355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Марио Бертолотти » История лазера » Текст книги (страница 17)
История лазера
  • Текст добавлен: 9 октября 2016, 15:00

Текст книги "История лазера"


Автор книги: Марио Бертолотти


Жанры:

   

Физика

,

сообщить о нарушении

Текущая страница: 17 (всего у книги 31 страниц)

Принцип исключения [3]3
  В русской литературе более употребительно «принцип Паули». Прим. пер.


[Закрыть]

Несмотря на свои очевидные успехи, в 1924 г. «старая» квантовая теория, которая в течение нескольких предшествующих лет, казалось, дает методы и принципы, способные помочь, по крайней мере, представить основы атомной феноменологии, столкнулась с трудностями. В этот момент Вольфанг Паули (1900—1958), отвечая на трудности теории, нашел отправную точку для введения нового и таинственного принципа.

Паули родился в Вене в семье врача, который стал профессором биохимии в Венском университете. Паули получил докторскую степень в университете Мюнхена под руководством Зоммерфельда, и после этого был ассистентом Борна в Гёттенгене в 1921—1922 гг. Желая встретиться с Бором, он по своей инициативе отправился в Копенгаген, где был с октября 1922 г. по сентябрь 1923 г., а затем переехал в Гамбург, где оставался до 1928 г., когда принял кафедру в Политехникуме Цюриха. За исключением военных лет, которые он провел в США, в Институте перспективных исследований в Принстоне, он до своей смерти в 1958 г. оставался в Цюрихе.

Паули был крупной, интересной и жизнелюбивой личностью. Когда он появлялся на людях его звучный и иногда сардонический смех оживлял любое собрание. Он всегда появлялся с новыми идеями. Паули начал свою научную карьеру в 21 год, написав книгу о теории относительности Эйнштейна, которая до сих пор остается лучшей по этому предмету. Его вклад в квантовую теорию неоценим. Подобно другим теоретикам он не имел дела с экспериментальными , приборами. Говорили, что он обладает мистической силой. Однажды в лаборатории профессора Франка в Гёттингене вышла из строя, без какой бы то ни было причины, сложная установка для изучения атомных явлений. Изумленный Франк написал об этом факте Паули в Цюрих. Через некоторое время он получил ответ в конверте с датской маркой. Паули писал, что он на поезде ехал к Бору, и в тот момент, когда в лаборатории Франка случилась эта неприятность, его поезд останавливался на несколько минут на вокзале Гёттингена.

Как говорили многие люди, Паули был совестью физики. Он хотел, чтобы люди понимали вещи до конца, и высказывали их правильным образом. Он никогда не уставал отвечать на вопросы и объяснять проблему любому, кто приходил к нему с вопросами. Но ему не составляло труда выразить свое неудовольствие, когда он полагал, что слышит что-то неправильное. Он не был хорошим лектором, поскольку не был способен оценить, насколько восприимчива аудитория. Однажды студент осмелился прервать его и сказать: «Вы говорите нам, что заключение тривиально, но я не могу понять этого». Тогда Паули сделал то, что он часто делал, когда он обдумывал что-нибудь во время лекции: ушел из комнаты. Через несколько минут он вернулся и сказал: «Это тривиально» и продолжал лекцию. Однажды его ассистент, специалист в области ядерной физики, Виктор Вайскопф (1908—2002) опубликовал статью, в которой содержалась ошибка, и Паули, утешая его, сказал: «Не принимайте это слишком близко к сердцу, многие люди публикуют работы с ошибками; я – никогда!» Как-то Вайскопф показал Паули только что опубликованную статью по интересующему Паули вопросу. Он сказал: «Да, я тоже думал об этом, но я рад, что он это сделал, так что мне теперь не нужно делать это самому.

В период времени, относящегося к нашей истории, когда Паули был у Бора и стал интересоваться эффектом Зеемана, один из коллег Паули сопровождал его в прогулке по улицам Копенгагена. Он сказал Паули: «Вы выглядите очень несчастным», и Паули ответил: «Как же можно быть счастливым, когда думаешь об аномальном эффекте Зеемана?» Однако его размышления дали в 1924 г. важные плоды. Паули отказался от механического взгляда на атом и сосредоточил свое внимание на квантовых числах, которые представляют состояния электронов. Он провозгласил, основываясь на долгом изучении эффекта Зеемана, что каждый электрон характеризуется набором квантовых чисел, и что в атоме позволено быть не более чем двум электронам с одним и тем же числом. Попросту говоря, это означает, что не более двух электронов могут находиться на определенной орбите атома. Этот принцип был назван Паули «принципом исключения». Сразу же это правило позволило приписать электроны к различным энергетическим уровням и обосновать построение таблицы Менделеева. Этот принцип позднее был продемонстрирован, используя квантовую механику, и Паули был награжден Нобелевской премией по физике в 1945 г.


Спин электрона

Окончательная модификация старой квантовой теории с последующими объяснениями экспериментальных наблюдений была обеспечена в ноябре 1925 г. Г. Уленбеком (1900-1988) и С. А. Гоудсмитом (1902-1978), которые открыли, что электрон вращается вокруг своего центра подобно Земле и подобен маленькому элементарному магниту. Величину, характеризующую это вращение электрона, называют его спином, а характеризующую его магнитные свойства – его магнитным моментом. Уленбек и Гоудсмит нашли, что спин электрона в соответствующих единицах имеет значение h/4π . В то время им было по 20 лет, и их открытие было следствием скрупулезных изучений атомных спектров.

Георг Уленбек родился в Батавии (теперь Джакарта) в семье голландского военного и некоторое время оставался в Голландской Индии (теперь Индонезия). Поэтому молодой Георг поступил в начальную школу на Суматре. В 1907 г. его семья переехала в Нидерланды и поселилась в Гааге. В 1919 г. Уленбек поступил в Лейденский университет для изучения физики и математики у Пауля Эренфеста, у голландского физика Хайке Камерлинг Оннеса (1853—1926) (первооткрывателя в области низких температур, впервые получившего жидкий гелий и открывшего явление сверхпроводимости, за что был в 1913 г. награжден Нобелевской премией), и у X. Лоренца. Между 1922 и 1925 гг. он посещал Рим, где был частным учителем молодого сына голландского посла. Во время этих посещений он выучил итальянский язык, стал другом Э. Ферми (1901-1954) и глубоко изучал историю. Когда он оставлял Рим для возвращения в Нидерланды, серьезно раздумывал не оставить ли физику ради истории. Он обсуждал эту проблему со своим дядей, который был известным лингвистом, экспертом в области языков американских индейцев, и профессором Лейденского университета. Его дяде эта идея показалась привлекательной, но он полагал, что лучше сначала получить докторскую степень по физике, поскольку Уленбек уже достаточно далеко продвинулся в этой области. Эренфест также согласился с этим, но считал, что он должен познакомиться с тем, что в это время происходило в физике. Поэтому он взял Уленбека к себе на работу, с тем, чтобы он научился от Гоудсмита тому, что Паули называл «спектрозоологией», т.е. изучением спектров.

Самуэль Абрагам Гоудсмит родился в Гааге в семье преуспевающего купца и с 11 лет проявил интерес к физике, читая книги. Его особенно потрясало то, как спектроскопия показывает, что звезды состоят из тех же элементов, какие имеются на Земле. В университете он учился у Эренфеста, проявляя скорее интуитивный, чем аналитический способ мышления.

Уленбек позднее говорил: «Сэм никогда не был ясно мыслящим человеком, но обладал замечательным талантом – взять беспорядочные данные и дать им правильное направление. Он был волшебником в области криптограмм». И. Раби добавлял: «Он размышлял как детектив. Он и есть детектив». Гоудсмит действительно когда-то проработал девять месяцев детективом.

В 1920 г. Эренфест рекомендовал Гоудсмиту посетить Пашена в Тюбингене, который проводил свои исследования по спектроскопии. На следующий год, летом, он снова был в Тюбингене, и Пашен ввел его в спектроскопические методики. Вскоре он стал очень способным в обращении с квантовыми числами и объяснениями наблюдаемых спектров. В начале 1925 г. он опубликовал работу, в которой показал, что можно упростить применение принципа Паули, используя получисленные квантовые числа Ланде, и что одно из этих чисел всегда имело значение +1/2 или —1/2. В это время Эренфест попросил Уленбека и Гоудсмита работать вместе; Гоудсмиту, чтобы он объяснил Уленбеку магические вычисления с квантовыми числами, а Уленбеку, чтобы он обучил Гоудсмита некоторой физике и показал ему, что она состоит не только из манипуляций с квантовыми числами.

В августе 1925 г. эти два человека стали близкими друзьями, сохранив эту близость на всю жизнь. Они стали регулярно встречаться в Гааге и в одной из встреч в конце лета Гоудсмит рассказывал Уленбеку о принципе Паули, используя получисленные квантовые числа Ланде. Уленбек сразу же понял, что все электроны ведут себя так, как если бы они кроме вращения вокруг атомного ядра также вращались сами по себе (спин). В сентябре теория была завершена, и эти два исследователя показали, что эта концепция также объясняет нормальный и аномальный эффект Зеемана.

Американский физик венгерского происхождения Р. Крониг (1904—1995), который путешествовал по Италии и также был другом Ферми, уже сформировал такую же идею относительно спина. Крониг имел несчастье спросить мнение Паули, и Паули убедил его, что его гипотеза лишена любых оснований и высмеял идею, говоря, что она «конечно, очень умна, но, разумеется, не имеет ничего, что делало бы ее достоверной». В результате Крониг отказался от нее. Когда Уленбек и Гоудсмит узнали о критике Паули, которая представлялась справедливой, они хотели забрать свою статью, уже посланную для публикации, но Эренфест сказал им, что поскольку они молоды, то могут позволить себе совершить ошибку. Одно из возражений, например, заключалось в том, что если для размера электрона использовать формулу X. Лоренца, то для получения вращательного углового момента нужно приписать столь быстрое вращение, при котором скорость внешней поверхности электрона превышает скорость света. Работа не была отозвана и опубликована, а критика Паули осталась безосновательной.

После великого открытия спина Уленбек в 1927 г. эмигрировал в США, в университет Мичигана. В середине 1930-х гг. вернулся в Нидерланды, где стал приемником Крамерса в университете Утрехта. В 1939 г. он возвратился в Мичиганский университет. С 1960 г. работал в Рокфеллеровском институте в Нью-Йорке, был иностранным членом Итальянской Академии.

Гоудсмит также эмигрировал в 1932 г. в США в Мичиганский университет. В течение Второй мировой войны он работал с радарами, а позднее возглавил очень секретную миссию под кодовым именем «Алкос». Эта миссия следовала за наступающими войсками союзников в Европе, а в некоторых случаях и опережала их, чтобы узнать уровень работ по созданию немцами атомной бомбы. Было установлено, что немецкие ученые не достигли больших успехов в этой области, и Гитлер не мог иметь этого оружия до конца войны. Гоудсмит написал об этой миссии книгу «Миссия Алкос».

В заключение мы можем видеть, что полное развитие квантовой механики в течение ряда лет дало адекватную трактовку поведения атомов и молекул. Для нас, однако, то, что было описано, достаточно, чтобы понять главные факты. Мы можем представить себе атомы и молекулы в виде сложных систем, которые могут находиться в нескольких энергетических состояниях. В простейшей системе, атоме, эти энергетические состояния образуются его электронами. Разность энергии между орбитами электронов соответствует фотонам, испускаемым в видимом и ультрафиолетовом диапазонах спектра. Однако энергия, соответствующая данной орбите, может изменяться за счет возмущения, вызываемого разными причинами. Ими могут быть взаимодействия магнитного момента электрона (из-за спина) с магнитными моментами, получающимися при их вращении вокруг ядер, или с магнитным моментом самого ядра, или под действием внешних магнитных полей (эффект Зеемана), или электрических полей (эффект Штарка). В результате этих взаимодействий энергетический уровень невозмущенной орбиты расщепляется на несколько подуровней, которые слегка различаются по энергии. Переходы, которые могут быть между этими подуровнями, соответствуют т.н. тонкой или сверхтонкой структуре, и длины волн, соответствующие этим переходам, лежат в инфракрасном или радиочастотном диапазоне спектра.

Молекулы – более сложные системы, состоящие из атомов. Кроме электронных уровней, они могут иметь и другие энергетические уровни в результате вращательных движений, а также из-за того, что атомы, входящие в их состав, могут колебаться относительно своего положения равновесия. Согласно квантовой механике, энергии, соответствующие этим вращательным и колебательным движениям, также квантованы. Таким образом, получается, что любая электронная конфигурация обладает набором энергетических уровней, которые можно назвать вращательно-колебательными. Энергии, которые соответствуют скачкам между этими уровнями в определенной электронной конфигурации, очень малы, и им соответствуют длины волн инфракрасного и микроволнового диапазонов.

Итак, в спектре любой субстанции все линии в видимом и ультрафиолетовом диапазоне, в основном, получаются из-за электронных переходов, в то время как линии в инфракрасном и микроволновом диапазонах получаются из-за вращательно-колебательных уровней, или между подуровнями тонкой и сверхтонкой структуры, или между подуровнями, которые получаются в результате эффектов Зеемана и Штарка. Это правило не совсем строгое, поскольку энергии, соответствующие высоко возбужденным электронным уровням (уровни электронов, лежащим далеко от ядра, которые часто называют «ридберговскими»), мало отличаются, и переходам между ними соответствуют волны инфракрасного и микроволнового диапазонов. Мы не будем рассматривать этот случай.


ГЛАВА 9
МАГНИТНЫЙ РЕЗОНАНС

Мы видели, что вращательные движения любой частицы, атома или молекулы приводят к возникновению магнитного момента, на который влияет внешнее магнитное поле. Ради простого представления мы можем рассматривать магнитный момент нашей частицы в виде стрелки, которая указывает некоторое направление. Внешнее магнитное поле воздействует на магнитный момент частицы, т.е. на стрелку, вызывая пару сил, которые стараются повернуть и выстроить ее в направлении поля. Однако если частица вращается вокруг своей оси, подобно вращению Земли или спину электрона, наличие вращения кардинально меняет действия этих сил, и магнитный момент частицы начинает вращаться вокруг направления внешнего поля с угловой скоростью (пропорциональной магнитному полю), которая известна, как лармороваская частота (по имени ирландского ученого, открывшего это явление). Этот вид движения называется ларморовской прецессией. Это движение подобно движению волчка, вращающегося вокруг своей оси, наклоненной по отношению к вертикали: ось вращения медленно поворачивается вокруг вертикали (рис.33), совершая прецессионное движение.

Рис. 33. Волчок, вращающийся вокруг оси, наклоненной по отношению к вертикали, описывает прецизионное движение вокруг вертикального направления

В случае атома или молекулы их магнитный момент не может иметь любой наклон по отношению к внешнему полю, поскольку из-за квантования, возможны лишь вполне определенные наклоны (см. рис 30). Магнитный момент частицы может совершать вращения вокруг внешнего поля, на своей ларморовской частоте, которая соответствует значениям разрешенных наклонов. Каждому из этих движений и, следовательно, наклонам (углам) соответствует хорошо определенная энергия. Поэтому для того, чтобы изменить один наклон на другой, необходимо увеличить или уменьшить энергию частицы на разницу между двумя наклонами, или, как мы будем говорить, между двумя энергетическими уровнями.

Если полный угловой момент частицы равен 1/2 в соответствующих единицах, частица может выстроиться по полю либо почти параллельно, либо почти антипараллельно ему. Если же угловой момент отличается от 1/2, тогда число возможных направлений увеличивается, как показано на рис. 34.

Рис. 34. На (а) показаны две возможные ориентации углового момента l = ½  (в соответствующих ед.) по отношению к внешнему магнитному полю. На (б) показаны три ориентации для момента l = 1

Используя это обстоятельство, Штерн и Герлах дали первое экспериментальное доказательство пространственного квантования и смогли измерить угловые моменты некоторых атомов. Улучшив методику, Штерн с сотрудниками провел серию экспериментов в период между 1933 и 1937 гг., в которых были измерены магнитные моменты протона и дейтерона (ядро тяжелого атома водорода, состоящее из одного протона и одного нейтрона).


Резонансный метод с молекулярными пучками

Если подходящее излучение с частотой, которая точно соответствует разности между двумя энергетическими уровнями (т.е. с резонансной частотой) падает на частицу так, что заставляет ее перескочить с одного магнитного уровня на другой, с большей энергией, то это излучение будет поглощаться. Около 1932 г. итальянский физик Этторе Майорана (1906—1938), который таинственно пропал на море между Палермо и Неаполем, и Исидор Раби (1898—1988) теоретически обсудили поглощение, которое может возникать при магнитном резонансе. В 1931 г. Г. Брейт (1899—1981) и Раби уже теоретически предсказали использовать соответствующую методику для измерений магнитного спина и магнитных моментов.

Раби родился в Польше, но его родители эмигрировали в США, когда он был ребенком, и он вырос в еврейском квартале Нью-Йорка, где его отец держал аптеку. В 1927 г. он получил докторскую степень в Колумбийском университете и после двух лет, проведенных в Европе, в нем же работал до своей отставки в 1967 г. В 1927 г. он работал с Отто Штерном, и его внимание было сосредоточено на эксперименте, который проводили Штерн и Герлах. Поэтому после возвращения в Колумбийский университет он продолжил работу с атомными и молекулярными пучками и изобрел метод магнитного резонанса, который мы кратко опишем. Используя этот метод, после Второй мировой войны он сумел измерить магнитный момент электрона с исключительной точностью, что позволило проверить справедливость квантовой электродинамики. Этот метод получил огромное применение для атомных часов, для ядерного магнитного резонанса и, в последующем, для мазеров и лазеров. Во время Второй мировой войны Раби участвовал в разработке микроволновых радаров.

В знаменитой работе, написанной в 1937 г., Раби дал фундаментальную теорию для экспериментов по магнитному резонансу. В это время в его лаборатории проводились измерения магнитных моментов многих атомных ядер, основанные на методе неоднородного магнитного поля, использованного Штерном. Эти измерения начались в 1934 г. и продолжались до 1938 г. Раби, однако, хотел улучшить точность измерений и поэтому изучал эффект прецессионного движения спина вокруг магнитного поля. Но он не придавал значения явлению резонанса, который может появиться, если излучение с частотой, точно соответствующей разности энергий между уровнями, подается на спин. В сентябре 1937 г. его посетил С.Дж. Гортер, который тогда работал в университете Грёнингена в Нидерландах. Гортер рассказал Раби о своих неудачных попытках наблюдать эффекты ядерного магнитного резонанса в твердых телах. Во время этих обсуждений Раби стал осознавать резонансную природу явления и сразу же вместе со своими сотрудниками модифицировал свою аппаратуру. Таким образом, в 1939 г. метод был существенно улучшен, что позволяло переориентировать моменты атомов, молекул или ядер по отношению к постоянному магнитному полю, на которое накладывалось осциллирующее магнитное поле.

Рис. 35. Схема эксперимента с магнитным резонансом молекулярного пучка. Пучок из источника S пересекает две области А и В с однородными магнитными полями, которые отклоняют пучок в противоположные направления. Если молекула не изменяет своего состояния спина, когда она проходит область С, она не изменяет своего отклонения. В область С вводится осциллирующее поле. Когда в области С частота равна частоте ларморовской прецессии, ориентация спина молекулы изменяется, что проявляется резким падением интенсивности пучка на детекторе D

Когда частота этого осциллирующего поля равна разности энергий между уровнями в магнитном поле, деленной на постоянную Планка, может происходить переориентация, которая в этом случае резонансна, и может приводить к поглощению с нижнего на верхний уровень, или, как конкуренция, к процессу вынужденного излучения с верхнего уровня на нижний уровень. Чтобы обнаружить эту переориентацию, Раби и его сотрудники Дж. Келлог, Н. Рамси и Дж. Захариас использовали искусную систему, состоящую из двух секций, в которой неоднородное магнитное поле действовало на пучок (рис. 35). В первой секции (А) поле отклоняло молекулярный пучок в одном направлении, в то время как во второй секции (В) неоднородное поле было приложено в обратном направлении, отклоняя пучок в противоположном направлении и тем самым, перефокусируя пучок на приемнике. Поскольку эффекты фокусировки и перефокусировки пучка зависят одинаковым образом от скоростей молекул, молекулы, независимо от их скоростей собирались в одном месте на приемнике. В центре установки (С) было приложено сильное магнитное поле, которое вызывало ларморовскую прецессию магнитных моментов молекул. В той же области накладывалось более слабое, но осциллирующее магнитное поле. Если частота этого осциллирующего поля равна ларморовской частоте, тогда оно способно переориентировать магнитный момент молекулы. В результате частица во второй секции будет отклоняться разным образом и уже не попадет в положение фокуса. Таким образом, если с помощью приемника наблюдается интенсивность пучка, то, поддерживая сильное магнитное поле постоянным и слегка изменяя частоту слабого осциллирующего поля, можно получить кривую, как показано на рис. 36, которая показывает минимум сигнала на приемнике, когда частота изменений поля равна частоте, соответствующей переходу между двумя уровнями.

Рис. 36. Типичная резонансная кривая измерений магнитного момента в молекулярном пучке

За эти эксперименты Раби был удостоен Нобелевской премии в 1944 г. Он пользовался высоким авторитетом в научном мире и многие ученые советовались с ним о направлении своих исследований. В 1937 г. он отговаривал Рамси, который в то время был аспирантом в Колумбийском университете, от продолжения исследований с молекулярными пучками, считая, что у них малое будущее. Рамси дерзко игнорировал этот совет своего наставника и, как мы увидим, сумел добиться важных успехов в этой области, некоторые из которых были использованы при создании атомных часов. Сам Раби, несколькими годами позже, получил Нобелевскую премию за разработку пучково-резонансного метода.

Норманн Ф. Рамси родился в Вашингтоне в 1915 г. Его отец был офицером артиллерии, а мать, дочь немецких иммигрантов, была преподавателем математики в университете Канзаса. В 1931 г. он поступил в Колумбийский колледж Нью-Йорка, который окончил в 1935 г. и отправился в Англию в Кембридж в качестве стажера по физике. Летом 1937 г., после двух лет в Кембридже, он возвратился в США, чтобы работать в Колумбийском университете под руководством Раби. Раби как раз изобрел свой метод и Рамси работал вместе с другими коллегами, проводя первые эксперименты.

В 1949 г., уже в Гарварде, Рамси, работая над тем, как улучшить и повысить точность метода Раби, изобрел метод разделенных осциллирующих полей, в котором одиночное магнитное осциллирующее поле в центе устройства Раби заменяется двумя осциллирующими полями на входе и выходе, причем они располагаются на расстоянии друг от друга. Этот метод дал ряд преимуществ в изучении магнитных моментов атомных ядер и нашел многие применения.

Метод, очень похожий на метод Раби, в 1940 г. использовали Л.В. Альварец (1911 – 1988) и Ф. Блох для измерения магнитного момента нейтрона. Они определили его значение с точностью до 1%. Поскольку их работы с описанием экспериментов были опубликованы тремя годами позже первых работ Раби по магнитному резонансу, их методика обычно рассматривается как адаптация метода Раби. Однако идея Блоха, использовать магнитный резонанс в осциллирующем магнитном поле, вполне оригинальна. Альварец получил в 1968 г. Нобелевскую премию за разработку и использование устройства регистрации элементарных частиц в ядерной физике (пузырьковая камера). В конце 1970-х гг. он стал автором смелой гипотезы о связи развития доисторических животных 65 млн. лет назад с катаклизмом, который получился из-за падения на Землю гигантского метеорита. Гигантская воронка диаметром 180 км была позднее обнаружена на полуострове Юкатан (Мексика), которую связывают с ударом космического объекта приблизительно в тот же период. Другие свидетельства в пользу гипотезы Альвареца были получены в последующие годы.


    Ваша оценка произведения:

Популярные книги за неделю