355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Марио Бертолотти » История лазера » Текст книги (страница 13)
История лазера
  • Текст добавлен: 9 октября 2016, 15:00

Текст книги "История лазера"


Автор книги: Марио Бертолотти


Жанры:

   

Физика

,

сообщить о нарушении

Текущая страница: 13 (всего у книги 31 страниц)

Роль вынужденного излучения в теории дисперсии света

Используя результаты Эйнштейна, физики-теоретики смогли построить квантовые теории рассеяния света и дисперсии.

Как мы уже говорили о преломлении света призмой, лучи света, которые относятся к различному цвету, отклоняются на разные углы, что связано с разной скоростью их распространения. Для описания этого явления, удобно ввести величину, которая называется показателем преломления и представляет отношение между скоростью света в вакууме к скорости света в среде. Используя эту величину, закон преломления можно выразить, говоря, что синус угла падения, деленный на синус угла преломления, равен отношению показателя преломления второй среды к показателю преломления входной среды.

Рис. 23. Явление дисперсии. На рисунке показано изменение показателя преломления прозрачного стекла в зависимости от длины волны, выраженной в нанометрах (1нм = 10 —9м)

Явление зависимости скорости распространения света (т.е. показатель преломления) от длины волны называется дисперсией света (рис. 23). Причина, почему свет разного цвета распространяется в одной и той же среде с разными скоростями, была открыта благодаря исследованию того, как электроны в атомах испускают свет. Простейшей моделью может быть система, в которой электрон в атоме совершает регулярные движения вперед и назад, подобно маятнику часов. Такое движение называется в физике периодическим. Во время своего движения электрон испытывает ускорение и, поэтому, согласно уравнениям Максвелла, должен испускать излучение. Все это можно представить простой моделью, в которой электрон упруго связан с атомом, как если бы он был связан пружиной (гармонический осциллятор). Эта модель уже использовалась для описания испускания излучения черным телом. Теперь она используется для объяснения испускания и поглощения электромагнитного излучения веществом.

Чтобы объяснить, почему атом может испускать многие частоты, можно предположить, что он состоит из многих осцилляторов, способных испускать или поглощать определенные частоты, и что именно они и обнаруживаются на эксперименте. На основе такого подхода П. Друде, В. Фойхт (1850– 1919) и позднее X. А. Лоренц разработали теорию дисперсии, которая была в хорошем согласии с экспериментом и давала удовлетворительное объяснение дисперсии и поглощения света. Изучая математически отклик осцилляторов на электрическое поле волны, можно вывести показатель преломления и его зависимость от длины волны. Получается интересный результат, показывающий, что на тех длинах волн, которые далеки от тех, на которых атом поглощает, показатель преломления равен единице, т.е. свет распространяется с той же скоростью, что и в вакууме, и среда не оказывает на него влияния. Однако когда длина волны приближается к той, на которой атом может поглощать, показатель преломления уменьшается (когда поглощение увеличивается) и после достижения минимума снова начинает увеличиваться до единицы на длине волны, на которой атом поглощает (но мы не можем выявить это, поскольку весь свет поглощается). Далее, когда длина волны продолжает увеличиваться, показатель преломление растет, достигает максимума, а затем возвращается к единице в области далекой от поглощения. Это именно то, что и наблюдается на эксперименте. Поведение показателя преломления между минимумом и максимумом очень трудно для измерений, так как это область сильного поглощения. Она указывается как аномальная дисперсия, поскольку в этой области показатель преломления увеличивается при увеличении длины волны, вместо того, чтобы уменьшаться (нормальная дисперсия).

Классические уравнения, получаемые при расчетах, были в очень хорошем согласии с экспериментом и давали удовлетворительную интерпретацию дисперсии и поглощения. Однако когда теория Бора стационарных состояний отвергла классическую теорию упруго связанных электронов, эти формулы, несмотря на их de facto правильность, полностью потеряли свое теоретическое оправдание. Первые попытки сформулировать теорию дисперсии в терминах квантово-механических концепций, предпринятые П. Дебаем (1881—1958), А. Зоммерфельдом (1868—1951) и Ч. Дэвиссоном (1881 – 1958), оказались неудовлетворительными главным образом из-за того, что теперь в рамках новой модели атома, при приложении электрического поля световой волны, колебания совершались только, когда электрон возмущался со своей стационарной орбиты. В этом случае он начинал колебаться вокруг положения равновесия с частотой, которая, очевидно, очень отличается от той, что соответствует переходу с одной орбиты на другую.

Первый корректный шаг к квантово-механической интерпретации дисперсии был сделан Ладенбургом. Рудольф Вальтер Ладенбург играет важную роль в нашей истории. Как мы увидим, он очень близко подошел к открытию усиления за счет вынужденного излучения, которое является основой работы лазеров.

Ладенбург родился в Киле (Германия) 6 июня 1882 г. и скончался в Принстоне (Нью Джерси, США) 3 апреля 1952 г. Он был младшим из трех сыновей известного химика Альберта Ладенбурга. Учился в школе г. Бреслау, где его отец, автор ряда важных работ по органической химии, был профессором химии в местном университете. В 1902 г. Ладенбург отправился в Мюнхен, и в 1906 г. защитил диссертацию по вязкости под руководством Рентгена. С 1906 по 1924 г. в университете Бреслау он был сначала доцентом, а потом профессором. За это время он проводил исследования фотоэлектрического эффекта и подтвердил, что энергия фотоэлектрона не зависит от интенсивности света, но пропорциональна его частоте.

В 1911 г. он женился и тремя годами позже поступил на службу в армию, в 1914—1918 гг. выполнял исследования по использованию звуковых сигналов для обнаружения целей (сонар). В 1924 г. он поступил в Институт Кайзера Вильгельма в Берлине по приглашению директора Ф. Габера (1868—1934), нобелевского лауреата по химии (1918 г.). В этом престижном институте, где также работал Эйнштейн, он оставался до 1931 г. в должности руководителя физического отдела, после чего перешел в Принстон на кафедру физики приемником Карла Комптона (1887—1954) брата Артура.

После Первой мировой войны Ладенбург искал способ связать постулаты Бора об излучении и поглощении света атомами с моделью гармонических осцилляторов. Хотя он не сделал ясных упоминаний этого, он предположил, что когда атом возмущается, электрон не колеблется вокруг своей орбиты, как следовало бы ожидать из классических концепций, но падает на нижний уровень в согласии с моделью Бора, и этот процесс можно описать классически, как если бы электрон был бы маленьким гармоническим осциллятором, который колеблется как раз с частотой перехода.

Введение коэффициентов Эйнштейна поглощения, спонтанного и вынужденного излучения позволило ему предложить теорию, способную объяснить оптические свойства вещества. Он начал в 1921 г. с вывода выражения, которое позволило ему найти для каждого атома, сколько электронов участвует в оптическом явлении (это число он назвал числом дисперсных электронов), используя коэффициент Эйнштейна для спонтанного излучения. Он получил это число, вычисляя энергию, которая излучается и поглощается набором атомов, находящихся в тепловом равновесии с излучением. При этом использовалась модель осциллятора, с одной стороны, и квантовая теория Бора – с другой. Согласно принципу соответствия Бора, результат этих двух расчетов, хотя и совершенно различных, должен был быть тем же самым. Итак, путем уравнения этих результатов, было найдено соотношение между числом электронов, которые участвуют в поглощении и излучении, и коэффициентом Эйнштейна, который описывает спонтанное излучение атомов. Число электронов, участвующих в этих процессах, можно определить из экспериментальных измерений излучения, поглощения, аномальной дисперсии и др. Тем самым можно определить вероятность, с какой происходят эти переходы. Ладенбург использовал этот результат для измерений, которые он выполнил с водородом и натрием в 1921-1923 гг.

В 1923 г. он вместе с Ф. Райхе (1883—1963) вывел соотношение, которое связывает показатель преломления на данной длине волны с коэффициентом Эйнштейна для спонтанного излучения. Однако эта формула оказалась неполной, так как она не включала эффект вынужденного излучения. Он был учтен введением соответствующего члена Крамерсом и Гейзенбергом. Фундаментальный шаг был сделан в 1924 г. Крамерсом, который модифицировал формулу, полученную Ладенбургом, и показал, что необходимо ввести некоторый член для точного учета спонтанного излучения.

Хендрик Антон Крамере родился 17 декабря 1894 г. в Роттердаме в семье врача. Он обучался в Лейденском университете под руководством П. Эренфеста (1880—1933), который с 1912 г. занял место Лоренца. В 1916 г. Крамере отправился в Копенгаген, для работы с Нильсом Бором. Когда в 1920 г. открылся Институт Теоретической Физики Бора, Крамере был сперва ассистентом, а затем в 1924 г. лектором. В 1926 г. он принял должность заведующего кафедрой теоретической физики в Утрехте, а в 1934 г. вернулся в Лейден как приемник Эренфеста, который в сентябре 1933 г. покончил жизнь самоубийством. С 1936 г. вплоть до своей смерти 24 апреля 1952 г. Крамере преподавал в Лейдене, и посетил ряд стран, включая США.

В Копенгагене Крамере работал над проблемой дисперсии. В 1924 г. он написал выражение, которое вынужденное излучение было принято во внимание. Основной идеей его работы было то, что дисперсию не следует вычислять, рассматривая реальную орбиту электрона, классически взаимодействующего с электромагнитной волной. Вместо этого атом заменяется набором гипотетических осцилляторов, чьи частоты соответствуют скачкам между стационарными состояниями модели Бора. Таким образом, каждый осциллятор соответствует одному из возможных атомных переходов. Набор этих фиктивных (виртуальных) осцилляторов был назван Альфредом Ланде (1888—1975) «виртуальным оркестром». Таким образом, этот виртуальный оркестр является формальной заменой для излучения и, тем самым, неявно становится представлением самого квантового излучателя.

Разумеется, при этом возможно иметь положительные члены, которые соответствуют переходу из состояния с низшей энергии в состояние с высшей энергией, который характеризуется поглощением фотона, и отрицательные члены, которые соответствуют обратному переходу с высшего на низшее состояние, с испусканием фотона. Отрицательный вклад добавляет к дисперсии то, что мы укажем как «отрицательная дисперсия», из-за излучающих осцилляторов, и аналогичен отрицательному поглощению, представляемому коэффициентом Эйнштейна для вынужденного излучения. Т.е., как писал Крамере в своей работе в 1925 г.: «Световые волны на этой частоте, проходя через большое число атомов в рассматриваемом состоянии, будут увеличиваться в интенсивности».

Используя весьма изощренную спектроскопическую технику, Ладенбург и его сотрудники изучили эффект отрицательной дисперсии в 1926 и 1930 гг. В одном из этих исследований, выполненных в сотрудничестве с Г. Копферманом (1895—1963), Ладенбург исследовал дисперсию газа неона вблизи его красных линий испускания. Неон возбуждался в стеклянной трубке электрическим разрядом, примерно так, как это делается сейчас в рекламных устройствах. Была измерена дисперсия как функция интенсивности от величины тока разряда. Они обнаружили, что при увеличении тока выше некоторого значения, дисперсия уменьшается (т.е. падает разница от показателя преломления, равного единице). Убедительно наблюдалось, что эффект отрицательной дисперсии можно объяснить уменьшением дисперсии, поскольку увеличивалось число атомов в высшем состоянии. Эти эксперименты явились первым экспериментальным доказательством существования отрицательных членов в уравнении дисперсии. Если бы эти измерения были бы продолжены систематически, усиление за счет вынужденного излучения, вероятно, могло бы быть получено в то время.

Другие исследователи изучали эффекты вынужденного излучения. Одним из них был Дж. ван Флек (1899—1980), один из наиболее выдающихся американских физиков-теоретиков среди основателей современной теории твердого тела и, в частности, магнетизма. Он получил свою докторскую степень в Гарварде в 1922 г. за первую в Америке диссертацию по квантовой механике, и в 1977 г. получил вместе с Н. Ф. Мотом и П. В. Андерсоном Нобелевскую премию за «квантово-механическое описание магнитных свойств вещества». Другим был американец Р. Толмен (1881—1948) – специалист по теории относительности и статистической механики, который открыл эффект, демонстрирующий существование свободных электронов в металлах. Они наблюдали, что вынужденное излучение, названное ван Флеком «индуцированным излучением» может привести к отрицательному поглощению, и Толмен писал, что «...молекулы, находящиеся в верхнем состоянии, могут возвратиться в нижнее квантовое состояние таким образом, что первоначальный пучок усиливается за счет «отрицательного поглощения». После столь ясной основы для изобретения лазера Толмен сказал, что в экспериментах по поглощению, которые обычно выполняются, величиной отрицательного поглощения можно пренебречь.

Причина, почему ученые считали, что явления, связанные с вынужденным излучением, не дают существенных экспериментальных эффектов, заключается в тех следствиях, которые получаются при использовании закона Максвелла-Больцмана (выведенного в конце 19 столетия), который устанавливает вероятность нахождения при равновесии системы, обладающей определенной энергией. Этот закон, используемый в нашем случае для набора атомов, находящихся в термическом равновесии, в основном или в возбужденном состоянии, утверждает, что число атомов в возбужденном состоянии всегда много меньше числа атомов, находящихся в основном состоянии. В природе все физические системы находятся в тепловом равновесии или очень мало отличаются от него и быстро в него возвращаются. Поэтому в случае атомов, следует ожидать, что число возбужденных атомов всегда будет малым по сравнению с атомами, находящимися в основном состоянии. Тем самым разумно полагать, что эффект вынужденного излучения, который требует наличия возбужденных атомов, будет очень мал.

Позднее, в 1940 г., российский ученый В. А. Фабрикант в своей докторской диссертации показал, что если число молекул в возбужденном состоянии могло быть больше, чем число молекул в основном состоянии, то могло бы быть усиление излучения. Однако эта диссертация не была опубликована и, кажется, не имела последствий даже в России. Его предположение стало известным только тогда, когда после изобретения мазера Фабрикант получил российский патент.

В конце концов в 1947 г. У. Лэмб (г. р. 1913) и Р. Ризерфорд (г. р. 1912) захотели проверить точность предсказания Поля Дирака об энергетических уровнях и спектральных линиях водорода. Предсказание Дирака утверждало, что атом водорода имеет два возможных состояния с равными энергиями. В знаменитом эксперименте, сделанном при изучении разряда в водороде, эти исследователи обнаружили, что имеется маленькое различие между этими энергетическими уровнями. Этот «лэмбовский сдвиг» показал, что нужна ревизия теории взаимодействия электрона с электромагнитным излучением. За этот результат Лэмб в 1955 г. получил Нобелевскую премию по физике, которую он разделил с Поликарпом Куршем. В приложении к своей работе, опубликованной в 1950 г., Лэмб и Ризерфорд, обсуждая результаты, указали, что в их эксперименте могли быть осуществлены условия достижения инверсной населенности (т.е. больше возбужденных атомов, чем атомов, находящихся в основном состоянии). Однако они заключили, что их расчеты были слишком оптимистичны, и они не предприняли усилий для дальнейших проверок. Позднее Лэмб писал, что в то время концепция отрицательного поглощения и ранние исследования были новыми для них и что в любом случае их интересы были принципиально устремлены на изучение тех вещей, которые принесли ему Нобелевскую премию. По этой причине они не исследовали тщательно аспекты проблемы, связанной с вынужденным излучением.


ГЛАВА 7
МИКРОВОЛНЫ

Мы теперь возвращаемся к концу 19 столетия, во времена сразу же после публикации (1873 г.) знаменитой работы Treatise on Electricity and Magnetism Максвелла.

Несмотря на прогресс, сделанный Максвеллом и его первыми последователями в теории электромагнитных колебаний, связь между классической электродинамикой и теорией света не была найдена, кроме интуитивной идеи Максвелла, что электромагнитные волны и световые волны имеют одну природу. Ирландский физик Джордж Френсис Фитцджеральд (1851 – 1901) заложил первый камень в 1882 г., указав, что если унификация, указанная Максвеллом, правильна, то должна быть возможность генерировать излучаемую энергию чисто электрическими способами. Он утверждал: «Представляется высоко вероятным, что энергия переменных токов частично излучается в пространство и, тем самым, теряется для нас», обращая внимание только на отрицательную сторону явления, и описывал методы, с помощью которых можно было бы получить излучаемую энергию. Однако он замечал, что трудность лежит в обнаружении таких волн, когда они будут получены, поскольку подходящих детекторов еще не существовало.


Экспериментальное открытие электромагнитных волн

Параллельно с теоретическими изучениями уравнений Максвелла проводились экспериментальные исследования по генерации электрических колебаний, получаемых при разряде обычного конденсатора в электрической цепи, и выявляемые как осциллирующий ток в этой цепи. С 1847 г. Герман фон Гельмгольц доказал, что в некоторых случаях разряд конденсатора должен носить колебательный характер. Вильям Томсон в 1853 г. дал математическую формулу, устанавливающую, при каких параметрах компонентов цепи в ней получаются колебания.

Работая с колебательными цепями такого вида, Генрих Герц, молодой и тогда неизвестный немец, добился успеха в генерировании и обнаружении электромагнитных волн.


Генрих Герц (1857—1894) родился в Гамбурге. Он был сыном прокурора, ставшего позднее сенатором. Будучи блестящим студентом, он в равной степени преуспевал и в гуманитарных дисциплинах, и в науках. Также он показал большие способности в проектировании и создании научной аппаратуры. Предполагалось, что молодой Герц последует традициям семьи в области права, но с десяти лет он стал интересоваться естественными науками и после обучения в ряде школ решил изучать инженерное дело в Дрезденском политехникуме в 1876 г. Когда ему исполнилось 20, он был призван в армию. После службы он решил закончить свое инженерное обучение в Мюнхене, но вскоре оставил инженерное поприще ради физики. В 1878 г. он поступил в Берлинский университет для работы под руководством Гельмгольца и Кирхгофа и в 1880 г. получил докторскую степень.


Герман фон Гельмгольц переехал в Берлин в 1870 г. из Гейдельберга, сменив кафедру физиологии на кафедру физики. В течение многих лет Гельмгольц интересовался физическими свойствами организмов и биологическими процессами, в частности процессами ощущений. Эти изучения убедили его в том, что полное описание процессов, касающихся нервной системы, требует понимания обмена энергией в живых телах, и важную роль играет термодинамика и электричество. Здесь уже были важные достижения, включающие закон сохранения энергии. Когда он приехал в Берлин, то начал серию исследований в области электричества, и Герц, который появился в 1878 г., принял участия в этом деле. Ему посчастливилось обратить на себя внимание Гельмгольца, который, после получения Герцем ученой степени, назначил его своим ассистентом. В 1883 г. Герц стал по рекомендации Кирхгофа приват-доцентом Киле, а в 1885 г. стал профессором физики в Карлсруе. Для этого университета требовался кто-нибудь, кто мог бы преподавать электрические технологии. В то время последние успехи в передаче энергии, электрический свет и другие применения электричества сделали электричество принципиальной технологией. Работы Герца, уже сделанные в этой области, а также поддержка Гельмгольцем помогли ему получить это место. Герц скончался очень молодым от хронического заражения крови в тот же год, в который скончался его покровитель Гельмгольц.

Как часто случается, Герц пришел к открытию электромагнитных волн, первоначально не стремясь их обнаружить.

В 1879 г. Берлинская Академия наук установила награду за исследование проблемы экспериментально установить соотношение между изменяющимися электрическими полями и откликами материалов на эти поля (поляризуемость). В это время Герц занимался электромагнитными исследованиями в Берлинском Физико-техническом институте и его наставник Гельмгольц привлек его внимание к этой проблеме. Первоначально Герц подошел к изучению электрических колебаний, используя для их получения лейденскую банку (вид электрического конденсатора), но вскоре пришел к заключению, что только эффекты, «лежащие за пределами наблюдений», могут быть интересны. Поэтому он подошел к проблеме с другой стороны, вернувшись к ней девятью годами спустя, в 1888 г., и успешно решив ее, как часть его классических экспериментальных работ по электромагнитным волнам. В 1886—1887 гг. он при выполнении некоторых экспериментов обнаружил что если кусок медной проволоки согнуть в виде прямоугольника так, чтобы между концами проволоки был маленький воздушный промежуток, и поместить этот прямоугольник рядом с искровым разрядом индукционной катушки (мы будем называть ее первичной цепью), то в промежутке открытой цепи прямоугольника проскакивает искра. Он правильно интерпретировал это явление, показав, что согнутая проволока (мы будем называть ее вторичной цепью) имеет такие размеры, которые делают свободный период колебаний в ней, почти равный периоду колебаний в первичной цепи.

Открытие, что в воздушном промежутке вторичной цепи могут возникать искры (при подходящих размерах для резонанса), давало метод наблюдения электрических эффектов в воздухе на расстоянии от первоначального возбудителя: детектор, требуемый Фитцджеральдом для наблюдения распространения электрических волн, теперь был в руках.

Неизвестный Герцу Давид Эдвард Хьюз (1830—1900) несколькими годами ранее опередил его. Он показал, что электрические искры можно обнаружить на расстоянии до около 500 м микрофоном (позднее он был назван «когером»), включенным в телефонную трубку. Он правильно утверждал, что эти сигналы были от электрических волн в воздухе. В 1879—1980 гг. он продемонстрировал эти эксперименты президенту Королевского Общества сэру Джорджу Стоксу и В. Прису – Главному электрику Почтовой службы. К сожалению, они пришли к другому объяснению этого явления, и Хьюз, разочаровавшись, не опубликовал своих результатов, которые стали известными много позже.

После короткого перерыва, в течение которого Герц был занят изучением влияния облучения ультрафиолетовыми лучами на электрический разряд, проведя, тем самым, первые наблюдения фотоэлектрического эффекта, он в 1888 г. улучшил схему получения искр. Регистрируя эффект с помощью вторичной цепи, удалось продемонстрировать, что испускаются электромагнитные волны. Оливер Лодж (1851-1940) также в начале 1888 г. открыл электромагнитные волны. Он продемонстрировал их распространение и отражение вдоль проволок и выполнил точные измерения их длин волн. Однако, вместо того, чтобы немедленно опубликовать свои результаты, он отправился на отдых в Альпы, полагая, что его эксперименты произведут впечатление на очередном конгрессе Британской Ассоциации развития науки, который должен был быть в сентябре. На этом конгрессе, Фитцджеральд, который ничего не знал о работе Лоджа, громогласно объявил, что неизвестный немец Генрих Герц сумел генерировать и детектировать электромагнитные волны в воздухе.

Рис. 24. На верхней части показан вибратор (осциллятор) Герца, а на нижней – резонатор. А – катушка Румкфорда, В – два шарика, между которыми проскакивает искра; С и С’ – два больших проводника, которые заряжаются от катушки. Цепь abcd – резонатор Герца, а M – два шарика, между которыми можно видеть искорку

Для получения своих искр Герц использовал различные экспериментальные конфигурации. Одна из них показана на рис. 24. Две металлические сферы диаметром около 30 см были каждая на конце прямой медной проволоки. Центры сфер были на расстоянии 1 м. В середине проволока разрывалась с двумя шариками на концах разрыва. Расстояние между этими шариками (несколько см в диаметре) можно было регулировать до типичного значения порядка 1 мм. Размеры были выбраны так, чтобы возникающие волны можно было обнаружить вторичной цепью соответствующего размера. Для возбуждения цепи была использована катушка Румкорфа, с помощью которой две сферы заряжались противоположным знаком. При достижении нужного напряжения происходил искровой пробой, и искра проскакивала между шариками. При этом система разряжалась через ряд колебаний с частотой, определяемой размерами сфер и их взаимным расположением. Эти колебания затухали, когда энергия, связанная с первоначальным зарядом, испускалась в пространство в виде электромагнитных волн. К концу года Герц продемонстрировал сходство электромагнитных волн со светом, показав, что они могут отражаться» распространяться прямолинейно после прохождения отверстия в экране, испытывают дифракцию, и другие свойства, подобные свету,

В первых экспериментах длина волны составляла несколько метров, но, в тот же год, Герц смог сгенерировать волны порядка 10 см. Парадоксально, но Герц не оценил возможное практическое применение своего открытия. Когда один немецкий техник высказал ему предположение, что открытые им волны можно использовать для беспроволочного телеграфа, Герц отверг эту идею, утверждая, что токи в его резонаторе совершают колебания в миллионы раз в секунду и не могут быть воспроизводимы в телефонном устройстве, которое работает с токами с частотой в несколько тысяч раз в секунду.

Рис. 25. Резонатор Риги был сделан из стеклянной посеребренной пластинки (как обычное зеркало). Слой серебра на стекле имеет тонкую щель 7, в результате которой получаются две металлические, проводящие части а и b изолированные друг от друга. Когда на такой резонатор по падают электромагнитные волны, в щели Т проскакивает искорка, которую можно увидеть в темноте

Эксперименты Герца были продолжены итальянцем Аугусто Риги (1850-1921), профессором физики в университете Болоньи. Он сумел генерировать волны длиной в несколько см и регистрировать их с помощью резонатора, который он сделал из прямоугольной полости станиолевой фольги, закрепленной на стеклянной пластине. В середине фольги делался очень тонкий разрез, в котором могла появляться искра (рис. 25).

Риги родился в Болонье и после окончания технической школы поступил в 1867 г. на математический факультет Университета Болоньи. Получил степень в 1872 г. в области инженерной специальности. В рамках своей диссертации по гражданской инженерии (единственной в то время) он построил электростатическую машину для измерения очень малых электрических зарядов. Ее можно рассматривать как уменьшенный аналог знаменитого ускорителя частиц, построенного в 1930-х гг. Робертом ван дер Графом (1900—1967). Еще в школе Риги проявил большие способности в физике. Используя школьную лабораторию, он сумел улучшить телефон, разработанный в то время А. Г. Беллом (1847—1922), создал и запатентовал первый микрофон с проводящим порошком, а также громкоговоритель, который он представил на Всемирной выставке в Париже в 1878 г. Он начал свою университетскую карьеру в Палермо (1880—1885), а затем в Падуе. В 1889 г. он вернулся в Болонью, где был профессором физики вплоть до своей кончины. Здесь он проводил свои исследования по оптическим свойствам электромагнитных волн. В Болонье он организовал Институт современной физики. Риги первым наблюдал гистерезисный цикл в магнитных материалах. Он изучал электрические разряды в газах, магнитные эффекты света и был одним из первых, кто исследовал фотоэлектрический эффект, построив фотоэлектрическое устройство.

С помощью построенного им осциллятора, который он назвал «трех искровой осциллятор», Риги выполнил серию знаменитых экспериментов, собранных в его книге Ottica delle Oscillazioni Elettriche («Оптика электрических колебаний», 1897 г.). В них он продемонстрировал точность электромагнитной теории.


    Ваша оценка произведения:

Популярные книги за неделю