355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Марио Бертолотти » История лазера » Текст книги (страница 14)
История лазера
  • Текст добавлен: 9 октября 2016, 15:00

Текст книги "История лазера"


Автор книги: Марио Бертолотти


Жанры:

   

Физика

,

сообщить о нарушении

Текущая страница: 14 (всего у книги 31 страниц)

Маркони и радио

Итальянец Джулиельмо Маркони (1874—1937) сумел превзойти многих великих ученых своего времени в создании системы беспроволочного телеграфа. «Дело Маркони» можно рассматривать как хороший пример определенного типа изобретений. Фактически, все технические устройства – генераторы и резонаторы, использованные Маркони, – не были оригинальными, но он систематизировал и улучшал их. Он сумел использовать все преимущества экстраординарной и сулящей прибыли ситуации, когда почти все элементы, необходимые для создания системы беспроволочного телеграфа, уже существовали. Он осознал потенциальные возможности техники, которые никто не рассматривал, и с огромным упорством устремился к своей цели. Факт того, что все существенные элементы для создания беспроволочного телеграфа уже были известны, а также и то, что многие исследователи провели успешные эксперименты с электромагнитными волнами, после первых успехов Маркони, вызвал среди ведущих держав соперничество за право на законное обладание этим «изобретением». В действительности «изобретение» заключается не в открытии нового эффекта или изобретении какого-нибудь нового устройства, а в умелом использовании того, что уже существует, собирая вместе все нужное правильным способом, и в достижении с непоколебимой решительностью технологии, которая многим людям казалась недостижимой. В то время люди, безусловно, верили, что электромагнитные волны, несмотря на различия в длинах волн, ведут себя как свет и распространяются прямолинейно. Поэтому передатчик и приемник должны располагаться в пределах прямой видимости, что невозможно на расстояниях, превышающих несколько километров. Маркони не считался с этими соображениями, в частности, из-за того, что он был в основном самоучкой, не имел теоретических основ и над ним не довлел научный авторитет признанных научных талантов. Он шел своим путем в духе пионера, искателя приключений.

Джулиельмо Маркони был вторым сыном преуспевающего землевладельца и богатой ирландки. Хотя их дом был в 15 км от Болоньи, мать с сыновьями проводили долгий зимний период в Ливорно и во Флоренции. С раннего обучения молодой Маркони стал проявлять большой интерес к экспериментальным наукам, в особенности в сфере электричества. В 1892 г. он построил устройство для обнаружения атмосферного электричества, которое установил на крыше дома в Ливорно. Он также старался сделать аккумулятор для питания системы освещения загородного дома. Из его записей в записной книжке, очевидно, что для молодого человека большее значение имела финансовая сторона, а не слава изобретателя. Он четко понимал коммерческую значимость изобретений. Его мать организовала дружеский визит к Аугусто Риги и, конечно, это было очень полезно для него, даже, если Риги не принимал серьезно молодого ученого-любителя, полагая, что если он действительно хочет посвятить себя науке, то должен сперва закончить свои исследования. Разумеется, он дал ему советы и предложения и позволил помогать в некоторых экспериментах, пользоваться библиотекой со всей научной литературой по интересующему вопросу.

В 1894—1995 гг., в своем доме вблизи Болоньи, Маркони начал серию экспериментов, направленных на использование электромагнитных волн для связи на расстоянии в системе беспроволочного телеграфа. Он использовал в качестве передатчика осциллятор Риги, в качестве приемника когерер с металлическими опилками.

Когерер представляет собой устройство, сделанное из отпаянной стеклянной трубочки диаметром несколько миллиметров, в концах которой располагаются два серебряных цилиндра, разделенных коротким промежутком. Каждый из цилиндров соединен с платиновой проволочкой, проходящей через расплавленное стекло наружу. Между цилиндрами засыпаются металлические опилки (никель или серебро). Эти опилки (зерна) обладают значительным электрическим сопротивлением, но когда они подвержены действию электромагнитной волны, то сцепляются (отсюда и название: cohere – быть сцепляемым, склеенным), т.е. выстраиваются в направлении электрического тока, и их сопротивление резко уменьшается. Это явление уже было открыто в 1884 г. Т.К. Онести (1853—1922) и было использовано Маркони, который усовершенствовал устройство лучшим подбором материалов и, добавив молоточек, который после каждого импульса электромагнитной волны автоматически восстанавливал первоначальное сопротивление (встряхивал опилки), что делало устройство готовым для регистрации следующего импульса. Также французский физик Э. Брэнли (1844—1940) в 1890 г. наблюдал, что металлические опилки в стеклянной трубке изменяются от непроводящего состояния к проводящему, когда на некотором расстоянии происходит электрическая искра. Вероятно, это свойство так никого и не заинтересовало, если бы эта трубка, содержащая опилки, позднее названная английским физиком Оливером Лоджем когерером, не стала существенным элементом первых радиотелеграфных приемников, благодаря его использованию Маркони. Это вызвало волну претензий на авторство среди К. Онести, Брэнли, Лоджа и Попова, российского физика, который использовал его с той же самой целью.

После более или менее удачных экспериментов, известных к тому времени, и позволяющих сигналам передаваться на расстоянии в несколько метров, в августе 1895 г. Маркони выяснил, что для наблюдения заметных эффектов на расстоянии нужно соединить конец осциллятора, а также схему приемника с одной стороны закопанным проводником (земля), а с другой стороны изолированным проводником (антенна), который следует поднять как можно выше над землей. Это блестящее изобретение системы антенна—земля позволило уверенно принимать телеграфные сигналы на расстояниях до 2400 м. Удивительно, что сигналы регистрировались на другой стороне холма, расположенного между системами передачи и приема. В одном из этих экспериментов брат Маркони подтвердил прием на другой стороне холма выстрелом из ружья, что вошло в легенду об изобретении Маркони.

Этот успех убедил молодого человека, что идея заслуживает патента. Итак, с помощью своей матери, которая всегда поддерживала его, и, преодолев скептицизм отца, Маркони отправился в Англию. Там с помощью двоюродного брата со стороны своей матери, Дж. Дэвиса, который держал консалтинговую фирму в Лондоне и был хорошо известен среди лондонских инженеров, он сумел привлечь интерес к своему изобретению со стороны технического генерального директора Британского почтового ведомства, В. Пирса, который к тому времени стал бароном. В результате Маркони 2 июня 1896 г. получил первый патент на систему нового беспроволочного телеграфа. В то время Великобритания занимала ведущее положение в области проводной телеграфии. Это касалось и доминирующей роли британских компаний, осуществлявших прокладку и эксплуатацию трансконтинентальных линий. Так что выбор Маркони был, несомненно, удачен во всех отношениях. Между июнем 1896 г. и мартом 1897 г. Маркони выполнил ряд экспериментов от имени Почтового ведомства, что было разрекламировано тем же самым Пирсом. В 1897 г. Маркони организовал Wireless Telegraphic and Signal Co Ltd, в которой его кузен Дэвис стал первым административным директором. 2 июля 1897 г. был получен полный патент, который в наиболее подробной форме описывал его изобретение. Его получению способствовали два юриста, один из которых хорошо разбирался в области электрических технологий, а другой изучал физику и математику в Кембридже.

Маркони осуществил первую беспроволочную связь (радио) между Англией и Францией в марте 1899 г., что вызвало интерес во всем мире к его экспериментам, а 12 декабря 1901 г. установил связь между США и Великобританией на расстоянии 3200 км, осуществив, тем самым, первую трансатлантическую радиосвязь. Этот результат вызвал удивление и изумление. Дело в том, что для реализации связи на английском побережье была сооружена огромная антенна из проводов высотой 61 м и диаметром 61 м, а на американском побережье также была построена антенная система, что потребовало годы напряженной работы. Так вот, обе эти антенны были уничтожены во время шторма, и Маркони начал использовать для передачи антенну значительно меньших размеров, а антенна приемника поднималась на воздушном змее.

Сразу же после этой сенсационной радиосвязи О. Хэвисайд (1850—1925) в Англии, А.Е. Кеннеди (1861-1939) в США и Х. Нагаока (1865-1950) в Японии, независимо друг от друга выдвинули в 1902 г. гипотезу, что высоко в атмосфере существуют области, отражающие радиоволны. Только эта гипотеза могла объяснить, почему прямолинейно распространяющиеся электромагнитные волны способны обогнуть Землю. Ее достоверность была экспериментально подтверждена Е. В. Эплтоном (1892—1965), который в 1925 г. нашел, что на высоте между 100 и 200 км слои обладают электрической проводимостью из-за того, что молекулы газа ионизируются различными агентами. Радиоволны, отражаясь от этих слоев, осуществляют связь вне пределов прямой видимости. Эплтон был награжден в 1947 г. Нобелевской премией по физике «за его исследования верхней атмосферы и, особенно, за открытие т.н. слоя Эплтона».

Хотя в своих экспериментах в 1896 г. Маркони использовал микроволны (т.е. волны длиной порядка нескольких сантиметров), впоследствии он использовал более длинные волны и с ними сделал первые главные географические связи. Так он вначале полагал, что электромагнитные волны могут достигать приемной антенны только благодаря дифракции, распространяясь вокруг поверхности земли и очень близко к ней. Поэтому он считал нужным стремиться к более длинным волнам. Он был убежден, что для увеличения расстояния связи требуются длинные волны и, чтобы получить их, требуется более мощные машины. Только в 1916 г. он возобновил эксперименты с короткими волнами, которые в 1920-х гг. были отданы радиолюбителям, поскольку считалось, что они не имеют коммерческой ценности.

Маркони также проделал много экспериментов в Италии. Он предоставил правительству Италии безвозмездно пользоваться его патентами и получил разрешение установить его аппаратуру на крейсере Carlo Alberto, на котором король Витгорио Эммануил путешествовал с июля по сентябрь 1902 г., из Неаполя в Кронштадт, чтобы нанести визит царю Николаю II. Во время плавания Маркони обнаружил, что дистанция связи увеличивается ночью и уменьшается днем: еще одно явление, связанное с наличием слоя ионизированной атмосферы вокруг Земли. Позднее, осенью, он на борту того же крейсера выполнил новые эксперименты во время плавания из Англии в Канаду. Когда в 1916 г., во время Первой мировой войны Итальянский флот обратился к Маркони с просьбой изучить возможности нового устройства для радиосвязи во флоте, причем ставились условия защиты от перехвата сообщений противником даже на ограниченных расстояниях, Маркони вернулся к коротким волнам, принимая во внимание определенную роль, играемую ионизованными слоями. Между тем были изобретены электронные лампы, что привело к замене искровой техники.

Джон Амброуз Флеминг (1849—1945), который работал с Максвеллом, был научным консультантом «Маркони Компании», научным консультантом «Эдисон Электрик Лайт Компании», а также был профессором Лондонского университетского колледжа, в 1890 г. изобрел термоионную лампу. Она являлась устройством выпрямления переменного тока, основанного на эффекте, открытом Томасом Эдисоном (1847—1931). Диод Флеминга представлял обычную электрическую лампу накаливания, в которой вблизи от нити, но не касаясь ее, помещалась маленькая пластинка, проволочка от которой выводилась через баллон к цоколю. При соединении этой пластинки с положительным полюсом батареи, а нити с отрицательным полюсом, между двумя электродами мог протекать ток. Если же полярность переворачивалась, то никакого тока не было. В первом случае электроны, испускаемые горячей нитью, притягиваются положительно заряженной пластинкой в то время, как во втором случае отрицательно заряженная пластинка отталкивает электроны. В 1904 г. Флеминг понял, что это устройство может найти применение, запатентовал его в Великобритании, а затем и в США. Американский изобретатель Ли де Форест (1873—1961), который получил ученую степень в Йельском университете в 1899 г., причем его диссертация была первой в Америке по радиокоммуникациям, поместил в диоде Флеминга тонкую сетку между нитью и пластинкой. Тем самым был создан триод, который он запатентовал в 1907 г. под названием «аудион». Сетка, соединенная нужным образом, позволяет усиливать ток и амплитуду сигнала, подаваемого на нее, чрезвычайным образом. Это изобретение стало ключевым в развитии беспроволочных систем связи. Аудион был прототипом термоионной лампы, разработанной в 1912 г. Ирвингом Ленгмюром (1881 —1957).

Для проведения экспериментов с целью проверки эффективности коротких волн Маркони с 1923 г. использовал яхту, которую купил в 1919 г. и превратил ее в плавучую лабораторию. В 1924 г. «Маркони Компании» подписала контракт с Британским правительством на постройку серии радиостанций, которые устанавливали связь со всеми колониями Британской Империи (с Австралией, Индией, Южной Африкой и Канадой). Компания решила использовать короткие волны. Первый «мост» этой сети был торжественно открыт в 1926 г.

Решение Маркони использовать для этих радиостанций коротких волн радикально изменило технологию. В 1928 г. Маркони был назначен президентом Итальянского Национального исследовательского совета (CNR). В 1932 г. он установил коротковолновую радиотелефонную связь между Ватиканом и летней резиденцией папы Кастель Гандольфо вблизи Рима. За свою активную деятельность Маркони в 1909 г. был награжден Нобелевской премией по физике вместе с немецким физиком К. Ф. Брауном (1850-1918), который кроме изобретения кристаллического диода и осциллоскопа, улучшил беспроволочные системы связи с помощью создания соответствующих схем. Маркони был президентом Итальянской академии, личным другом Муссолини и получил титул маркиза. Когда он умер, были устроены государственные похороны, и все радиостанции на Британских Островах объявили две минуты молчания.


Попов

В России использование радиоволн для связи было связано, независимо от Маркони, с профессором А. С. Поповым (1859—1906), который разработал один из первых приемников электромагнитных волн. Аугусто Риги писал: «Новые характеристики аппаратуры Попова для регистрации волн заключаются в использовании молоточка и звонка, управляемого электрическим током, для восстановления первоначального сопротивления когерера, а также использование вертикального проводника, позднее названого антенной».

Александр Попов родился (1859) в рабочем поселке на Урале в семье священника, и предполагалось, что он пойдет по стопам отца согласно семейной традиции. Вместо этого он поступил на физико-математический факультет Санкт-Петербургского университета, где блестяще защитил диссертацию по электрическим машинам. В 1883 г. он был приглашен в Кронштадт для преподавания в Минных классах Российского Флота. Эти классы организованы в 1874 г. и были наиболее прогрессивным российским институтом в области электротехники. Попов провел там 18 лет, удовлетворяя свои интересы в физической лаборатории и выполняя исследования в рамках курса обучения. Он стал признанным авторитетом в области электричества, и Российский флот много раз обращался к нему для решения практических проблем.

После его успехов он в 1901 г. был назначен профессором Электротехнического института в Санкт-Петербурге, а в 1905 г. был выбран его ректором. В начале XX в. ухудшились отношения России с Японией, и в 1904 г. разразилась Русско-японская война. 1905 г. был годом бурных политических событий. Забастовки, стачки и собрания проходили по всей стране. В декабре Правительство постановило среди других распоряжений запретить публичные собрания в помещениях института. Попов отказался исполнять этот приказ, направленный властями против студентов. В результате сильных волнений он тяжело заболел и скоропостижно скончался от инсульта в январе 1906 г.

После публикаций Герца в 1888—1889 гг. Попов заинтересовался волнами Герца и, зная о когерере, в начале 1895 г выполнил серию исследований, надежность результатов которых обеспечивалась использованием маленького молоточка, который срабатывал, когда ток протекал через устройство, и маленьким ударом восстанавливал первоначальные условия (рис. 26).

Рис. 26. Система Попова для детектирования электрических колебаний. Рисунок показывает расположение частей и электрические соединения между ними. (Из работы А.С. Попова «Аппаратура для обнаружения и регистрации электрических колебаний», Журнал Русского физико-химического общества, 1, 1-14(1896).)

Первая демонстрация этого приемника состоялась перед Физическим обществом Санкт-Петербурга 7 мая 1895 г. В то время Попов был преподавателем Минных классов, и его результаты не могли быть опубликованы по соображениям секретности.

Проводя свои эксперименты на открытом воздухе, Попов обнаружил, так же как Лодж и другие, что когерер реагирует на атмосферные электрические явления, и его чувствительность можно увеличить, если один из его концов соединить с вертикальной проволокой, связанной с воздушным шаром, или с громоотводом, а другой соединить с землей. Попов использовал это, чтобы построить специальный прибор («грозоотметчик») и установил его в Лесном институте Санкт-Петербурга, Он также публично продемонстрировал в 1896 г., эксперименты по связи, и установил свой грозоотметчик на знаменитой Нижегородской ярмарке. Там был в 1885 г. построен павильон достижений в области электричества и демонстрировалась электростанция с производимостью до 400 кВт. Грозоотметчик предупреждал о приближении грозы и позволял принять меры для защиты. Во время этой ярмарки Попов прочел об экспериментах Маркони и при поддержке Российского Флота возобновил свои эксперименты по связи. Однако его обязали опираться на зарубежных производителей, так как Россия не имела нужной промышленности. Парижский инженер и бизнесмен Евгений Дюкре (1844—1915), который первым во Франции построил устройства беспроволочного телеграфа, очень заинтересовался Поповым и в 1898 г. стал строить радиотелеграфные станции на основе его систем. Сотрудничество Дюкре—Попов поддерживалось политическим сближением России с Францией, начавшимся в конце XIX в. В период 1899—1904 гг. Компания Дюкре получила несколько заказов от Российского Флота. Однако эта компания была слишком мала и слаба, и Русский Флот во время русско-японской войны использовал системы связи, сделанные в Германии фирмой «Телефункен».


Микроволны

Как уже говорилось, потребовалось время, чтобы использовать короткие волны, хотя именно они и получались в первых экспериментах. Для того, чтобы получать микроволны, необходимо было уменьшать размеры ламп, которые тогда использовались в схемах генерации, а также размеры самих схем. Вскоре обозначилась проблема, вызванная временем, требуемым электронам для пролета от сетки к аноду лампы.

Напоминаем, что в вакуумной лампе, такой, какая использовалась в то время, электроны испускаются нитью, нагреваемой током, помещенной в эвакуированную стеклянную колбу, и окруженную металлической сеткой. Эти электроны собираются электродом, называемым анодом, производя тем самым ток. Величину этого тока можно контролировать путем электрического потенциала на сетке. Очевидно, что, двигаясь от нити к аноду и проходя через сетку (все эти элементы обозначаются как электроды лампы), электронам требуется время, и если в течение этого времени электрический потенциал на сетке заметно изменится, то это исказит сигнал, снимаемый с анода.

Чтобы уменьшить это время пролета, старались делать лампы меньшего размера, более компактными, уменьшая расстояния между нитью, сеткой и анодом до минимума. Эта проблема очень хорошо была описана в работе Ирвинга Ленгмюра и Карла Комптона (1931 г., США). В ней они указали, как можно продвинуться в область высоких частот, просто уменьшая размеры и расстояния между электродами.

Уже в 1933 г. в США фирма RCA выпустила лампу акрон, a Western Electric – знаменитую «кнопку звонка». Эти миниатюрные лампы позволяли генерировать частоты до 1500 МГц (длина волны около 20 см). Однако мощность была очень мала.


Магнетрон

На сцене появилось новое устройство, магнетрон, которое стало в середине 1920-х гг. преимущественным генератором. Было показано, что с помощью магнетрона можно получать очень высокие частоты.

В магнетроне используется комбинация электрического и магнитного полей. В первой реализации прямая нить накала (катод) окружалась цилиндрическим анодом. Внешнее магнитное поле было направлено так, чтобы заставить электроны, летящие к аноду, двигаться по спирали между двумя электродами.

Это устройство было изобретено Альбертом В. Халлом (1880—1966), который родился на ферме в штате Коннектикут и после получения степени в Йельском университете в 1913 г. стал работать в исследовательской лаборатории Дженерал Электрик (GE). В 1914 г. он изобрел «динатрон», первый в длинном ряду радиоламп впервые созданных им. Он также проводил исследования по проблемам кристаллографии и использовал рентгеновские лучи.

В течение 1916 г. Халл начал эксперименты по контролю потока электронов в лампах с помощью магнитного поля как альтернативный способ вместо сетки, который использовался в то время. Контроль с помощью сетки в то время был объектом спора между Дженерал Электрик и Американской Телефонной и Телеграфной Компании, касающимся оплаты автору изобретения Ли де Форесту.

В 1920-х гг. Халл и его сотрудники в Дженерал Электрик продемонстрировали, что устройство, первоначально имевшее несколько названий, но, в конце концов, стало называться магнетроном, может быть использовано на низких частотах в качестве усилителя или генератора в радиосистемах, а также в качестве электронного ключа в преобразователях мощности. Летом 1921 г. права на изготовление ламп, по-видимому, сделали магнетрон не очень важным для радиотехники. В Дженерал Электрик продолжались работы с магнетроном, но для высоких мощностей. В 1925 г. Халл изготовил магнетрон высокой мощности для получения волн с длиной 15 км и мощностью 15 кВт.

Важное открытие, что магнетрон может генерировать колебания с очень высокой частотой, было независимо сделано в Германии и в Японии в середине 1920-х гг., но оно оставалось неизвестным в Америке вплоть до 1928 г. Чешский физик Август Цачек опубликовал в 1924 г. на чешском языке результаты экспериментов, в которых он сумел генерировать волны длиной 29 см. Однако эти результаты получили распространение только, когда его работа была описана в немецком специализированном журнале в 1928 г. В 1924 г. аналогичные результаты были получены Эриком Хабаном в университете г. Йена.

В Японии электрофизик Хидетсугу Яги (1886– 1976) и его студент Кинийро Окабе (1896—1984) внесли важный вклад в разработку магнетрона высоких частот. Яги родился в Осаке и получил степень по техническим наукам в Токийском университете в 1909 г. Перед Первой мировой войной он учился в Англии вместе с Джоном Флемингом, изобретатель лампового диода для детектирования радиоволн. Яги заинтересовался возможностью связи на коротких волнах, когда провел некоторое время в Дрездене (Германия) с Генрихом Георгом Баркгаузеном (1881 – 1856), изобретатель особой ламповой схемы для генерации высоких частот. С началом войны Яги возвратился в Японию для преподавания в Тохоку Имперском университете, где он в 1919 г. получил докторскую степень. В начале 1920-х гг. он узнал о магнетроне Халла от японского морского офицера, который возвратился после посещения США.

Окабе, который стал первоклассным специалистом по магнетронам, окончил университет Тохоку в 1922 г., а в 1928 г. защитил под руководством Яги диссертацию. В 1927 г. Окабе сообщил, что ему удалось получить генерацию с длиной волны около 60 см, используя магнетрон. Он исследовал множество электродов разной геометрии, и обнаружил, что если разрезать цилиндрический анод на два полуцилиндра (конфигурация известная как «разрезной анод»), то можно получить большую мощность. В 1928 г. Яги посетил США, чтобы обсудить эксперименты Окабе, который к тому времени уже генерировал волны в 12 см. Яги также описал разработанную им направленную антенну сверхвысоких частот, которая состояла из активного элемента и нескольких отражающих и пассивных элементов. Эта антенна нашла широчайшее применение в телевизионной технике.

После того как в 1931 г. англо-французская группа установила связь через Ла-Манш, используя волны 18 см, во всем мире возник огромный интерес к коммуникациям на микроволнах (релейные радиолинии). Один журнал опубликовал редакционную статью, в которой утверждалось, что эта система открыла нетронутую землю, что обеспечивает диапазон частот для тысяч радиоканалов. Редактор писал, что эксперимент через Ла-Манш означает «новую эпоху в области электрических коммуникаций», он настолько революционен, что требует нового имени. Он отмечал также, что аппаратура настолько компактна, что подобные системы можно устанавливать на кораблях и самолетах.

Также хорошо известный специалистам американский периодический журнал Electronics объявил, что потрясающая линия между Дувром и Кале показала, что ультракороткие волны, рассматриваемые как мало полезные, вдруг приобрели огромную важность.

Магнетрон начал свое триумфальное шествие: число научных публикаций об этом устройстве стремительно росло до 1933 г. и оставалось на высоком уровне вплоть до 1940 г., когда в связи с разразившейся войной публикации прекратились по соображениям секретности. Важные исследования, приведшие к существенным улучшениям, были сделаны в 1930-х гг. во Франции, Англии и Германии.


    Ваша оценка произведения:

Популярные книги за неделю