Текст книги "История лазера"
Автор книги: Марио Бертолотти
сообщить о нарушении
Текущая страница: 6 (всего у книги 31 страниц)
Ридберг и комбинационный принцип
В 1886 г. Александ С. Гершель, сын великого астронома Джона Гершеля, и Генри Десландрес (1853—1948) нашли математические описания различных полосатых спектров. Более того, шведский физик теоретик Иоганн Роберт Ридберг (1854—1919) опубликовал результаты анализа спектров, который он провел в 1890 году. Этот анализ показал, что спектральные серии Бальмера, а также другие серии линий водорода в ультрафиолетовой и инфракрасной областях спектра можно представить общим выражением, которое сегодня носит его имя.
Ридберг интересовался вопросами спектров и начал свои исследования задолго до того, как Бальмер опубликовал свою формулу. Он также интересовался периодической классификацией элементов, которую дал русский химик Дмитрий Менделеев (1834—1907). Менделеев установил, что единственный метод классификации элементов заключается в рассмотрении их атомных весов. Когда элементы располагаются в порядке увеличения атомных весов, обнаруживается явная периодичность их свойств. Таким образом, в рядах увеличивающихся атомных весов получаются колонки химических элементов со сходными свойствами (таблица Менделеева). Интуиция Ридберга привела его к осознанию, что эта периодичность является результатом атомной структуры.
В период между 1882 г. и 1887 г., когда он был ассистентом физического факультета университета Лунда, Ридберг изучал зависимость физических и химических свойств элементов от их атомных весов, рассматривая атомный вес как принципиальный параметр, от которого зависят эти свойства. Он начал с изучения соотношений, имеющих место среди спектральных линий элементов. Проблема, которую он хотел решить, требовала систематического изучения имеющегося спектроскопического материала, для того, чтобы получить полуэмпирическую формулу, которая универсально моделировала бы эти данные.
История науки показывает, что любая область физики проходит фазу, в которой накопленный эмпирический материал обусловливает активность «предварительной обработки», в результате которой возникают общие законы, даже если изучаемое явление не имеет теоретической основы. Примерами являются законы Кеплера небесной механики и закон Бойля—Мариотта для газов.
Такие «предварительные» теоретические модели выполняют двойную функцию. Во-первых, они дают определенную обобщенную основу для систематизации экспериментальных данных, играя роль эмпирических законов. Во-вторых, они играют важную роль в создании более фундаментальных теорий, являясь конструктивным посредником между теоретическими знаниями и эмпиризмом. Так, например, Максвелл в процессе построения теории электромагнетизма не рассматривал непосредственно экспериментальные данные, но использовал теоретические знания предыдущего уровня (закон Био—Савара, который определяет магнитное поле проводника с током, закон индукции Фарадея и др.) в качестве отобранного «эмпирического» материала.
Если мы с этой точки зрения рассмотрим положение, достигнутое в спектроскопии в 1880-х гг. мы увидим, что поиски законов, определяющихся спектральными линиями, были важнейшей проблемой того времени. В таких случаях ситуация приводит к результатам, что часто случается в развитии науки. Различные исследователи пытаются независимо решить одну и ту же проблему и находят одновременно одинаковые решения. Так и было в этом случае. Независимо от Ридберга, в 1890 г. два хорошо известных спектроскописта, Генрих Кайзер (1853—1940) и Карл Рунге (1856—1927), старались установить общие математические уравнения законов спектроскопии и предложили решения, которые горячо обсуждались, пока не стал превалирующим взгляд Ридберга, который и получил всеобщее признание к концу века.
Согласно Ридбергу, аналитическое выражение для спектров должно быть функцией целых чисел. Он стремился узнать, каков должен быть вид этой функции, и нашел одну, в которой обратные волновые числа зависели от обратных квадратов целых чисел. Когда Бальмер опубликовал свою формулу для атома водорода, оказалось, что она соответствует частному случаю выражения Ридберга.
С другой стороны, Кайзер и Рунге искали алгебраическое выражение, которое могло бы предсказать с высокой точностью обратные волновые числа в сериях, и нашли одно, в котором использовались обратные квадраты целых чисел и обратные четвертые степени целого числа. Хотя они и признавали, что Ридберг прав, утверждая, что их выражение просто одно из многих, которые можно выписать, они возражали, что их выражение наиболее точное. Тот факт, что Ридберг утверждал, что его соотношение имеет универсальную значимость для всех атомов, их не интересовал.
Ридберговское представление давало обратную величину длины волны атомного спектра в конкретных сериях в виде разницы между двумя «спектральными термами» (как их позднее стали называть). Каждый из них представляет универсальную константу (позднее названную «константой Ридберга»), деленную на квадрат суммы целого числа и константы, типичной для каждой серии. В этой формулировке был уже представлен «комбинационный принцип», позднее выраженный шведским ученым Вальтером Ритцем (1878-1909).
В то время предполагалось, что световые колебания, представляемые линиями спектра, производятся все вместе в атоме. В конце концов, в 1907 г. Артур Вильям Конвей (1875—1950), профессор математической физики в Дублине, дал правильное объяснение, согласно которому атом производит спектральные линии по одной во времени, так что получение полного спектра происходит от большого числа атомов. Согласно Конвею, испускание спектральной линии атомом должно происходить в ненормальном или возмущенном состоянии. Ситуация, при которой одиночный электрон в атоме стимулируется для получения колебаний с частотой, соответствующей спектральной линии, не продолжается бесконечно, но лишь то время, которое нужно электрону, чтобы испустить цуг колебаний.
Эти идеи были заново высказаны в 1910 г. П. В. Беваном (1875—1913), который также пришел к заключению, что спектральные явления следует объяснять участием большого числа атомов. Они в определенный момент времени находятся в разных состояниях, и каждый из атомов ответственен не за весь спектр, только за одну линию в нем.
«Комбинационный принцип», сформулированный В. Ритцем в 1908 г., был выведен из большого спектроскопического материала. Согласно ему, частоту каждой спектральной линии можно получить как разность между двумя термами – т.н. «спектральных термов», каждый из которых зависит от некоторого целого числа. С помощью этого принципа все линии в сериях можно было классифицировать систематическим образом.
Регулярности, открытые Бальмером в видимом спектре водорода, были обнаружены и в других областях спектра. Теодор Лайман (1874—1954), исследуя излучение водорода в ультрафиолетовой области, нашел в 1906 г., что серии линий, испускаемых в этой области, могут быть представлены формулой, подобной формуле Бальмера. Фридрих Пашен (1865-1947) получил в 1908 г. подобные результаты в инфракрасной области спектра. Позднее эти результаты были подтверждены и дополнены в 1922 г. американским астрономом Фрэнком П. Брэкеттом (1865—1953) и в 1924 г. Августом Г. Пфундом (1879-1948).
Все частоты f различных серий можно выразить универсальной формулой:
с/λ = f = const (l/m 2– 1/n 2)
где с – скорость света в вакууме; n и m – два целых числа, которые удовлетворяют следующим условиям:
m = 1, n = 2,3,4, … серия Лаймана в УФ;
m =2, n = 3,4,5, ... серия Бальмера в видимой области;
m =3, n = 4,5,6, ... серия Пашена в ИК;
m =4, n = 5,6,7, ... серия Брэкетта в ИК;
m =5, n = 6,7,8, ... серия Пфунда в ИК.
Влияние магнитного поля на спектральные линии
В то время, когда были объяснены главные черты спектральных линий. В 1896 г. Питер Зееман (1865—1943) живший в Лейдене (Голландия) открыл, что магнитное поле способно воздействовать на частоты спектральных линий, испускаемых газом, помещенным в это поле.
Зееман проводил в Лейденском университете в 1893 г. исследования по изучению эффекта Керра, которые были предметом его докторской диссертации. Этот эффект касается действия магнитного поля на поляризацию света. В 1896 г., обсуждая свой первый эксперимент в работе, опубликованной в трудах Королевской академии в Амстердаме, он указывал, что его открытие было отталкивалось от результатов Фарадея, в 1854 г., открывшего влияние магнитного поля на плоскость поляризации линейно поляризованного света (этот эффект Фарадея сходен с эффектом Керра). Уже в то время Фарадей осознал, что свет и магнитное поле тесно связаны. Максвелл говорил, что Фарадей посвящал свои последние эксперименты изучению влияния магнитного поля на свет, испускаемый источником, помещенным в магнитное поле, но ничего не сообщил о результатах. Позднее другие исследователи пытались повторить этот эксперимент, но безуспешно.
Зееман был очень дотошным экспериментатором и полагал, что Фарадей не пришел к определенным результатам, потому что эффект был очень слабым. Поэтому он тщательно спланировал эксперимент и в 1896 г. получил положительный результат. Как это уже делалось Фарадеем, Зееман поместил пламя бунзеновской горелки с хлористым натрием в поле электромагнита и изучал спектр с помощью дифракционной решетки высокого разрешения. Он наблюдал D-линию натрия (которая на самом деле – дублет тесно расположенных линий) и увидел, что когда электромагнит включался, линия уширялась. Первоначально он думал, что это эффект влияния магнитного поля на температуру и плотность паров в пламени. Но последующие эксперименты показали влияние магнитного поля на D-линию натрия.
Используя улучшенное спектральное разрешение, он позднее установил, что эффект заключается в разделении линии испускания цинка или кадмия на две или три линии, в зависимости от направления наблюдения по отношению к ориентации магнитного поля (рис. 12).
Рис. 12. Примеры аномального (для цинка) и аномального (для дублета натрия) эффекта Зеемана
Как раз перед этим открытием Г.А. Лоренц (1853—1928) начал создавать теорию свойств электронов, которая позднее была опубликована в его знаменитой книге «Теория электронов» (Лейпциг, 1909). Он сразу же объяснил этот эффект, рассматривая электроны, связанные в атомах квазиупругим образом.
Лоренц также работал в Лейденском университете, где он получил докторскую степень в 1875 г. В возрасте двадцати четырех лет, в 1877 г., он был назначен заведующим кафедрой теоретической физики в Голландии.
Лоренц имел обширные интересы в физике и математике, но его наиболее значительным достижением было развитие электромагнитной теории Максвелла до этапа, где стала очевидной необходимость радикального изменения основ физики, что инспирировало теорию относительности Эйнштейна. Он объяснил отрицательный результат 1887 г. опыта Альберта А. Майкельсона (1852—1931) и Эдварда В. Морли (1838– 1923). В этом эксперименте пытались «увидеть», не распространяется ли свет с разной скоростью в направлениях по движению Земли в пространстве и перпендикулярном ему. Лоренц предположил, что материальные тела сокращаются в размере по направлению своего движения. В 1904 г. он формализовал эту гипотезу, известную как «лоренцовское сокращение», дав математическую форму этого преобразования. Эти преобразования Лоренца сыграли очень важную роль в теории Эйнштейна, которая теоретически укрепила их основу.
В серии работ, опубликованных в период 1892—1904 гг., Лоренц построил «электронную» теорию, которая позволила ему объяснить ряд явлений. Он использовал свою теорию для объяснения эффекта, открытого Зееманом, и оба эти исследователя разделили Нобелевскую премию в 1902 г. за открытие и объяснение этого важного эффекта.
Согласно теории Лоренца, свет испускается атомными заряженными частицами (электронами), на движение которых влияет магнитное поле согласно законам классического электромагнетизма. Из изменения частоты, получаемого из-за магнитного поля, Лоренц и Зееман смогли определить отношение между зарядом и массой частицы, которая испускает свет, а также знак и значение заряда. Первоначально они допустили ошибку в расчетах и сочли, что знак положителен, но затем исправили расчет и получили отрицательный знак. В это же время в Кембридже Дж. Дж. Томсон в экспериментах 1897 года, измерил отношение между зарядом и массой свободного электрона, а позднее, в 1899 г., измерил знак заряда. Полученные данные были идентичны тем, что были найдены Зееманом и Лоренцем и доказывали, что электроны независимо от их происхождения являются идентичными.
Не следует недооценивать важность эффекта Лоренца в теории строения атома. Успех, достигнутый теорией Лоренца эффекта Зеемана, показал, что частицы с одним и тем же отношением заряд/масса, что и электрон, присутствуют в атоме и ответственны за испускание спектральных линий. Это было прямым доказательством, что испускание света производится электронами.
После этих первых экспериментов ряд других физиков, Престон, Рунге и Пашен, и Ланде, изучили магнитное расщепление спектральных линий. Принципиальным результатом этих исследований было то, что многие линии, среди которых и D-дублет натрия, расщепляются не на три линии, как предсказывала теория Лоренца, а на большее число компонент (см. рис. 12). Этот эффект был назван «аномальным эффектом Зеемана» и получил объяснение только в 1925 г., когда Уленбек и Гоудсмит ввели «спин электрона».
Первая модель атома
В заключение, мы можем сказать, что в первые годы XX в. был дан первый, может быть не полный, ответ на вопрос как излучается свет, а атомы с их электрическими зарядами были сочтены ответственными за это. Однако, как устроены атомы и, соответственно, каковы процессы испускания света, никто не знал.
Одна из проблем касалась числа электронов в атоме. Первые модели атома предполагали, что это число велико. Эта гипотеза поддерживалась спектроскопическими наблюдениями. Поскольку предполагалось, что спектральные линии производятся колебаниями электронов, а наблюдались тысячи линий, то полагали, что они испускаются тысячами электронов.
Томсон, который благодаря открытию электрона считался признанным авторитетом, выдвинул в 1903—1904 гг. свою модель атома. В соответствие с ней, атом представляет однородно заряженную сферу с положительным зарядом, в которой помещаются электроны, подобно изюминкам в пудинге. Положительный заряд и отрицательная сумма всех электронов равны по абсолютной величине. Электроны притягиваются к центру сферы и отталкиваются друг от друга, согласно закону Кулона электрического взаимодействия. Нормальное состояние атома получается, когда система этих противоположных сил уравновешена. Если атом подвергается возмущению (или, как говорят физики, «возбуждается») при столкновении с другим атомом или при прохождении электрона, его внутренние электроны начинают колебаться вокруг положения равновесия и излучается свет на тех частотах, которые измеряются спектроскопически. По физическим законам можно рассчитать эти частоты. Томсон и его ученики сделали сложные вычисления, чтобы найти такие конфигурации, которые дали бы правильные частоты. Эти вычисления не привели к успеху. Как мы увидим, эта модель совершенно неверная.
ГЛАВА 3
ИЗЛУЧЕНИЕ ЧЕРНОГО ТЕЛА
Как мы видели, к концу XIX в. ученые пришли к убеждению, что свет является электромагнитной волной. Однако в то же самое время, когда волновая теория получала все большую поддержку, были открыты новые явления, которые противоречили ей. Среди этих явлений было изучение того, как физическое тело поглощает или испускает тепло. Ожидалось, что эта проблема получит простое и немедленное решение. Однако этого не получилось, и когда в конце концов решение было найдено, оно нанесло первый удар по волновой теории света.
Излучение и температура
Если мы трогаем тело рукой, мы ощущаем тепло, если оно имеет высокую температуру. Такое же ощущение мы испытываем, если мы не касаемся тела, но находимся близко от него. Это получается благодаря передаче тепла через воздух. Однако, даже если мы удалим воздух, окружающий тело, передача тепла все равно имеет место.
Сейчас мы знаем, что тело передает свое тепло, т.е. свою энергию, частично в виде электромагнитных волн. Волны, которые переносят наибольшую часть этой энергии и которые ответственны за ощущение тепла, обозначаются как «инфракрасное излучение». Длины этих волн простираются почти по всей области между миллиметром и тысячной долей миллиметра (микрон), и они невидимы глазом. Однако энергия, передаваемая видимым излучением от Солнца через миллионы километров, также может преобразовываться в тепло. Это хорошо известно всем, кто загорает летом.
Фридрих Вильгельм Гершель (1738—1822), родившийся в Ганновере, а затем натурализовавшийся в Англии, на заре XIX в. продемонстрировал эффект нагрева, т.е. увеличение температуры тела, инфракрасным излучением. Экспериментальная регистрация инфракрасного излучения была существенно улучшена в 1881 г., когда С.П. Лангли (1834—1906) изобрел т.н. «болометр». Этот инструмент, состоящий из платиновой проволоки, покрытой черным слоем сажи, способен измерять температуру благодаря изменению электрического сопротивления проволоки.
Итак, мы можем сказать, что горячее тело испускает энергию в окружающее пространство частично в виде излучения. При увеличении температуры увеличивается испускаемая энергия, а длина волны излучения уменьшается от инфракрасной области до видимой. При температуре около тысячи градусов тело представляется красным; при дальнейшем увеличении температуры интенсивный цвет последовательно изменяется от красного к оранжевому и далее к голубому.
Точное соотношение между цветом тела и его температурой было установлено в XIX в. с помощью серии измерений и вычислений, первоначально основанных на термодинамике. Термодинамика – часть физики, имеющая дело с соотношением между работой и теплом, испускаемым или поглощаемым телами. В ее основе два фундаментальных принципа. Один утверждает, что невозможно построить машину, которая непрерывно (т.е. циклично) совершает только работу, т.е. устанавливается принцип сохранения энергии, и невозможность создания вечного двигателя первого рода.
Другой утверждает, что невозможно иметь машину, которая забирает тепло от источника с постоянной температурой и превращает его в работу (т.е. невозможность создания вечного двигателя второго рода). Отметим, что все тепловые машины забирают тепло от источника с высокой температурой для совершения работы; однако они выделяют часть этого тепла при низкой температуре, например в окружающую среду, и таким образом не все тепло, но только его часть трансформируется в работу. Из этих двух принципов (первое и второе начала термодинамики) можно получить далеко идущие заключения путем чисто логических рассуждений, строгим и безупречным способом, поскольку они не требуют какой бы то ни было особой модели явления, к которому они применимы.
В начале XIX в. целый ряд причин заставлял исследователей интересоваться вопросом, почему нагретое тело испускает излучение. Исследования двигало в том числе и желание создать эффективные источники света – в то время только начиналось освещение городов с помощью газа и электричества. Более того, изучение света, испускаемого звездами, было на тот момент единственным способом получить информацию об их природе.
Однако никто не мог вообразить, что из этой проблемы возникнет одна из наиболее глубоких и потрясающих революций в физике – революции, которая привела к «квантовой теории». Окончательное решение было результатом усилий многих ученых в разных областях. Здесь мы ограничимся обсуждениями рассмотрений, нужных для понимания лазеров.
Черное тело
Мы можем начать с рассмотрения некоторых результатов, полученных немецким физиком Густавом Робертом Кирхгофом.
Кирхгоф родился 12 марта 1824 г. в Кенигсберге, там же он проходил обучение в университете под руководством физика Франца Неймана (1798—1895). В 1847 г. после получения докторской степени он перебрался в Берлин, где годом позже стал приват-доцентом (звание, которое давало ему право преподавать в университете, но без жалования; студенты прямо платили небольшие суммы преподавателю за лекции). В 1850 г. он был назначен профессором в Бреслау, где он встретился с химиком Робертом Вильгельмом Бунзеном (1811 – 1899), который некоторое время спустя выдвинул его на должность профессора физики в Гейдельберге. В 1875 г. он стал заведующим кафедрой физики Университета в Берлине, где и скончался в 17 октября 1887 г. Он был номинирован в члены Итальянской Академии Линчей в 1883 г.
Кирхгоф работал почти во всех областях экспериментальной и теоретической физики, получая результаты фундаментальной важности. Кроме тех, которые мы будем здесь обсуждать, он описал законы, которые позволяют получать распределение токов в электрических цепях; дал замечательную формулировку двух принципов термодинамики, решил строгим и полным способом уравнения электромагнетизма Максвелла и постарался дать математическую формулировку принципа Гюйгенса.
В 1859 г. Кирхгоф обратился к собранию Берлинской Академии со словами:
«Несколько недель тому назад я имел честь представить Академии сообщение о некоторых наблюдениях, которые, как кажется мне, являются весьма интересными, т. к. позволяют нам сделать заключения о химическом составе солнечной атмосферы. Отталкиваясь от этих наблюдений, я теперь вывел на основе довольно простых теоретических соображений общую теорему, которую ввиду ее большой важности я осмеливаюсь представить Академии. Она касается свойств всех тел и относится к испусканию и поглощению тепла и света».
Кирхгоф не скромничал, представляя свои результаты! Он продолжил свою лекцию, показав, что тела, которые испускают излучение на некоторой длине волны, способны поглощать это же излучение, и для лучей одной и той же длины волны при одной и той же температуре отношение способности испускать излучение (технический термин «сила испускания») к способности поглощать его (поглощаемость) является одним и тем же для всех тел и не зависит от их природы и формы,
Кроме этого общего результата, который казался ему очень важным, он подчеркнул важность проведения точных экспериментальных измерений с целью проверки его предположения и выразил надежду, что при этом не возникнут особые трудности, так как «все функции, не зависящие от природы тел, с которыми до сих пор имели дело, просты по структуре».
Он предложил для этих экспериментов использовать тело, названное им «черным телом», которое способно поглощать все излучение, падающее на него. Для этого тела поглощательная способность равна единице, а сила испускания становится идентичной универсальной функции, которую он ввел.
Хотя идеальное черное тело является абстракцией, Кирхгоф дал указания для практической реализации его, если изготовить полость с отверстием, диаметр которого много меньше размеров полости. Это отверстие по существу и является черным телом. Действительно, любое излучение, попадающее в отверстие, будет полностью поглощено стенками полости. Через некоторое время внутреннее излучение достигает равновесия со стенками полости, имеющей температуру T, и в этот момент излучение (которое мало по сравнению с тем, что содержится внутри) станет выходить из отверстия, представляя собой характеристическое излучение в полости.
Немного позднее, в 1865 г., Дж. Тиндаль (1820—1893) опубликовал результаты некоторых измерений способности тела, нагретого до двух разных температур, испускать излучение. Он нагревал зачерненную платиновую проволоку, которая не была в точности черным телом. Однако, несмотря на это несовершенство, эти измерения были использованы в 1879 г. австрийским физиком Йозефом Стефаном (1835—1893) для установления эмпирического закона, согласно которому энергия, испускаемая с единицы площади поверхности нагретого тела, пропорциональна четвертой степени его абсолютной температуры.