355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Автор Неизвестен » Эврика-87 » Текст книги (страница 3)
Эврика-87
  • Текст добавлен: 26 сентября 2016, 00:37

Текст книги "Эврика-87"


Автор книги: Автор Неизвестен



сообщить о нарушении

Текущая страница: 3 (всего у книги 27 страниц)

Дело в том, что процесс звездообразования, подгоняемый вспышками сверхновых, приводит к тому, что молодые звезды в момент своего рождения имеют немалые скорости: ведь оболочка сверхновой не только сжимает, но и расталкивает в разные стороны облака газа. Звезды при этом рождаются на больших расстояниях друг от друга и не могут удержаться вместе силами взаимного притяжения. Но даже если в рождении звезд сверхновые и не участвовали и облако сжалось само, все равно наиболее массивные из образовавшихся звезд быстро пройдут свой жизненный путь и начнут взрываться, как сверхновые. Эти взрывы нагреют остатки газа, который быстро расширится и покинет область звездообразования.

Лишившись газа, молодой звездный агрегат существенно "потеряет в весе", притяжение его ослабнет, и значительная доля молодых звезд сразу же убежит из скопления. Образуется расширяющаяся звездная ассоциация. Именно в таких ассоциациях содержится солидная доля молодых звезд.

Разгадка основных закономерностей в судьбах умирающих и рождающихся звезд, взаимосвязь этих судеб имеет чрезвычайно важное значение для познания жизни Вселенной. Полученные представления позволяют, в частности, искать здесь ответ на один из фундаментальных вопросов естествознания происхождение нашей Солнечной системы. Так, изучение химического состава метеоритов показало, что незадолго до ее возникновения ее вещество было обогащено некоторыми радиоактивными изотопами из числа тех, что образуются при взрывах массивных звезд. Поэтому вполне вероятно, что причиной рождения Солнца и всей нашей планетной системы был близкий взрыв сверхновой.

Вихри рождают излучение

В последние годы приборы, установленные на искусственных спутниках Земли, обнаруживают новые источники гамма-излучения, которые до сих пор не удавалось "привязать" к уже известным астрономическим объектам.

Были предположения, что большинство этих источников гамма-излучения не что иное, как гигантские молекулярные облака. Такие облака известны астрономам довольно давно, это огромные скопления газа, в основном молекулярного водорода. Протяженность их – несколько десятков парсек, а масса водорода в одном облаке равна сотне масс Солнца. Сейчас в нашей Галактике известны несколько тысяч молекулярных облаков.

Сотрудники Физического Института АН СССР имени П. Н. Лебедева провели расчеты и нашли условия, при которых галактические облака становятся источником гамма-волн. Иными словами, ученые предложили новую модель, согласно которой вновь обнаруженными источниками гамма-излучения могут быть галактические молекулярные облака. Излучения порождают вихри в облаках газа. Турбулентное движение молекулярного газа в галактических облаках работает как своеобразный ускоритель частиц: в переменных магнитных полях энергия нейтрального газа преобразуется в энергию ускоренных частиц – молекул, ядер, электронов.

Взаимодействие таких частиц между собой, их ускорение или торможение как раз и приводят к излучению электромагнитных волн в гамма-диапазоне.

Согласно новой модели, предложенной советскими астрофизиками, плотность космических лучей в галактических облаках может быть в тысячи раз больше, чем плотность их в межзвездном пространстве. Этот вывод еще предстоит подтвердить или опровергнуть, тем не менее уже сейчас модель турбулентности нейтрального газа поможет объяснить многие астрофизические наблюдения. Например, по-новому осветить вопрос о происхождении космического излучения.

В глубины вещества

Используя установки для улавливания приходящих из космоса частиц гигантских энергий в эксперименте "Памир", ученые получили новые данные об их взаимодействиях с ядрами атомов вещества.

Как предполагают физики, в космосе и в изредка вспыхивающих сверхновых звездах действуют электромагнитные поля, которые ускоряют частицы до энергий в сотни тысяч и даже миллионы раз больших, чем те, что получаются в земных условиях.

В горах Памира на высоте почти пять тысяч метров на ровной площадке уложено нечто вроде слоеного "пирога" из свинца и специальной рентгеновской пленки, упакованной в свето– и водонепроницаемые пакеты. Такой "пирог" покрывает территорию почти в тысячу квадратных метров. Одной рентгеновской пленки используется около гектара. Частицы, попадая в рентгеноэмульсионную камеру, образуют на пленке пятна, по которым можно судить об их энергии и о характере взаимодействия с ядрами атомов вещества.

В эксперименте участвует несколько институтов Академии наук СССР, институты академий наук Грузии, Казахстана, Таджикистана и Узбекистана. С советскими учеными сотрудничают физики социалистических стран, а также Японии. Кстати, последние проводят аналогичные исследования на склонах знаменитого вулкана Фудзияма.

Пульсация Солнца:

новая гипотеза

Строение Солнечной системы определяется равномерными пульсациями Солнца, считает советский астрофизик Альберт Чечельницкий. Эти пульсирующие движения, которые открыли советские астрофизики, повторяются практически через каждые полтора часа.

В результате меняются яркость Солнца и его размеры. Пульсирующие движения Солнца передаются окружающей его плазме. Чечельницкий считает, что этот ритм сохраняется в Солнечной системе в течение миллиардов лет. На ранних стадиях развития Солнечной системы, когда вещество планет находилось в распыленном состоянии, пульсации Солнца способствовали концентрации межпланетной материи и образованию планет. Орбиты планет Солнечной системы также во многом зависят от солнечных пульсации.

Эхо солнечных бурь

О новом космическом проекте "ИНТЕРШОК"

Наше светило ежеминутно расходует 240 миллионов тонн своей массы. Долгое время понятие "светит и греет" считалось достаточным для определения воздействия Солнца на Землю. Затем выяснилось, что оно посылает в пространство не только тепловые и световые лучи, но и радиоволны. Полеты за пределы Земли позволили получить еще больше сведений о так называемом дальнем ультрафиолетовом и рентгеновском излучениях Солнца. В 1959 году советские "лунники" обнаружили солнечный ветер, движение масс, но не воздушных, а частиц плазмы. Порождает этот ветер не само Солнце, а его корона – серебристо-жемчужная плазменная сфера, простирающаяся на десятки миллионов километров за пределы солнечного диска.

Земля – грандиозный магнит, и солнечный ветер активно влияет на формирование ее магнитосферы, которая со стороны Солнца оказывается "поджатой" к Земле, а в "заветренной" стороне растягивается на многие десятки и даже сотни миллионов километров, образуя длинный магнитный шлейф. Под воздействием возмущений солнечного поля магнитное поле Земли испытывает ответные возмущения, которые проявляются в виде магнитных бурь, полярных сияний.

Гипотез и догадок о причинах и следствиях солнечно-земных связей появилось, особенно за последние годы, немало. Но, чтобы поставить предположения на твердый научный фундамент, требовалось накопить достаточно данных не только для создания стройной и обоснованной теории, но и для практического их использования.

Уже первый спутник, запущенный в 1969 году по программе "Интеркосмос", имел ярко выраженную солнечную "ориентацию". За ним в солнечную серию вошли "Интеркосмос"-4,-7-11, -16. Все они проводили исследования в диапазоне волн, недоступном для земных обсерваторий. Приборы космических лабораторий помогли разобраться в механизме генерации коротковолнового излучения при вспышках и других активных процессах на Солнце, а также воздействии такого излучения на плотность и состав верхних слоев атмосферы Земли. В свою очередь, i это послужило основой для построения более точной теории ионосферных возмущений.

Исследования были продолжены на качественно новой основе-с бортау автоматических станций "Прогноз".

Орбита этих станций "вытянута" навстречу Солнцу и достигает в апогее двухсот тысяч километров. Это позволяет в течение большей части периода обращеиия проводить исследования из районов, расположенных вне воздействия магнитного поля Земли. В таких условиях становится возможным наблюдение солнечного ветра, не возмущенного земным полем. Основная задача проекта "Интершок" – изучение так называемых ударных волн.

Дело в том, что частицы солнечного ветра движутся от Солнца с постоянно нарастающей скоростью – их "подталкивает" более горячий газ. Еще задолго до подхода к Земле она достигает скорости звука. Когда такой сверхзвуковой поток плазмы налетает на нашу планету, перед ней возникает ударная волна, аналогично тому, как она образуется у реактивного самолета, летящего со сверхзвуковой скоростью в атмосфере.

Во время вспышек на Солнце, которые сопровождаются выбросами из , короны огромных масс плазмы, плотность, температура и скорость солнечного ветра могут намного превышать средние параметры. Рекордные их значения были зарегистрированы спутнинами "Прогноз" в 1972 году. Скорость ветра достигала 2000 километров в секунду. При этом в межпланетном пространстве наблюдалось образование дополнительных, помимо околоземной, ударных волн.

Гипотеза о существовании таких ударных волн впервые была выдвинута в 1959 году советским ученым Р. Сагдеевым, ныне академиком, директором Института космических исследований АН СССР. После обнаружения их в космосе как в СССР, так и в других странах были проведены многочисленные эксперименты, в которых изучались их свойства.

Одна из главных особенностей проекта "Интершок" – комплексный характер исследований. Совместными усилиями советских и чехословацких специалистов создана научная аппаратура, которая обеспечивает регистрацию всех основных явлений вблизи и внутри фронта ударной волны. Бортовая ЭВМ осуществляет управление программой измерений и потоком информации. Момент пересечения ударной волны распознается автоматически. Это позволяет реализовать вблизи ее фронта режим быстрой регистрации данных, что очень важно, поскольку спутник проходит через интересующие ученых районы за минуты.

Орбита спутника "Прогноз" обеспечивает исследования как околоземной ударной волны, так и межпланетных ударных волн, возникающих при солнечных вспышках. Это дает возможность проследить их характеристики в различных условиях и в зависимости от параметров потока плазмы солнечного ветра.

Исключительно высокая временная разрешающая способность комплекса научной аппаратуры, установленной на "Прогнозе-10" (она в 30-100 раз выше, чем это было достигнуто в лучших зарубежных экспериментах), позволяет хорошо разделить различные события и детально выявить, как развиваются во времени все процессы в ударных волнах, и проследить их отголоски на Земле.

Надо сказать, что изучение ударных волн играет большую роль и в познании явлений в далеком космосе. В частности, считается, например, что в них разгоняются частицы космических лучей. При этом они достигают энергий, которые пока не могут быть реализованы в самых мощных земных ускорителях заряженных частиц.

Спираль на Солнце

Наблюдения пятен на Солнце позволяют во многом прояснить природу и происхождение сравнительно холодных областей, где развивается мощное магнитное поле. Очертания всех наблюдавшихся до последнего времени солнечных пятен представляли собой более или менее правильную окружность со средним диаметром около 10 тысяч километров. Однако 19 февраля 1982 года группа сотрудников Китт-Пикской национальной обсерватории США, возглавляемая известным астрономом Уильямом Ливингстоном, впервые обнаружила на Солнце пятно, имеющее форму спирали. Размер этого необычного образования, напоминающего очертаниями спиральную галактику, также был непривычно велик: оно достигало 80 тысяч километров в поперечнике.

Пятна на Солнце нередко служат источником солнечных вспышек, и возникло опасение, что столь крупное вызовет вспышку необычной интенсивности, а за ней на Земле последуют мощные магнитные бури и нарушения радиосвязи. Однако этого не случилось. В течение примерно двух суток с момента своего рождения гигантская спираль "рассосалась", образовав несколько более мелких пятен. Астрофизики доподлинно еще не знают, как и почему возникают такие явления.

Сценарий солнечной вспышки

Солнечные вспышки занимают умы ученых уже второе столетие, однако сущность этого грандиозного явления природы еще до конца не познана. Совершенствование техники наблюдений, развитие теоретических представлений пополняют наши знания, изменяют взгляды на природу и механизм вспышек. Так, довольно долго считали, что они образуются в хромосфере Солнца небольшом слое между видимой поверхностью светила и его короной.

Но когда наблюдать Солнце стали с помощью космической техники, выяснилось, что главные события вспышки разыгрываются в солнечной короне.

Вспышки – гигантские всплески излучения во всех диапазонах электромагнитного спектра, от гамма-лучей до сверхдлинных радиоволн. Специалисты различают рентгеновские, протонные и иные вспышки. Последние исследования дают основание считать, что вспышка – это единое сложное явление, захватывающее все слои солнечной атмосферы и оказывающее разнообразное воздействие на околосолнечное пространство, Землю и другие планеты.

Вспышки обычно возникают в активных областях поверхности Солнца, где наблюдается сильное магнитное поле, откуда черпается энергия вспышек.

В ходе каждой из них различают три стадии: предвспышечную, которая длится часы и даже десятки часов, импульсную, продолжающуюся всего несколько минут, за которые быстро возрастает излучение, и плавную, во время которой всплеск излучения постепенно затухает.

Наблюдения последних лет позволили создать своего рода сценарий солнечной вспышки. Сначала, при изменении магнитного поля в активной области, на высоте в десятки тысяч километров над поверхностью Солнца /его фотосферой/ начинается медленный разогрев солнечной плазмы. Потом в плазме возникают неустойчивости, приводящие к разрыву токовых слоев /образований в виде шнуров, в которых возникает ток/, что и вызывает собственно вспышку – выделение большого количества энергии, которая тратится на дальнейший разогрев плазмы и ускорение электронов. Та часть электронов, которая движется от центра Солнца, проходит через корону в межпланетное пространство, образуя солнечный ветер, достигающий Земли и других планет.

Описывая другие "эпизоды" развития солнечной вспышки, авторы замечают, что в созданном ими сценарии еще много неясных вопросов, ответы на которые принесут новые наблюдения.

Загадки темных колец

Восемь лет назад с борта самолета, оснащенного астрономическими приборами, впервые были замечены кольца вокруг планеты Уран. И с тех пор ученые бьются над вопросом: из чего же они состоят?

Уже на Земле инфракрасные телескопы показали, что концентрические круги вокруг Урана гораздо темнее, чем у Сатурна. Более того, с помощью ЭВМ удалось определить, что кольца Урана отражают всего 2 процента падающего на них света, следовательно, состоять они должны из материала, который во много раз темнее... всех существующих в Солнечной системе. По мнению одних специалистов, речь может идти о замерзшем метане, почерневшем за миллионы лет от высокоэнергетических космических излучений. Другие склонны представить материал колец в виде каменной пыли с частицами железа и никеля.

В багаж... галактику!

Состоится ли полет человека к другим галактикам?

Очевидный для фантастов утвердительный ответ ставится наукой под сомнение. Согласно новой гипотезе, высказанной белорусским физиком Юрием Михайловым, межгалактическое путешествие возможно, если космонавты возьмут с собой в полет количество веч щества, соизмеримое... с массой нашей галактики. Иначе, как следует из это" научной версии, и звездолет, и CBMI космонавты распадутся на элементар ные частицы, едва начнут покидать пределы Галактики.

Ритмы оледенения и потепления

Многолетние исследования природрадиоактивности позволили автору гипотезы высказать предположение, что радиоактивность вещества проявляется не во всех точках пространства, а зависит от расстояния до центра Галактики. Ближе к нему, следует из гипотезы есть зоны, в которых и плутоний, и уран и следующие за ними более тяжелые вещества находятся в нерадиоактивном состоянии. Зато по мере приближена к "периферии" звездной системы разряд неустойчивых попадают все более легкие элементы. Вещество распадается на бор, бериллий, литий, альфа-частицы, отдельные протоны и электроны. Ведь именно они обнаруживаются в составе космического излучения межгалактических пространст!

– Расчеты и анализ фактов показывают, что расширение пространства процесс, затрагивающий не только макромир, но и мир молекул, атомов, считает ученый.– Причем на микро уровне расширение должно носить квантовый, то есть скачкообразный характер.

Гипотеза дает логическое объяснение некоторым непонятным прежде явлениям, позволяя предсказать их дальнейшее течение. Например, радиоактивный распад очередного вещества, сопровождающийся выделением большого количества тепла, может диктовать ритм эпох оледенения и потепления, которые много раз сменяли друг друга и ярко выражены в геологических отложениях.

Земля "растет"

Причем загадочно быстро. Подсчитано даже, что для того чтобы все материки земного шара точно сомкнулись по береговым линиям, его диаметр должен быть вдвое меньшим. Но откуда взялось столько вещества? Новые представления о характере процессов, протекающих в веществе, похоже, дают ответ и на этот вопрос. Масса Земли практически не увеличилась. Изменилась в результате постоянного "дрейфа" нашей планеты от центра Галактики плотность земного вещества, которое теперь занимает больший объем.

Весьма интересное предположение и о поведении спутников планет. Как и наша Луна, они всегда обращены к телу, вокруг которого вращаются одной и той же стороной. Логика рассуждений здесь такова. Зная об огромной роли вулканизма в эволюции нашего спутника, можно утверждать, что ядро Луны жидкое. Во всяком случае, было жидким прежде. Под действием постоянного мощного притяжения Земли и центробежных сил в нем неизбежно должна была произойти сепарация элементов, различных по атомным и молекулярным массам. Более тяжелые концентрировались в одной половине ^Лра, легкие – в противоположной.

По мере остывания и затвердевания лунных пород такое разделение фиксировалось. /О том, что плотность Луны неравномерна, свидетельствует значение так называемого безразмерного момента инерции, которое удалось определить с помощью искусственных спутников. Более того, под действием гравитационного поля Земли Луна постепенно приобретала грушеобразную форму, вытянутую к нашей планете.

Лунные "кувырки"

А дальше происходило уж совсем неожиданное. Каждый радиоактивный рубеж, который проходила Луна, двигаясь с Землей от ценра Галактики, вызывал распад все новых элементов. Последовательно превращаясь в более легкие, они нарушали устойчивость Луны. Наступал момент, когда механическое равновесие терялось, и наш спутник совершал "кувырок", поворачиваясь к Земле противоположной стороной. Разогреваясь от радиоактивного распада, ядро вновь "разжижалось", нарастал вулканизм, вновь происходило разделение элементов. И так до следующего "кувырка".

Аналогичные процессы, возможно, протекают ныне в недрах многих планет и их спутников. Причем, переворачиваясь всегда в сторону большей плотности вещества, небесные тела нарушают сложившиеся структуры в Галактике и порождают своеобразную цепную реакцию нестабильности. В результате галактики постепенно закручиваются в спиральные структуры.

Иллюстрацией к гипотезе, по мнению ее автора, может служить и то, что в последние годы у многих галактик обнаружены громадные слабосветящиеся короны. Возможно, это не что иное, как следы постепенного распада расширяющегося вещества окраин стареющих звездных систем...

Не означает ли это, что у человечества в отдаленном будущем возникнет гораздо более высокая причина для переселения в другие области Галактики, чем простая тяга к странствиям?

На пыльных перекрестках космических дорог

Летчик-космонавт Г. Гречко в свое время весьма заинтриговал журналистов, заявив, что вместе с Ю. Романенко они собственными глазами видели...

НЛО – неопознанный летающий объект. И, выдержав паузу, добавил, что через несколько минут его "опознали" – это был сверкающий в лучах Солнца контейнер с отходами. Словом, фантасты не так уж далеки от истины, когда утверждают, что "летающие тарелки" прибывают к нам из космоса.

Во всяком случае, некоторые из них...

Но, как видите, это не звездные корабли собратьев по разуму. Изготовлены они на Земле.

Отработавшие ступени ракет, топливные баки, переходные отсеки, люки, различные фрагменты космических аппаратов подолгу движутся по околоземным орбитам. А когда, наконец, они сходят с орбит и врываются с огромной скоростью в верхние слои атмосферы, то, сгорая в ней, поражают очевидцев красочными зрелищами, и легковерные люди порой принимают их за корабли "пришельцев".

Особенно яркими "тарелки" бывают в утренние и вечерние часы, когда объекты подсвечиваются лучами Солнца.

По словам летчика-космонавта, профессора К. Феоктистова, ежедневно орбиты покидают от 5 до 20 космических тел искусственного происхождения. Они не так уж и безобидны, эти космические отходы. Так, в 1983 году, когда американский корабль "Челленджер" вернулся на Землю с трещиной в лобовом стекле, инженеры вначале решили, что оно пострадало от удара метеорита. Однако анализ следов, оставленных в трещине, показал, что столкновение произошло с предметом искусственного происхождения.

Особую опасность представляют мелкие детали размером с теннисный мяч. По зарубежным данным, их в космосе около 40 тысяч. А количество совсем уж маленьких частиц вообще подсчитать трудно.

Основная доля мусора на орбитах образуется при авариях космических аппаратов или при их вынужденной ликвидации. Так, взорвавшаяся в 1961 году вторая ступень ракеты ВВС США развалилась на 260 фрагментов, которые можно было наблюдать с Земли. Около двухсот из них до сих пор находятся на орбите. Более 1400 обломков образовалось при взрывах двигателей второй ступени американских ракет "Дельта" – они тоже изрядно засорили космос.

Что же говорить о более чем миллиарде металлических иголок, которые вывели на орбиту ВВС США, чтобы проверить возможность организовать связь через искусственно созданный слой, отражающий радиоволны. Именно из-за столкновения со скоплениями иголок, как считают специалисты, развалился на части в 1975 году спутникзонд "Пагеос".

Самые опасные трассы в космосе – это орбиты, пролегающие над полюсами или вблизи них. Большинство метеорологических, американских разведывательных, а также некоторых научных спутников выводится на полярные орбиты – в этом случае они могут пролетать над каждой точкой земного шара примерно раз в две недели. Их орбиты пересекаются над полюсами, на них-то и сосредоточено большое число космических обломков.

Словом, сейчас опасность столкновения космического аппарата с обломками искусственного происхождения в два-пять раз превышает риск встречи с метеоритом.

Сегодня это кажется шуткой, но не исключено, что в будущем на орбитах появятся "уборочные машины", которые будут очищать космические "улицы" от скопившегося и столь опасного в заоблачных высях мусора.

Радиотелескоп солнечного патруля

Солнечная активность, как известно, влияет не только на околоземное космическое пространство, но и на Землю.

Вспышки на Солнце приводят к помехам в работе систем радиосвязи, навигации, вызывают необычные и особо опасные изменения погоды. Чтобы предупредить нежелательные последствия или свести к минимуму ущерб от них:

необходимо круглосуточное комплексное наблюдение Солнца. Для этогс создаются специальные станции, экспедиционные пункты наблюдений е различных регионах Земли, ведется патрульное наблюдение на научноисследовательских судах в океане.

Специалисты одного из предприятий города Горького демонстрировали на ВДНХ СССР экспедиционный радиотелескоп для патрульных наблюдений! радиоизлучений Солнца.

Он работает в автоматическом режиме и непрерывно принимает, регистрирует и оценивает радиоизлучения нашего светила в миллиметровом и сантиметровом диапазонах волн. При~ вод радиотелескопа имеет два режима работы – автоматического и полуавтоматического слежения за Солнцем.

2. О ЧЕМ ШУМИТ ЗЕМЛЯ

Луна-свидетель

Возраст нашей планеты около 4,6 миллиарда лет. О том, что происходило на Земле в начальные периоды ее развития, какую площадь занимали воды Мирового океана, а какую – континенты, как эти континенты располагались, как перемещались,– обо всем этом мы теперь можем судить лишь по косвенным данным.

Научные сотрудники Института физики Земли имени О. Ю. Шмидта АН СССР недавно предложили способ реконструкции древней геологической истории Земли, основанный на анализе эволюции орбиты земного спутника – Луны.

По современным представлениям, возраст Луны близок к возрасту Земли. Она в наши дни находится на расстоянии 60,3 земных радиуса /такое измерение дает более наглядное представление о расстоянии, чем традиционное-в тысячах километров/, но расстояние это непрерывно меняется.

Луна удаляется от нас. С помощью лазерной локации установлено, что она отодвигается со скоростью 3,8 сантиметра в год. Ученые считают, что расстояние между Землей и Луной 4 миллиарда лет назад было в 3 раза меньше современного: Луна была удалена примерно на 20 земных радиусов.

Однако скорость "убегания" Луны не остается постоянной. Если бы это было не так, то Луне для того, чтобы отодвинуться с расстояния 20 земных радиусов на расстояние более 60 земных радиусов /сегодняшнее/, потребовалось бы не менее 6 миллиардов лет. А мы знаем, что возраст Земли и Луны – 4,6 миллиарда лет.

Если принять, что механический момент количества движений для системы Земля – Луна оставался постоянным в течение длительного времени, то, опираясь на законы механики, можно рассчитать, как за последние 4 миллиарда лет изменилась орбита Луны.

Эти же расчеты дают возможность определить и периоды вращения Земли:

число дней в году и продолжительность земных суток в разные периоды истории планеты. /Заметим, что эти расчетные величины есть с чем сравнивать: слои роста ископаемых кораллов, двустворчатых моллюсков, водорослей позволяют определить число дней в году почти на 3 миллиарда лет назад.

Расчет, проведенный сотрудниками Института физики Земли, показал, например, что 2,6 миллиарда лет назад, когда Луна была удалена на расстояние 23,2 земных радиуса, сутки на Земле длились всего 8,4 часа; в более близкое к нам время, когда Луна отстояла от Земли на 50 земных радиусов, продолжительность земных суток составляла 22,4 часа.

Расчет изменений лунной орбиты позволил получить интересные данные о соотношении площади континентов и океана на древней Земле. Как в наши дни, так и в далеком прошлом Мировой океан испытывал действие приливов. Уровень океанских вод периодически поднимался и опускался под действием лунного притяжения. При этом запаздывание приливных явлений по фазе было тем больше, чем больше океанские волны рассеивались, выходя на берег, то есть чем больше на поверхности Земли было мелких краевых морей. И наоборот, меньшее запаздывание приливов должно говорить о том, что территории, занятые мелководными бассейнами, составляют малую долю. Такой подход и расчет величины запаздывания позволили судить о расположении континентов в древние геологические эпохи. Из расчетных данных следует, что был на Земле период, когда континенты были сгруппированы в один суперконтинент-Пангею. Затем в эпоху, отстоящую от нас на 2,5-1,5 миллиарда лет, началось раздвижение континентов.

Оно сопровождалось сильным ростом площади краевых мелководных бассейнов. В этом же промежутке времени Луна отодвигалась от Земли гораздо быстрее, чем в настоящее время. Проведенные расчеты дают возможность проследить, как постепенно возрастала площадь земной суши. Примерно 1,6 миллиарда лет назад территория континентов была почти в 3 раза меньше, чем нынешняя, а 0,6 миллиарда лет назад континенты занимали площадь, которая лишь на 20 процентов меньше современной.

Размышления о будущем геологии

Рассказывает академик А. Яншин

С начала каменного века и до середины XX столетия человек искал, разведывал и добывал только те полезные ископаемые, которые он находил на поверхности Земли. Так было во всех странах мира, так было и у нас. Угли Донбасса, Кузбасса и Караганды, железные руды Кривого Рога и Нижнего Тагила, золотые россыпи Урала и Колымы, полиметаллические руды Алтая и Забайкалья – все это было найдено по выходам полезных ископаемых на поверхность Земли, причем обычно не геологами, а крестьянами, пастухами, охотниками, штейгерами и рабочимирудознатцами горных заводов. Геологи приходили лишь потом – изучать и оценивать сделанные открытия.

За последние три десятилетия наша страна вступила на принципиально новый путь поисков, разведки и эксплуатации месторождений полезных ископаемых, невидимых с поверхности, залегающих на глубине. Каковы закономерности размещения в земной коре полезных ископаемых? По этой важной проблеме теоретические исследован). ведутся в двух направлениях.

Первое из них – разработка ученых о геологических формациях, ОСНОЕ которого были заложены трудами ак демика Н. С. Шатского. Формациям ученый называл естественные сообщ, ства горных пород, которые возникаь при определенном тектоническом pi жиме и обладают определенны только им свойственным набором п лезных ископаемых. Н. Шатский из чал формации осадочных и вулкаьческих пород, а его идеи были ПОДХЕ чены сибирскими геологами и переь сены на породы магматического прохождения. Эти исследования увенчались открытием новых месторожден богатых железных руд в горах вокр Кузбасса и полиметаллических месрождений на востоке Сибири. За серию монографий, в которых были описа результаты этих исследований, большой группе сибирских ученых в 1983 ду была присуждена Государственой премия.

Другое направление. С учением формациях связано выяснение многих закономерностей размещения в земной коре различных полезных ископ мых. Оказалось, что даже одинаков или близкие по составу пород фор ции могут содержать разные компп сы полезных ископаемых в зависи. сти от времени своего образование наоборот, однотипные полезные ископаемые в разные периоды геологической истории Земли свойственны ным формациям. Характерный гмер – оолитовые железные руды, тоящие из маленьких шариков, женных чередованием концентре окислов и силикатов железа. Мы хс шо изучили условия их образован отложениях последних 150 миллис лет. Их место залегания мелкое ные прибрежные песчано-глинис формации, и возникли они за счет ветривания богатых железом вулк ческих пород в условиях жаркогвлажного климата.


    Ваша оценка произведения:

Популярные книги за неделю