляются из яиц не как рабочие пчелы или матки, а как совершенно одинаковые личинки. На самом деле к этому моменту еще не решено, какая особь спустя время станет плодовитой и будет царить в улье, а какая не сможет откладывать яйца и всю жизнь посвятит уходу за личинками, обороне, строительным работам и сбору пропитания. Поначалу все женские личинки обладают генетическим потенциалом пчелиной матки.

Решение принимается через три дня после вылупления. До этого момента рабочие пчелы-няньки кормят каждого белого червячка в бесчисленных сотах легендарным секретом, выделяемым их верхнечелюстными железами, – маточным молочком, называемым также «королевским желе» [5]5
  От фр.Gelée royale.


[Закрыть]
. Но затем поведение нянек меняется, и это имеет далеко идущие последствия. Для большинства личинок часть корма заменяется пыльцой и нектаром. За незначительным исключением. Его составляют те личинки, которые – по той или иной причине – избраны, чтобы стать матками и образовать новый рой. Вплоть до окукливания пчелы-няньки дают им самое лучшее, что у них есть, – маточное молочко.

Вещество, превращающее личинку в матку, состоит в основном из сахара и воды. Помимо этого оно содержит белки, аминокислоты, ряд витаминов группы В, например тиамин (B 1), рибофлавин (В 2), никотиновую и фолиевую кислоты, а также несколько микроэлементов. Правда, до сих пор не известно, какой именно компонент маточного молочка запускает процесс развития будущей продолжательницы рода – одно пока еще не установленное вещество или же особая композиция всей смеси.

Однако начиная с 2008 года биологам известно, что в этом деле замешана эпигенетика. Группа австралийских исследователей под руководством Роберта Кухарски и Рышарда Малешка из Канберрского университета превращала личинок в пчелиных маток вообще без маточного молочка. Они манипулировали моделью метильных групп на ДНК, определяющей, какой ген включить, а какой выключить.

Для этого у некоторых личинок исследователи уменьшили количество фермента ДНК-метилтрансферазы-3 (DNMT-3), который прикрепляет метильные группы к ДНК, и таким образом – степень метилирования наследственного материала. (Кстати, они использовали технику РНК-интерференции.) Больше двух третей особей превратились в маток, хотя их кормили точно так же, как будущих рабочих пчел. Видимо, маточное молочко каким-то образом мешает метильным группам выключать гены, по причине которых личинка превращается в матку. Это предположение было подтверждено и в результате подробной расшифровки пчелиного генома: в клеточных ядрах маток к ДНК было прикреплено значительно меньше метильных групп, чем у рабочих пчел. Следовательно, больше генов было доступно для считывания.

«Наше исследование показывает, что метилирование ДНК – ключевой компонент эпигенетической сети, управляющей репродуктивным разделением функций медоносных пчел», – считают ученые. Попутно, как надеются исследователи, найден надежный способ выращивания пчелиных маток на случай вымирания целых популяций из-за пчелиных болезней – генно-инженерное отключение фермента DNMT-3.

Особенно важным представляется австралийцам теоретическое значение их исследования: эпигенетический контроль развития пчелиных маток – одно из лучших до сих пор обнаруженных свидетельств, что питание организма может перепрограммировать его геном.

Не исключено, что речь идет лишь об одном компоненте питания, способном изменить жизненную ориентацию такого высокоразвитого организма, как пчела. Усвоенный в нужный момент, этот компонент помогает определить, какая из двух принципиально различных эпигенетических программ будет реализоваться на протяжении всей жизни организма.

Вероятно для нас, людей, судьба пчел – однозначная рекомендация уделять еще больше внимания здоровому питанию. Кто знает, как пища влияет на наши эпигеномы? Не стоит, впрочем, набрасываться на маточное молочко, хотя это вещество доступно в качестве пищевой добавки. К сожалению, до сих пор не сделан биохимический анализ «королевского желе». «Но в его биологической активности нет никаких сомнений», – полагает Рышард Малешка. Между прочим, у нас тоже есть фермент DNMT-3 – предположительно именно его активность снижается в организме пчелы благодаря маточному молочку. Любопытно, что этого белка нет у большинства прочих насекомых, которые с биологической точки зрения должны быть гораздо ближе к пчелам, чем люди.

Долины жизненного ландшафта

Джеймс Дьюи Уотсон и Фрэнсис Гэри Комптон Крик – эти имена известны сегодня каждому школьнику. Американцу Уотсону было всего 25, а Крику – 36 лет, когда 25 апреля 1953 года они опубликовали свою скромную статью. Она вышла в научном журнале «Нейчур» и называлась «Молекулярная структура нуклеиновых кислот». Ее содержание изменило мир.

«Мы хотим предложить модель структуры соли дезоксирибонуклеиновой кислоты (ДНК), – так начинают биохимики свою статью. А вслед за этим формулируют предмет исследований генетики на ближайшие полвека: – Эта структура обладает новыми свойствами, представляющими интерес для биологии».

Ученые разгадали великую загадку: как выглядит молекула, содержащая «монтажные схемы» всех биохимических элементов живого существа и передающая информацию его потомкам. Модель двойной спирали столь элегантна и убедительна, что ее сразу признали почти все ученые. Молекулярные биологи во всем мире начали изучать детали механизма наследования клеток. Они выясняли, как молекулы ДНК делятся и размножаются, как клетка переводит свой базовый код в белки и многое другое.

Расцвет генетики продолжался ровно пятьдесят лет. Последние тайны нашей ДНК ученые раскрывают в рамках проекта «Геном человека», завершенного в 2003 году, – проекта, который Клинтон, Вентер и Коллинз превозносили еще за три года до этого. В тот период большинство молекулярных биологов обратили свою энергию на достижение великой цели – расшифровку «книги жизни». Они не прислушивались ни к новым идеям, ни к особым мнениям, ни уж тем более – к теориям предшественников, не имевших ни малейшего понятия о ДНК.

Поэтому почти забылось имя еще одного прекрасного генетика из Великобритании – Конрада Хэла Уоддингтона, родившегося в 1905 году в Ившеме и скончавшегося в 1975 году в Эдинбурге. Последние годы жизни Уоддингтон возглавлял Институт генетики животных при Эдинбургском университете. Он был одним из ведущих онтогенетиков своего времени. Сегодня о вкладе Уоддингтона в науку напоминает носящая его имя медаль Британского общества онтогенетики.

В 1940-е годы Уоддингтон подробно изучил вопрос, как из оплодотворенной яйцеклетки постепенно развивается сложный организм, состоящий из многочисленных типов клеток. Он одним из первых высказал мысль о том, что биологическое развитие конкретного живого существа предопределено его геномом и, следовательно, – это результат эволюции. Поэтому первые этапы биологического развития протекают в соответствии с четко определенной программой. Но поскольку организм состоит из множества клеток, форма и функция каждой отдельной единицы наряду с ее генетическими факторами определяются также импульсами извне. В частности, толчок важным процессам дают сигнальные вещества других клеток. К этому добавляются различные воздействия окружающей среды.

По мнению британского ученого, в ядре каждой клетки гены, истинный облик которых ему еще не был известен, конкурируют с сигналами извне. Таким образом, окружающая среда – постоянный фактор, определяющий развитие организма в течение всей жизни.

В 1942 году Уоддингтон создал свой самый знаменитый рисунок, наглядно резюмирующий его тезисы, – «эпигенетический ландшафт». Если верить этому рисунку, на протяжении жизни мы словно шары катимся по наклонной местности со многими долинами. Рельеф – изображение нашего генома, долины – множество теоретически возможных эпигеномов. Они, как писал Уоддингтон, «направляют наше развитие в определенное русло».

Мы начинаем свой путь на самом верху и скатываемся сначала по небольшим впадинам, а потом – по глубоким долинам. В отличие от природного ландшафта, здесь с потерей высоты не происходит слияния нескольких малых долин в одну большую, но мы периодически оказываемся на развилках, от которых можно катиться направо или налево.

Поскольку нас постоянно довольно-таки сильно раскачивает, катимся мы, как в слаломе, с одного склона долины на другой. Иногда сила инерции переносит нас через какую-нибудь возвышенность, так что мы оказываемся в соседней долине. Тогда мы неожиданно переходим в другое состояние: наш эпигенетический код меняется.

Например, нам легче других удается сохранить стройность или же в старости мы больше иных рискуем здоровьем сердечно-сосудистой системы и так далее. Современные генетики говорят об изменении облика, или фенотипа, Уоддингтон говорил об эпигенотипе, который формируется в равной мере заданными генами и внешними факторами.

Чем старше мы становимся, тем больше углубляются основные долины и тем сложнее нам переходить из одного состояния в другое. Между тем в основных долинах обнаруживаются новые, менее глубокие промежуточные впадины. Это многочисленные эпигенетические нюансы, благодаря которым разные организмы одного вида по мере старения все больше отличаются друг от друга.

Особенно хорошо рисунок Уоддингтона отражает процессы, происходящие на уровне отдельных клеток (собственно, для этого он и задумывался). Первые дочерние клетки оплодотворенной яйцеклетки стартуют на самой вершине. Они еще могут оказаться в любой из бесчисленных долин, то есть стать клеткой любого типа. Чем ниже дочерние клетки скатываются по склону – то есть чем дальше продвигается их развитие, – тем уже их выбор и тем меньше у них принципиально различных возможностей для приобретения тех или иных характеристик, или фенотипов.

Внешние факторы обеспечивают извилистость пути клеток-шариков. Они как бы подталкивают их с боков, стараясь сбить с курса. Если толчки достаточно сильные, клетка действительно может перескочить в другую долину, то есть ее эпигеном изменится. От высоты горных хребтов, разделяющих долины, зависит, насколько легко в конкретный момент жизни внешние факторы сумеют запустить ощутимые изменения клетки. Высота показывает, насколько жестко эпигенетические переключатели управляют судьбой клетки.

Эпигентический ландшафт. Конрад Уоддингтон создал этот рисунок, чтобы наглядно показать влияние генов и окружающей среды на развитие живого существа. Эпигенетические программы изображены в виде долин, по которым, словно шар, скатывается стареющий организм. Внешние воздействия отклоняют шар от намеченной траектории, а если они достаточно сильны или приходятся на развилку, могут привести к перемещению в другую долину. Тогда организм меняется.

В точке разветвления часто именно внешнее воздействие оказывается решающим для выбора пути – то есть по какой долине покатится клетка, если ее в нужный момент подтолкнуть. Подобные периоды – критические моменты в развитии любой жизни. Именно тогда организм может быть чрезвычайно восприимчив к внешним сигналам. Например, если личинка пчелы в критический период развития получает чистое пчелиное молочко, оно становится необходимым внешним раздражителем, переводящим ее в особую долину и перепрограммирующим ее эпигеном на развитие пчелиной матки. В иной период жизни это изменение питания ни к чему не приведет.

То же и в жизни людей: именно в критические периоды развития множество мелких или несколько крупных событий способны привести к тому, что наш второй код изменится и мы переместимся в другую «долину жизни». Такими факторами могут стать правильное питание в нужный момент, любовь родителей и забота о малыше, а также тяжелые болезни, отравления, нездоровое питание, насилие над ребенком или другой травматический опыт. Таким способом эпигенетические программы обеспечивают связь между телом, психикой и геномом.

Эпигенетический ландшафт часто встречался мне во время работы над книгой. Многие ученые используют этот рисунок, поскольку он описывает сущность второго кода так наглядно, как никакое другое сравнение. Первым горный массив с шариком показал мне Бернхард Хорстхемке, один из ведущих немецких эпигенетиков. Во время нашей беседы в его лаборатории при Эссенской университетской клинике он неожиданно вскочил и начал искать в компьютере вступительную лекцию для студентов. Читая ее, он регулярно демонстрирует рисунок Уоддингтона, ибо «это изображение совершенно точно выражает суть эпигенетики».

Хорстхемке объясняет: сравнительно простой линейный мир, который состоит из кодов ДНК, соответствующих белков и их функций, слишком одномерен для объяснения многообразия жизни и потенциала изменчивости отдельных организмов. Если бы существовали только гены и ничего кроме генов, у живых организмов вообще не было бы шансов на развитие. «Уоддингтон понял это больше шестидесяти лет назад и всегда старался держать в уме целостную картину, – говорит ученый. – Очень важно, что его и эпигенетику сейчас открывают заново».

В ходе разъяснения эпигенетического ландшафта эссенскому генетику действительно удается всего в трех предложениях обрисовать центральное значение новой науки. «Долины обеспечивают стабильность, – подчеркивает он. – Внешние факторы способствуют изменениям. Следовательно, живые существа представляют собой до известной степени стабильные системы, однако при определенных обстоятельствах они способны быстро меняться». Без молекулярно-биологических информационных кодов вне генов высокоорганизованные живые существа были бы совершенно неспособны к адаптации. Без эпигеномов их жизнь была бы недолгой.


    Ваша оценка произведения:

Популярные книги за неделю