355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Петер Шпорк » Читая между строк ДНК. Второй код нашей жизни, или Книга, которую нужно прочитать всем » Текст книги (страница 12)
Читая между строк ДНК. Второй код нашей жизни, или Книга, которую нужно прочитать всем
  • Текст добавлен: 5 октября 2016, 03:34

Текст книги "Читая между строк ДНК. Второй код нашей жизни, или Книга, которую нужно прочитать всем"


Автор книги: Петер Шпорк


Жанры:

   

Биология

,

сообщить о нарушении

Текущая страница: 12 (всего у книги 18 страниц)

5
Долгая жизнь как биологическая программа. Рецепт долголетия
Секрет долгожителей

Жанна-Луиза Кальман умерла 4 августа 1997 года в Арле, на юге Франции. Ей было 122 года, пять месяцев и 14 дней, и она до сих пор считается старейшим долгожителем – во всяком случае, если верить подтвержденным данным. Подростком Жанна-Луиза Кальман продавала краски и кисти художнику Винсенту Ван Гогу, в сто лет она еще ездила на велосипеде, и лишь в 119 бросила курить. И вовсе не для здоровья, а лишь потому, что уже не могла самостоятельно закурить сигарету. Под конец жизни она ослепла и почти оглохла, но сохранила ясный ум. Дом престарелых, в котором она жила, сегодня носит ее имя.

Разумеется, журналистам, ученым и врачам хотелось узнать тайну этой женщины. Но их ждало разочарование: старая дама ответила, что никогда не думала о своем здоровье. Каждый вечер она выпивала стакан портвейна и ела много овощей, чеснока и оливкового масла. И все. То, что она сравнительно рано получила финансовую независимость и могла вести достаточно спокойную жизнь, тоже ей отнюдь не повредило. В 1896 году она вышла замуж за состоятельного человека, так что у нее, вероятно, было много свободного времени, чтобы принимать участие в спортивной и культурной жизни своей страны.

По-настоящему сенсационным в жизни Жанны-Луизы Кальман был только ее преклонный возраст. Она избегала крайностей. И именно это сделало симпатичную француженку чем-то вроде прототипа всех долгожителей. Сравнивая жизненные пути разных людей преклонного возраста, сразу замечаешь несколько общих моментов: лишь немногие из них фанатики здоровья, однако никто не вел особенно нездоровый образ жизни. За всю жизнь у них не было никаких серьезных хронических заболеваний.

115-летняя португалка Мария де Жезуш душ Сантуш, самая старая из ныне живущих [11]11
  К сожалению, Мария де Жезуш душ Сантуш скончалась 2 января 2009 года, так и не дожив до своего 116-летия. (Прим. ред.).


[Закрыть]
, похоже, также вела здоровый, но не аскетический образ жизни. Она якобы не курила и не употребляла алкоголь, почти не дотрагивалась до мяса, но ела много рыбы и овощей. Она лишь раз в жизни побывала в больнице и всю жизнь прожила в собственном доме.

Практически ни один человек, проживший дольше ста лет, не умер от какого-нибудь типичного старческого недуга – болезни Альцгеймера или Паркинсона, хронических сердечно-сосудистых заболеваний, диабета 2-го типа или рака. Умирают такие люди только от старческой слабости. Просто отказывает какой-нибудь орган их невероятно крепкого организма.

Например, когда умерла 115-летняя голландка Хендрикье ван Андель-Схиппер, ее мозг исследовал нейроанатом Герт Хольстеге из Гронингенского университета. Еще до смерти долгожительница завещала его науке. Неожиданным образом ученый не обнаружил ни малейших признаков деменции: мозг старой женщины был абсолютно здоров. Объяснение этому необычному явлению Хольстеге увидел в артериях Хендрикье ван Андель-Схиппер – они были совсем как у молодой женщины. И до самой смерти прекрасно снабжали кровью мозг женщины. Сама она шутливо объясняла свой возраст своеобразной диетой: «Я каждый день съедаю одну сельдь матиас и выпиваю стакан апельсинового сока».

Итак, супердолгожители пока не помогли ученым раскрыть тайну, почему некоторые люди стареют медленнее других. Пришлось искать разгадку в тех знаменитых областях, где число долгожителей превышает средний уровень. Но и там на первый взгляд ничего не получилось. Ни на острове Окинава, названном в Японии «островом столетних», ни в Вилькабамбе, деревне на юге Эквадора в так называемой «долине столетних», ни в одной из многочисленных горных деревушек в сердце Сардинии, которые все вместе претендуют на звание «деревни столетних», – нигде многочисленные геронтологи не смогли обнаружить одного-единственного кода долгой жизни.

Такого кода, скорее всего, и не существует. Ибо с продолжительностью жизни дело обстоит точно так же, как с риском заболеть той или иной старческой болезнью: ее обусловливает множество факторов. Само собой разумеется, к ним относятся и случайные события, которыми мы не можем управлять. Строго говоря, старение подобно длительной вялотекущей хронической болезни, и притом самой комплексной, какую только можно себе представить. Практически каждое событие нашей жизни оказывает влияние на то, как быстро стареет наш организм.

Острова столетних

Очевидно, что здоровый образ жизни самым решительным образом способствует достижению преклонного возраста. Даже курение Жанны Кальман ничего в этом не меняет. Напротив, то, что эта нездоровая привычка не смогла ей повредить, подчеркивает необычайную сопротивляемость ее организма.

Поэтому неудивительно, что в тех регионах Земли, где живет особенно много стариков, естественным образом соединяются наиважнейшие позитивные факторы. Это регионы с приятным, обычно мягким климатом. Жители в основном крестьяне, – следовательно, они много двигаются, и большую часть времени – на свежем, относительно не загрязненном воздухе. Их питание сбалансировано, они едят здоровую пищу с большим количеством фруктов, овощей, а иногда и рыбы. Поскольку земли здесь плодородные, голод и длительный стресс – редкость.

Показательный пример положительного влияния здорового образа жизни – жители японского архипелага Рюкю, в том числе острова Окинава. Братья-близнецы Брэдли и Крейг Уиллкокс из тихоокеанского Института исследований здоровья (Гонолулу, США) и возглавляемая ими группа по изучению столетних на Окинаве уже больше четверти века изучают тамошние обычаи.

Их данные показывают, что острова Рюкю – настоящий рай для здоровья. Уровень кровяного давления, инсулина и холестерина у большинства старожилов – как у подростков, а частота сердечных заболеваний, как сообщают братья Уиллкокс, «минимальна, рак груди встречается так редко, что маммография не нужна, и большинство стареющих мужчин понятия не имеют о раке простаты». «Рак груди и простаты у местных жителей наблюдается на восемьдесят процентов реже, а рак яичников и кишечника – вдвое реже, чем у жителей Северной Америки», – поражаются исследователи.

На вопрос о возможной причине Кацухико Таира, геронтолог из университета Окинавы, отвечает ожидаемым образом: «Это сочетание множества факторов: питания, климата, образа жизни, движения, сна. Но решающий фактор – питание». Еда здесь считается образцовой даже на фоне и без того очень здоровой японской кухни.

На островах столетних едят, например, очень много соевого продукта тофу. Зеленый чай здесь тоже пьют в больших количествах, как и повсюду в Японии. Алкоголь употребляют очень умеренно, по крайней мере пожилые люди, и почти никто из них не курит. Пища нежирная и несоленая, с большим количеством желтых и зеленых овощей, едят даже два вида водорослей. Рыба в меню стариков появляется часто, а мясо сравнительно редко.

Братья Уиллкокс выделяют еще два фактора, имеющих решающее значение для высоких показателей продолжительности жизни: обитатели острова Окинава едят небольшими порциями, и скорее слишком мало, чем слишком много. Кроме того, они отличаются большой физической активностью. В совокупности все эти особенности образа жизни приводят к тому, что у столетних не наблюдается даже намека на «животик». В период проведения наблюдений индекс массы тела (ИМТ = масса тела, деленная на рост в квадрате; измеряется в кгм 2) колебался у них между 18 и 22. Люди с индексом ниже 23 считаются стройными, начиная с 25 у молодых людей фиксируется небольшая избыточная масса тела, от 30 – ожирение. При показателе ниже 17,5 следует предполагать истощение.

Похоже, что совокупность внешних факторов эпигенетически перенастроила геномы в клетках долгожителей на здоровье и долголетие. Взаимодействие этих факторов предотвращает слишком частое неправильное программирование, которое ведет к болезни, а в конечном счете укорачивает жизнь. Здесь опять уместно вспомнить мысль эссенского эпигенетика Бернхарда Хорстхемке, который рассматривает старение как своего рода эпигенетическое заболевание. Чем дольше мы живем, тем больше эпимутаций накапливается в наших клетках. То есть с возрастом ферменты все чаще прикрепляют, например, метильные, ацетильные группы или убиквитиновые белки к неправильным участкам ДНК или гистонов. Это и делает нас слабыми и уязвимыми к болезням.

Следовательно, тот, кто разумным образом жизни удерживает процент погрешностей второго кода на возможно низком уровне, повышает свои шансы достичь преклонного возраста, сохраняя при этом здоровье. Жанна Кальман являет собой также наилучшее свидетельство, что эту стратегию не следует превращать в религию: здоровый образ жизни не означает, что надо придерживаться железной дисциплины, отказываясь от всех удовольствий. Тот, кто слишком себя мучает, возможно, ощущает это как нескончаемое самоотречение, испытывает постоянный стресс и, как известно, тоже нездоров.

Само собой разумеется, что продолжительность жизни определяют не только эпигенетические переключатели, но и сами гены. «Здоровое старение большей частью наследуется», – так считает, например, итальянский геронтолог Клаудио Франчески из Болонского университета. Он исследовал гены более тысячи столетних из деревень долгожителей на Сардинии и обнаружил, что большинство обследуемых находятся в удивительно близком родстве. Специальных, отвечающих за долгожительство генов он, однако, не отыскал. Возможно, это варианты фрагмента генома, которые присутствуют у всех и явно отодвигают наступление старости.

У таких модельных организмов, как дрожжи, круглые черви, дрозофилы или мыши, ученые уже обнаружили несколько таких вариантов генов. С помощью целенаправленных изменений их активности или функции ученым удалось вывести настоящих «мафусаилов». Однако до сих пор эти знания едва ли помогли установить, в какой степени скорость старения у человека определяется наследственностью. Впрочем, они помогли разобраться в физических процессах старения.

Ученым удалось сделать это, когда они разобрались в механизме функционирования белков, синтез которых кодируется генами долголетия. Таким образом исследователи обнаруживали все больше процессов регуляции, предназначенных для биохимического влияния на продолжительность жизни организма. И тут опять включается эпигенетика: результаты большого числа новейших исследований не позволяют сомневаться в том, что клетки изобрели несколько специальных генных переключателей для управления именно этими процессами. Второй код – один из центральных механизмов, определяющих, как долго мы проживем.

Старение как хроническое воспаление

Летом 2008 года я собирал материал на XX Международном конгрессе генетиков в Берлине. В поисках новых открытий для этой книги я на несколько дней смешался с почти двухтысячной толпой генетиков из разных стран. Разумеется, я не мог пропустить самое главное: каждое утро рабочий день конгресса открывал один из всемирно известных ученых, докладывая о своей работе в большом зале.

То, что происходит здесь в присутствии более тысячи слушателей, радикально отличается от выступлений на более скромных конференциях, куда журналисты забредают лишь в редких случаях, – искусно составленной смеси из актуальной сложной науки и несколько эгоцентричного мультимедийного шоу. Особенно большой наплыв публики наблюдался во время выступления Элизабет Блэкберн. Австралийка держалась с приятной скромностью. Но ее четкие краткие фразы и различимый даже из последних рядов блеск в глазах скоро покорили всех.

Никто тогда не подозревал, что эта дама и ее бывшая докторантка Кэрол Грейдер получат премию Пауля Эрлиха и Людвига Дармштедтера за 2009 год. Она составляет 100 тысяч евро и считается одной из самых престижных премий, которые присуждаются микробиологам. Но ни один из присутствовавших на этом впечатляющем докладе тем пасмурным утром не удивился, узнав об этом решении несколько месяцев спустя. Во всяком случае, премией были отмечены именно те работы, о которых ученая докладывала в Берлине.

Элизабет Блэкберн, уже много лет работающая в Калифорнийском университете (Сан-Франциско), докладывала по своей главной теме: клеточные механизмы старения. Речь шла о проблеме, которой столько же лет, сколько самому человечеству. Что позволяет одним людям дольше сохранять молодость, чем другим? Молекулярная биология может предложить несколько убедительных ответов. И не в последнюю очередь – благодаря работам Элизабет Блэкберн и Кэрол Грейдер.

Ученая из Австралии показала, что наш организм того же возраста, что и миллиарды клеток, из которых он состоит. Чем больше они слабеют, тем легче развиваются болезни. «Если стареют клетки иммунной системы, мы легче подхватываем инфекции и нам труднее справляться с воспалениями. Если вдобавок к этому стареют клетки органов, у последних снижается сопротивляемость, а у нас развиваются диабет, болезнь Альцгеймера, атеросклероз, инфаркт миокарда, инсульт или рак. Неслучайно все эти болезни – наиболее частая причина смерти пожилых людей», – заключает Блэкберн.

Разумеется, почти все ткани нашего организма беспрерывно обновляются, поскольку клетки делятся, а ослабленные или патологические – отмирают. Но и эти процессы оставляют следы на мельчайших частицах жизни: все чаще происходят ошибочные переключения, биохимические механизмы дают все больше сбоев, а всяческие повреждения устраняются уже не так эффективно, как в молодости. В конце концов дряхлые ткани теряют способность к самостоятельной регенерации. Повсюду в организме учащаются воспаления. Восстановительная система не справляется с растущей нагрузкой, и старческим болезням уже ничто не препятствует.

Все типичные старческие заболевания, считает Элизабет Блэкберн, так или иначе связаны с воспалительными реакциями, даже рак. В молодости нашему организму практически всегда удается ликвидировать то или иное повреждение, приходящее снаружи или изнутри, и своевременно удалить очаг болезни. Но если с возрастом наши клетки «теряют форму», очаги воспаления все чаще опасно расширяются. При известных условиях они становятся началом диабета или опасного для жизни сужения артерий. К тому же ослабленная воспалениями иммунная система недостаточно эффективно уничтожает злокачественные клетки, так что рак легче развивается в старости, чем в молодости.

Итак, старческие недуги побеждают, когда противовоспалительные реакции больше не контролируют ситуацию в организме, иначе говоря – когда не удается попытка самовосстановления. Такого же мнения придерживается итальянский геронтолог Клаудио Франчески: «Люди с хроническими воспалениями умирают раньше остальных». Поэтому в поисках человеческих генов долгожительства он в первую очередь сосредоточил внимание на тех участках ДНК, которые кодируют белки иммунной системы. Франчески предполагает, что тот, кому в наследство от предков достается особенно хорошая аутогенная защита, одновременно с этим получает и предрасположенность к долгой жизни.

На данный момент большинство молекулярных биологов видят в воспалениях основной фактор, свойственный разнообразным аспектам старения. Снижающаяся работоспособность каждой отдельной клетки тела, а в особенности клеток иммунной системы, по их мнению, – причина того, что время нашего пребывания на Земле столь жестко ограничено.

Здесь допустимо и обратное утверждение. Старые люди, которые доживают до ста или больше лет, как известно, очень редко болеют диабетом, раком или атеросклерозом коронарных сосудов. Их клетки – по какой бы то ни было причине – стареют необычайно медленно, а потому с помощью собственной биохимии могут очень долго противостоять повреждениям многочисленных тканей и органов тела. Таким образом, становится понятно, почему именно супердолгожителям часто совершенно не вредит курение. Их клетки стареют медленнее обычного, поэтому они сохраняют способность держать рак в узде, даже если изо дня в день накачивают себя такими канцерогенными и меняющими геном веществами, как никотин и смолы.

Что самое интересное в этом подходе – очень сложные процессы старения многоклеточного организма опускаются на уровень отдельной клетки. Здесь неожиданно обнаруживается множество входных ворот для возможных воздействий, как продлевающих, так и укорачивающих жизнь. Они могут быть обусловлены генетически или же – через механизмы эпигенома – образом жизни: питанием, сном, длительным стрессом или подвижностью.

О теломерах и теломеразе

Нашему наследственному веществу постоянно что-то угрожает: УФ-излучение, асбест, свободные радикалы кислорода или никотин. Они, как известно, вызывают мутации, а в конечном счете рак. Но даже собственная колонна белков – восстановителей ДНК развивает порой мощный разрушительный потенциал, хотя эти вещества вообще-то должны защищать генетическую спираль от серьезных повреждений.

Такая деятельная группа белков есть в каждой клетке. Они постоянно обследуют нить ДНК на предмет ошибок, в сомнительных случаях разрезают ее, заменяют дефектные или ошибочные «подвески» и заново склеивают отремонтированную спираль. Без этих веществ клетка очень быстро погибает, то есть приносит себя в жертву, потому что в ней накопилось слишком много ошибок. В противном случае она становится злокачественной и пожирает организм изнутри, превращаясь в раковый очаг.

Ферменты-восстановители отнюдь не безобидны, хотя имеют решающее значение для сохранения молодости клетки. Они постоянно соединяют части ДНК в неправильном порядке. Особенно часто это происходит на концах всех 46 хромосом, по которым распределена наша «книга жизни». Как только свободный доступ к этим концам открывается, ферменты-восстановители, воспринимая их как разорванную ДНК, приклеивают их к другому свободному концу ДНК. Генетический вред, конечно, огромен.

Для того чтобы спонтанные химические реакции происходили не слишком часто, на концах хромосом находятся настоящие защитные колпачки, называемые теломерами. Они состоят из множества различных белков и охватывают нить ДНК еще плотнее, чем обычные гистоны. Таким образом, подобно пластмассовым наконечникам на шнурках, они защищают ее от атак ферментов-восстановителей и других разрушительных воздействий.

Теломеры – своего рода песочные часы жизни. Ибо концы хромосом – во всяком случае, теоретически – в каждом процессе деления клетки теряют маленький фрагмент ДНК (в среднем длиной в 20 ступеней двойной спирали) вместе с белковым колпачком. Однажды запасы теломер исчерпываются, и клетки должны умереть. Однако определить возраст клетки по длине защитных колпачков можно лишь приблизительно, поскольку в разных типах клеток они изнашиваются с разной скоростью. К тому же весь процесс подчиняется, по-видимому, сложному, лишь частично изученному регуляционному механизму.

Но Элизабет Блэкберн считает, что нельзя представлять теломеры примитивными бусами, которые с каждым делением клетки теряют по нескольку бусинок. «Там ДНК покрывает очень динамичная, высокоорганизованная структура из множества различных белков», – настаивает ученая. Каждый белок выполняет определенную функцию. Например, помогает работе другого белка, укрепляет или разрыхляет «каркас» теломеры, стабилизирует ДНК, присоединяет химические группы к другим белкам или удаляет их.

Конечно, это сильно напоминает эпигенетику – в общем, так оно и есть. Наиболее верно это утверждение в отношении фермента, встроенного во многие теломеры, который Элизабет Блэкберн и Кэрол Грейдер открыли в 1980-е годы, – теломеразы. Она способствует тому, чтобы укороченная ДНК вместе с защитным колпачком после каждого деления клетки снова удлинялась. Таким образом теломераза омолаживает клетку. «Если теломераза присутствует в достаточном количестве, длина теломеры остается постоянной», – отмечает Элизабет Блэкберн.

Теломераза – «источник вечной молодости», например, для зародышевых клеток (то есть яйцеклеток и клеток – предшественников сперматозоидов) и стволовых клеток человека. Но и клетки костного мозга, непрерывно обновляющие иммунную систему, и некоторые другие соматические клетки остаются молодыми благодаря теломеразе. Существует даже одноклеточные (тетрахимены), которые благодаря очень активной теломеразе практически не стареют. Но когда в ходе эксперимента у них выключают ген, кодирующий этот фермент, их теломеры стремительно укорачиваются, и после 20–25 делений одноклеточные умирают.

Элизабет Блэкберн предполагает, что с помощью фермента вечной молодости второй код управляет различными программами клеточного старения. От того, насколько активно считывается ген теломеразы, зависит количество омолаживающего фермента в клеточном ядре, что может иметь решающее значение для эффективного функционирования клетки. «Чуть больше обычного количества теломеразы – и старение клетки значительно откладывается», – поясняет Элизабет Блэкберн. Для организма в целом это означает, что уже с дополнительной крупицей теломеразы в клеточных ядрах он сохранит молодость дольше других.

В пробирке микробиологам уже удалось создать бессмертные клетки в результате искусственного добавления теломеразы. А исследовательская группа под руководством генетика Синичи Накагавы из Шеффилдского университета (Великобритания) в результате сравнения нескольких видов птиц обнаружила, что дольше живут именно те виды, которые обладают более активным геном теломеразы. Тогда как у представителей видов со сравнительно небольшим количеством теломеразы защитные колпачки в ДНК заметно короче, и они умирают раньше.

Теломеры защищают ДНК. Все наследственное вещество человека сосредоточено в 46 хромосомах, на концах которых находится большое скопление белков, очень плотно охватывающих нить ДНК и защищающих ее от нежелательных химических реакций. Здесь эти защитные колпачки окрашены флуоресцирующей краской и выглядят, как светящиеся точки. Хромосомы окрашены слабо и выглядят серыми.

У человека во многих важных клетках теломераза вообще отсутствует. Второй код большей частью выключает ген теломеразы почти повсюду. Поэтому соответствующие клетки практически не получают омолаживающий фермент – и мы неизбежно стареем. Но в конце концов ученые обнаружили, что в небольшом количестве некоторые ткани все-таки вырабатывают его. «Представляется, что теломеразу можно активировать в большем числе клеток, чем мы предполагали сначала», – выражает надежду Элизабет Блэкберн.


    Ваша оценка произведения:

Популярные книги за неделю