355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Николай Сладков » Хочу все знать 1970 » Текст книги (страница 4)
Хочу все знать 1970
  • Текст добавлен: 8 сентября 2016, 21:57

Текст книги "Хочу все знать 1970"


Автор книги: Николай Сладков


Соавторы: Борис Ляпунов,Евгений Брандис,Александр Кондратов,Павел Клушанцев,Алексей Антрушин,Тамара Шафрановская,Регина Ксенофонтова,Петр Капица,Анатолий Томилин,Александр Муранов
сообщить о нарушении

Текущая страница: 4 (всего у книги 31 страниц)

К. Ф. Огородников
ЗАЧЕМ НУЖНА ЛЮДЯМ ЛУНА?
1. ЛУНА И КАЛЕНДАРЬ

Сколько веков люди, глядя на небо, любовались серебристым светилом, которое каждый день совершает свой путь по небу. Какое-то время Луна видна нам совсем тонким, узеньким серпом, это – новолуние. Затем серп становится всё толще и толще. Ночью он уже ярко освещает землю своим ровным, белым светом. Зато днём молодой месяц выглядит как лёгкое облачко правильной формы. Через две недели после новолуния Луна становится круглым светлым диском, на котором человек с хорошим зрением замечает целый ряд тёмных круглых пятен – морей. Это – полнолуние. А затем вся история повторяется в обратном порядке. Постепенно из круглого диска Луна становится серпом, серп становится всё тоньше и тоньше, и наконец Луна совсем скрывается из глаз на 1 – 2 дня, утонув в ярких лучах Солнца. Это называется сменой фаз Луны. В древности Луна служила людям наглядным календарём. По Луне люди на всей Земле, от самых холодных, полярных, стран до африканских джунглей, считали дни месяцев. Полная смена фаз Луны происходит ровно за один месяц, точнее – немногим более чем за 29 1/2 суток. Месяц и был самой первой мерой времени.

Только значительно позднее потребовалась ещё другая единица времени, более удобная для расчётов длинных промежутков времени. Ведь 100 месяцев – это всего 8 с лишним лет! Поэтому люди придумали ещё одну единицу времени – год, равный 12 месяцам. Сперва это был лунный год, состоявший ровно из 12 лунных месяцев. В лунном годе, как нетрудно сосчитать, умножив 29,53 суток на 12, всего 354 дня, то есть он на 11 1/4 дня короче нашего обычного года. Наш год был введён позднее у народов, основным занятием которых было земледелие. Для них большое значение имел счёт времени по солнцу. Тот промежуток времени, когда снова возвращаются времена года: весна, лето и т. д. В странах же, находящихся недалеко от экватора: в Турции, Иране и других, где настоящей зимы со снегом не бывает и где смена времён года не играет такой роли, как у нас, – до сих пор пользуются лунным, а не солнечным годом.


2. ЛУНА – СЕСТРА ЗЕМЛИ

Прошли века, поэты и художники продолжали воспевать красоты освещённого Луной пейзажа. Для большинства людей Луна осталась недосягаемым небесным светилом, спутником Земли, который кружится вместе с ней вокруг Солнца, оставаясь при этом на расстоянии между 365 и 407 тысячами километров от Земли.

Начиная с XVII и XVIII веков Луна снова привлекла к себе внимание людей. В 1609 году великий итальянский учёный Галилей изобрёл первый телескоп, который он сразу же использовал для наблюдения небесных светил. И одним из первых светил была, разумеется, Луна. К величайшему своему изумлению, Галилей обнаружил в маленький телескоп, что Луна, которую в те времена считали недосягаемым небесным телом, чрезвычайно похожа на Землю. На Луне, так же как и на Земле, имеются горы, и по длине их теней Галилей смог измерить их высоту. Она оказалась в пределах девяти километров, то есть примерно такой же, как и на Земле. Большие тёмные пятна на лунной поверхности Галилей назвал «морями». Правда, сравнительно скоро было выяснено, что лунные «моря» – это просто гладкие равнины более тёмного цвета, чем горы.

Луна, в отличие от Земли, не имеет ни атмосферы, ни воды в свободном состоянии, то есть в виде морей, озёр и рек.

Тем не менее в строении поверхности Луны и Земли имеется очень много общего, и потому остаётся верным главный вывод Галилея о том, что Луна такое же материальное тело, как и Земля.

В своё время это открытие произвело настоящую революцию в умах философов и мыслителей. До тех пор считалось, что Луна, как и все небесные тела, состоит из особого, воображаемого вещества – эфира, к которому не применимы те законы природы, которые господствуют на Земле. Галилей первый утверждал, что не существует никакой принципиальной разницы в строении Земли и других небесных светил.

Теперь эта истина кажется всем нам совершенно очевидной, но в то время для её победы над старыми предрассудками потребовалась длительная, самоотверженная борьба, стоившая многих жертв. Одной из этих жертв стал сам Галилей, который дважды был судим «святейшей» инквизицией и последние десять лет своей жизни провёл в заточении.


3. ЛУНА И МОРСКИЕ ПРИЛИВЫ

Другим обстоятельством, которое заставило людей заниматься Луной, были морские приливы и отливы.

В конце XVII века великий английский учёный Исаак Ньютон открыл закон всемирного притяжения, или, как его теперь стали называть, закон гравитации. Согласно этому закону любые две частицы материи притягивают друг друга с силой, пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними. Тот же Ньютон нашёл, что тело, имеющее форму шара, притягивает окружающие материальные частицы совершенно так же, как если бы вся его масса была сосредоточена в его центре. Эта теорема значительно облегчает расчёты притяжения между небесными телами, так как и Земля, и Солнце, и Луна, и все планеты с их спутниками по своей форме лишь незначительно отличаются от шаров.

Теперь несколько слов о морских приливах. Морские приливы состоят в том, что под действием, главным образом, притяжения Луны, уровень воды в океанах испытывает периодические колебания. Период этих колебаний немного более суток и составляет приблизительно 24 часа 50 минут. За этот период уровень воды в море два раза немного повышается и два раза понижается. Вообще говоря, явление приливов довольно сложное, так как на нём, помимо Луны, сказывается множество самых разнообразных фактов, и в первую очередь – притяжение Солнца. В открытом океане приливный подъём воды измеряется всего несколькими десятками сантиметров и потому совершенно незаметен. Но Земля вращается вокруг своей оси, а приливный горб стремится всё время «смотреть» в сторону Луны, которая вращается вокруг Земли в 27,3 раза медленнее, чем сама Земля. Поэтому приливный горб всё время отстаёт от земного вращения, то есть перемещается по поверхности морей и океанов в направлении с востока на запад. Приливная вода, встречая континенты суши, как бы нахлёстывается на них, и тогда в отдельных местах, особенно в длинных, узких бухтах, на восточных берегах, уровень воды испытывает колебание в 10 – 15 и даже более метров, то есть на высоту, превышающую пятиэтажный дом!

Морские приливы играют большую роль в океанском мореходстве. Прилив продолжается 1/4 часть периода, то есть 6 часов 12 1/2 минуты. За это время большие океанские пароходы могут входить в порты и должны успеть разгрузиться. Поэтому для вычисления времени и высоты приливов и отливов для каждого порта разработаны подробные и очень точные математические таблицы. И в этих таблицах главное «действующее лицо» – Луна.

У нас, в европейской части СССР, морские приливы не имеют особенно большого значения, так как они достигают наибольшей силы на побережье, омываемом морем с востока. Поэтому особенно сильные приливы (до 11 метров) бывают в некоторых бухтах Тихого океана на Дальнем Востоке. В европейской части Советского Союза приливы до 8 метров бывают у Кольского полуострова и на мурманском берегу.

В настоящее время идёт разработка проблемы использования приливного подъёма воды для строительства электростанций. Одна из них, на Кольском полуострове, уже строится и в ближайшее время вступит в строй. Это будет очень интересное сооружение, где электроэнергия будет вырабатываться Луной!


4. МЕТОД ЛУННЫХ РАССТОЯНИЙ

В начале XVIII века самой важной научно-технической проблемой стала проблема точного положения корабля в открытом море, вдали от берегов. В это время чрезвычайно развилась торговля с заморскими странами и колониями. Приходилось плавать по всем морям и океанам, а способов точного определения местоположения кораблей ещё не было. Из двух географических координат – широты и долготы – умели более или менее хорошо определять только широту, измеряя высоту Солнца над горизонтом. Долготу же определять не умели. Не стоит здесь перечислять все «кустарные» методы, которыми пытались решать эту задачу (тут и магнитный компас, и так называемый лаг, то есть просто вертушка, которая измеряет скорость корабля относительно воды, и т. д.).

Одним из наиболее употребительных приёмов обходиться без долготы был следующий: допустим, корабль должен был проплыть от английского большого морского порта Глазго до американского Нью-Йорка, то есть переплыть через Атлантический океан. Широта Глазго 56°, а Нью-Йорка 41°. Корабль, держась подальше от берегов Европы, шёл прямо на юг до тех пор, пока не добирался до широты в 41°. После этого он поворачивал на восток и шёл, всё время держась одной и той же параллели, пока не добирался до берегов Америки. Но, во-первых, при этом приходилось давать большой крюк, так как расстояние между параллелями широты 56° и 41° составляет без малого 1700 километров. А во-вторых, двигаясь по  параллели  на восток, капитан корабля до последнего момента не знал, какое расстояние он не дошёл до берега. У берегов же много подводных камней, о которые часто разбивались корабли.

От неумения определять долготу на море особенно страдали тогдашние морские державы: Испания, Португалия и в первую очередь «владычица морей» Англия с её далёкими заморскими колониями. Кончилось дело тем, что в 1707 году у самых берегов Англии, у архипелага островов Силлии, у юго-западной оконечности острова Великобритания, исключительно из-за незнания долготы потерпел крушение английский флот. Погиб командующий флотом адмирал и более двух тысяч моряков. Проблема долгот стала проблемой номер один.

Нет ничего удивительного в том, что Английский парламент, который никогда не отличался особой щедростью в отношении науки, в 1713 году назначил премию в 20 000 фунтов стерлингов тому, кто изобретёт способ определения долгот, обеспечивающий точность в 30', что соответствует примерно 40 – 55 километрам расстояния (в зависимости от широты). 20 000 фунтов по тогдашним временам были сказочым богатством. Ведь тогда один фунт стерлингов стоил почти 10 золотых рублей. А фунт мяса тогда стоил 1 – 2 копейки!

У нас, конечно, нет возможности подробно останавливаться на всех проектах решения проблемы долгот, под знаком которой прошло почти целое XVIII столетие. Но одно из решений, которое оказалось наиболее практичным, то есть дешёвым и легко осуществимым, оказалось опять-таки связанным с нашей старой знакомой, Луною. Мы имеем в виду так называемый метод лунных расстояний.

По идее этот метод совсем прост и был, в основном, известен учёным уже давно, по крайней мере за 250 лет до этого. Имеются сведения, что он был известен ещё древним арабским астрономам в XI—XII веках. Однако до поры до времени он не употреблялся на практике из-за отсутствия достаточно точных инструментов.

Необходимо напомнить, что разность долгот каких-нибудь точек на земной поверхности равняется разности во времени по местным часам. С этим каждый из вас знакомится, когда смотрит на карту часовых поясов на территории СССР. Каждый пояс имеет ширину в 15° или 1 час по долготе. Иначе говоря, расстояние между двумя точками в 15° по долготе соответствует разности во времени по местным часам ровно в 1 час. Вот почему на географических картах чаще всего долготу выражают не в градусах, а прямо в часах и минутах, помня, что 1 час равен 15 градусам, 1 минута времени равна 15 угловым минутам и т. д.

У нас расчёт времени по часовым поясам был введён Советским правительством декретом от 8 февраля 1919 года, подписанным Владимиром Ильичём Лениным. Согласно этому декрету время в пределах каждого пояса для удобства считается одинаковым и меняется скачком в 1 час при переходе границы между поясами.

Раньше же, до революции, в каждом городке было своё собственное время, а на железнодорожных станциях всегда висело двое часов: одни часы показывали столичное, петербургское время, а другие – местное.

Вот когда было легко узнавать географическую долготу какой-нибудь железнодорожной станции! Стоило только из местного времени вычесть петербургское. Если разность получалась положительной, то это означало, что данная станция лежит к востоку от Петербурга на столько-то часов и минут долготы. А если – отрицательная, то к западу.

Из нашего рассказа ясно, что для определения долготы какого-нибудь места нужно сравнить между собой время по местным часам с временем, которое показывают какие-нибудь «столичные» часы.

Местное время астрономы и моряки умеют определять с незапамятных времён. Его, например, можно тоже определить по высоте Солнца над горизонтом.

Но как узнать время, которое показывают московские часы в этот же самый момент? Сейчас это тоже не проблема. Достаточно принять радиосигналы московского времени. Но в XVIII веке радио ещё не было. И вот вместо часов, идущих по столичному времени, избрали Луну!

В самом деле, Луна лучше всего подходит для этой цели. Орбита Луны вокруг Земли известна достаточно точно. Поэтому можно на каждый год вычислять её эфемериду, то есть таблицу, в которой по времени часов Гринвичской обсерватории (она в те времена считалась астрономической  столицей) через определённые небольшие промежутки времени указывалось положение Луны среди звёзд. Это были первые астрономические ежегодники, которые продолжают издаваться и сейчас как в Англии, так и в других странах и, в частности, в Советском Союзе, в Институте теоретической астрономии в Ленинграде. Поэтому Луна как бы служила наглядными часами, которые шли по гринвичскому времени.

Капитану корабля нужно было только определить путём наблюдения местное время, а затем измерить положение, которое занимала Луна среди звёзд в этот момент. Тогда по ежегоднику он сразу же мог узнать, какое было время по гринвичским часам. А отсюда простым вычитанием он узнавал свою долготу, к востоку или к западу от Гринвича. На практике наблюдения сводились к тому, что определялось расстояние от Луны до одной, двух или трёх ярких звёзд. Отсюда и пошло название метода лунных расстояний.

Конечно, все эти вещи на практике требуют навыка и уменья обращаться с приборами. Поэтому их выполнял обычно не сам капитан, а его специальный помощник.

Луна перемещается среди звёзд во много раз быстрее других светил, например, в 13,4 раза быстрее, чем Солнце. Но рядом с Солнцем звёзд не видно, а рядом с Луной их видно совершенно ясно, и это позволяет легко определить положение Луны среди звёзд. Планеты же двигаются, во-первых, медленно, а во-вторых, очень сложно: описывают петли, по временам вовсе останавливаются и т. д.

Метод лунных расстояний широко использовался вплоть до введения массового распространения радиосигналов времени, то есть до 20-х годов нашего столетия.

Мы были бы несправедливы к Луне и к методу лунных расстояний, если бы не сказали хотя бы несколько слов о судьбе сказочной премии английского парламента, о которой мы говорили выше. Эта премия не была выдана какому-либо одному учёному или изобретателю. Но самый факт её назначения вызвал огромную волну блестящих исследований. И она была выдана по частям. Первым получил 3000 фунтов петербургский академик, гениальный математик Леонард Эйлер, за разработку новой, более совершенной теории движения Луны. А вскоре после него 5000 фунтов получила вдова безвременно умершего замечательного немецкого астронома Тобиаса Майера за таблицу движения Луны (эфемериды), составленную на основании новой теории Эйлера и введения некоторых эмпирических [2]2
  Здесь эмпирическими называются поправки в таблице, введённые Т. Майером без какого-либо теоретического обоснования, но оказавшиеся полезными.


[Закрыть]
поправок. Наконец, 10 000 фунтов получил известный английский часовщик Гаррисон за изобретение морского хронометра. Парламент отказался выдать Гаррисону полную премию. Несмотря на то, что изготовленный им хронометр обеспечил «перевозку» гринвичского времени с требуемой точностью, парламент объявил, что это уникальный экземпляр, который Гаррисон не в состоянии ни повторить (Гаррисон был уже слишком стар, так как затратил свыше сорока лет на изготовление первых, менее совершенных моделей), ни дать описание процесса изготовления таких же хронометров другим мастерам. Добавим от себя, что первые хронометры были чрезвычайно дорогими. Далеко не всякий капитан мог позволить себе такую роскошь.

Напрасно Гаррисон апеллировал к печати, напрасно даже сам английский король принял его сторону. Парламент остался непреклонным, и Гаррисон так и умер, унеся в могилу свою обиду.

Вместе с тем проблема теории движения Луны привлекла к себе внимание великих гениев математики.

Кроме уже упомянутого Эйлера, здесь необходимо упомянуть имена Клеро, Даламбера, Лагранжа и Лапласа, чтобы дать хотя бы неполное представление о размахе этих работ. На их основе были разработаны не только главные направления в небесной механике, но и созданы целые новые разделы математики, которые продолжают разрабатываться и до настоящего времени.


5. ЛУНА И ОСВОЕНИЕ ЧЕЛОВЕКОМ КОСМОСА

Всё, о чём мы говорили до сих пор, относится к прошлому, к истории. Мы видели, что в разные эпохи Луна оказывалась полезной людям. Теперь мы перейдём к нашим дням и постараемся хотя бы кратко рассказать о том большом месте, которое занимает Луна в развитии современной науки и техники, и в первую очередь – в решении увлекательной и грандиозной задачи освоения человеком окружающего Землю космического пространства.

Совсем немного времени прошло с понедельника 21 июля 1969 года, когда в 5 часов 56 минут, по московскому времени, произошло событие, которое, наверное, навсегда войдёт в историю человечества. В этот момент на поверхность первого небесного светила – Луны – впервые ступила нога человека. Этим человеком, как известно, был американский космонавт Нейл Армстронг, из отважной тройки космонавтов, которые совершили выдающийся полёт на космическом корабле к Луне. Кроме Армстронга, участниками первой научной экспедиции на Луну были Эдвин Олдрин и Майкл Коллинз. Как известно, вместе с Армстронгом посадку на Луну в специальном посадочном лунном отсеке «Орёл» совершил также космонавт Олдрин. Они проработали на лунной поверхности несколько часов, выйдя из «Орла» наружу, одетые в специальные герметические костюмы-скафандры и нагруженные специальными ранцами, в которых имелся запас кислорода для дыхания, необходимый ввиду отсутствия на Луне атмосферы.

Ступив первым на лунную поверхность и сделав на ней первый шаг, Армстронг произнёс замечательную фразу: «Один маленький шаг человека – огромный шаг человечества». Он был прав, говоря это, так как с этого момента человек стал потенциальным хозяином Луны. Здесь слово «потенциальный» означает, что человек сегодня ещё делает первые шаги по Луне. Но тем самым он доказывает осуществимость полётов на Луну. Он открывает дорогу на Луну для других исследователей. И теперь уже процесс освоения Луны пойдёт безостановочно, всё убыстряющимися темпами. Нет сомнения в том, что в ближайшие годы экспедиция на Луну будет повторяться.

Полёт трёх американских космонавтов на Луну, на ближайшее к Земле небесное тело, был подготовлен огромной предварительной работой, в которой важнейшее значение имели результаты советских исследований. Стоит только вспомнить, что первый искусственный спутник Земли был запущен в СССР 4 октября 1957 года, и именно этот день считается во всём мире днём начала космической эры в истории человечества. Уже через два года, одиннадцать лет тому назад, в 1959 году, советская ракета первая облетела вокруг Луны и передала на Землю фотографии невидимой, обратной, стороны Луны. А 12 апреля 1961 года в космос поднялся и совершил первый космический полёт вокруг Земли бессмертный герой завоевания космоса Юрий Гагарин.

18 марта 1965 года осуществил впервые выход в открытое космическое пространство советский космонавт Алексей Леонов. Только специальных ракет для исследования Луны в Советском Союзе было запущено до сих пор 17 (15 ракет типа «Луна» и 2 ракеты типа «Зонд»).

Ясно, что без учёта этих замечательных достижений экспедиция американских космонавтов на Луну была бы просто невозможна.

Впрочем, к чести американских учёных и космонавтов следует отметить, что они в полной мере отдают дань советским исследованиям, так же, конечно, как и мы отдаём принадлежащую им по праву дань уважения и восхищения.


6. ЧТО ПРИНЕСЁТ ЧЕЛОВЕЧЕСТВУ ОСВОЕНИЕ ЛУНЫ?

Читатель, конечно, захочет задать совершенно естественный вопрос: а что же даст человечеству освоение Луны? К своему огорчению, автор этой статьи испытывает большое затруднение с ответом на этот вопрос, ибо уже сейчас перспективы практического использования Луны для развития науки и техники столь разнообразны и столь тесно переплетены с самыми различными нашими привычными земными науками, что их сколько-нибудь подробное описание заняло бы непомерно много места. Поэтому мы ограничимся кратким перечислением наиболее ярких примеров такой связи.

В первую очередь следует отметить, что Луна явится идеальным местом, где будет сооружена Международная геофизическая обсерватория. Эта обсерватория будет иметь главной задачей непрерывное наблюдение Земли и передвижения в её атмосфере облачных масс в виде так называемых фронтов, циклонов и других образований, определяющих состояние погоды и распределение атмосферных осадков на Земле. Одна эта обсерватория заменит работу многих тысяч метеорологических станций.

Сейчас эти станции обеспечивают информацией мировые центры прогнозирования погоды только не более чем на 20% земной поверхности. Из-за этого современное прогнозирование всё ещё очень далеко от совершенства. С Луны же земная атмосфера будет всегда наблюдаться полностью. Это не только позволит улучшить повседневную службу прогнозов погоды, но позволит также создать более точные теории происходящих в атмосфере процессов, влияющих на погодообразование.

На Луне также безусловно будут созданы астрономические обсерватории. Там не будет атмосферных помех, неизбежных при наблюдениях с Земли. Сила тяжести на Луне в 6 раз меньше, чем на Земле, и поэтому там можно будет установить гигантские телескопы лёгких конструкций. Это позволит неизмеримо увеличить тот спектр волнового излучения от небесных светил (световое, радио, гамма, рентгеновское и т. д.), которое станет доступным исследованию.

Технические вопросы, связанные с тем, чтобы обеспечить людям достаточно комфортабельную и безопасную жизнь на Луне, уже сейчас можно считать достаточно разработанными.

Жилища, по крайней мере на первое время, будут строиться либо внутри специально вырытых пещер, либо в лёгких металлических палатках, которые в условиях отсутствия атмосферы будут держаться благодаря тому, что внутри них будет поддерживаться атмосферное давление, то есть они будут как бы постоянно надуты воздухом.

Вода и кислород для дыхания будут добываться из минералов, составляющих лунную кору. Необходимая для этого энергия будет добываться путём установки солнечных двигателей. Отсутствие атмосферы и малая сила тяжести позволяет устанавливать зеркала очень больших размеров, которые будут аккумулировать солнечное тепло и превращать его либо в электроэнергию, либо в другие формы энергии по мере надобности. Питание людей будет обеспечено устройством подземных оранжерей с искусственным освещением, где будут произрастать полезные растения и содержаться домашние животные.


Лунный пейзаж будущего.

В данное время мы просто не в состоянии предвидеть самых важных и крупных благ, которые человечество со временем приобретёт в результате освоения того совершенно нового мира, каким для него является Луна. Стоит только вспомнить, что Колумб и его последователи, открывшие Америку, не имели никакого представления о том, что произойдёт в результате их географических открытий. Их мечтой было золото. Но разве можно перевести на золото создание совершенно особого типа общественного устройства с гигантским размахом производительных сил и, увы, эксплуатации человека человеком, которые открылись вскоре после этого миру!

Главный результат освоения Луны и вообще космоса заключается в том, что должны неизмеримо возрасти возможности человека в смысле использования для своих нужд стихийных сил природы.

Уже сейчас человек приступил к серьёзной переделке земных условий. Он создаёт искусственные моря, осушает болота, орошает пустыни. Он скоро начнёт поворачивать течение сибирских рек, несущих бесплодно свои воды в Ледовитый океан, туда куда они текли тысячелетия тому назад, на юг, где природа изнывает без воды. Он переменит направление океанских течений и сделает Таймыр и Ямал носителями плодородия. Он будет регулировать уровень морей, в первую очередь Каспийского. Наконец, человек должен скоро овладеть способами мирного использования термоядерной энергии. Это будут работы всепланетного масштаба, и для их осуществления человек должен уметь выйти за пределы Земли, выйти на другие небесные тела, в космос. Этот процесс уже начался и остановить его невозможно!


    Ваша оценка произведения:

Популярные книги за неделю