355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Марио Бертолотти » История лазера » Текст книги (страница 8)
История лазера
  • Текст добавлен: 9 октября 2016, 15:00

Текст книги "История лазера"


Автор книги: Марио Бертолотти


Жанры:

   

Физика

,

сообщить о нарушении

Текущая страница: 8 (всего у книги 31 страниц)

Закон Планка

Теоретическая ситуация, как описывают, была следующей. Когда в воскресенье 7 октября 1900 г. X. Рубенс со своей женой посетил Планков, он рассказал Планку об измерениях на длинах волн до 50 мкм, которые он произвел вместе с Ф. Курлбаумом в Берлинском институте. Эти измерения показали определенное отклонение от предположений согласно закону Вина, но были в согласии с новой формулой Рэлея. Публичное представление этих результатов должно было состояться 19 октября на сессии Германского Физического общества. Перед этим заседанием Планк старался модифицировать свое выражение для энтропии осцилляторов так, чтобы оно согласовывалось с новыми результатами, все еще придерживаясь основ термодинамических рассмотрений, он вывел закон распределения, который сегодня носит его имя. Той же ночью он послал открытку Рубенсу с новой формулой, которая была получена на следующее утро. Спустя день или два Рубенс пришел к Планку и показал ему экспериментальные результаты, которые прекрасно совпадали с новой формулой. На собрании Германского Физического общества 19 октября Курлбаум представил эксперименты, выполненные с Рубенсом, и в последовавшей оживленной дискуссии, Планк представил свою новую формулу в комментарии, озаглавленном «Об улучшении закона излучения Вина». «В тот же день, в который я сформулировал этот закон, я поставил перед собой задачу придать ему правильный физический смысл», – говорил Планк позднее, и после нескольких недель самой напряженной работы в его жизни, он 14 декабря снова на заседании Германского Физического общества смог объяснить физические гипотезы, которые поддерживали этот закон.

В своей лекции Планк утверждал, что согласно некоторым довольно сложным вычислениям, которые он выполнил, можно найти способ исправить парадоксальные заключения, полученные Рэлеем, и избежать опасности ультрафиолетовой катастрофы, если принять постулат, что энергия E электромагнитных волн (включая видимый свет) может существовать только в форме некоторого пакета с энергией, содержащейся в каждом пакете, прямо пропорциональной соответствующей частоте f:

«...мы рассматриваем – и это наиболее важная часть всех вычислений – Е состоит из совершенно определенного числа конечных равных частей, которые получаются путем использования для этой цели естественной константы h... Эта константа при умножении ее на частоту f резонаторов дает элемент энергии е... а путем деления Е на элемент энергии е мы получаем... число элементов энергии, которые распределены среди N резонаторов».

Эта гипотеза, известная как квантовая теория, предполагает, что энергия может испускаться только дискретными величинами, или пакетами, а не непрерывно изменяемыми величинами. Минимальная энергия, которую осциллятор может испустить на частоте f, является произведением частоты на универсальную константу, которую Планк обозначил h и которая ныне известна как константа Планка (постоянная действия).

Планк получил эту интерпретацию закона черного тела до середины ноября 1900 г., но представил свои результаты Германскому Физическому Обществу в Берлине только 14 декабря. Великий математик и физик А. Зоммерфельд (1868—1951) назвал этот день «днем рождения квантовой теории». Он, в частности, ссылался на тот факт, что Планк рассматривал «наиболее существенным пунктом» своей теории гипотезу, что энергия распределяется среди резонаторов полости только целыми кратными элементами конечной энергии.

Спустя более чем 30 лет в письме своему другу физику, специалисту в оптике и спектроскопии, Р. В. Буду (1868-1955) от 7 октября 1931 г., Планк оправдывался:

«короче говоря, я могу охарактеризовать всю процедуру как акт отчаяния, т.к. по своей природе я миролюбив и не склонен к сомнительным авантюрам. Однако я уже бился 6 лет (с 1894 г.) над проблемой равновесия между излучением и веществом без каких бы то ни было успехов. Я сознавал, что эта проблема имела фундаментальную важность для физики, и я узнал формулу, описывающую распределение энергии в нормальном спектре (т.е. спектр черного тела); следовательно, требовалось найти любой ценой теоретическую интерпретацию, однако эта цена могла быть высокой».

Парадоксально, что революционная гипотеза Планка не была немедленно принята, но ученые того времени не понимали, что родилась новая физика. Сам Планк не признавал революции, которую он вызвал, считая, что квантование энергии не более чем простая математическая модификация, полезная для вычислений. Он не думал, что энергия действительно концентрируется в дискретных квантах. Будучи глубоко консервативным человеком, он в течение ряда лет ограничивал свои размышления рассмотрением своей теории квантования энергии просто как удобную гипотезу, которая позволяет применить статистику Больцмана к проблеме излучения.

Точно так же физики первых лет XX в. использовали формулу черного тела как эмпирическую, и сам Планк старался ограничить концепцию квантования и произвел две последовательные модификации своей теории, в которых сумел получить ту же формулу без необходимости предположения, что процессы поглощения включают обмен энергии квантами, т.е. кванты энергии (1914 г.). Научному сообществу потребовалось несколько лет, чтобы осознать его вклад и присудить ему Нобелевскую премию по физике лишь в 1918 г. «в признание заслуг, которые он оказал развитию Физики своим открытием квантов энергии».

Среди тех первых, которые указали, что что-то не вполне правильно, был Рэлей, который в 1905 г. снова обратился к своей формуле 1900 г., отмечая, что формула Планка сводится к ней в пределе низких частот, и заключал:

«Критическое сравнение двух процессов [т.е. его собственного и Планка] представляет интерес, но не следуя за соображениями Планка, я не могу принять их. Как применяемая ко всем длинам волн, его формула могла бы иметь большее значение, если бы была удовлетворительно установлена. С другой стороны, соображения, которыми я руководствовался [мое уравнение] очень просты, и эта формула, как казалось мне, является необходимым следствием закона равновесности, как он был утвержден Больцманом и Максвеллом. Мне трудно понять, как еще один какой-нибудь процесс, также основанный на идеях Больцмана, может привести к другому результату».

Таким образом, Рэлей указал факт появления новой концепции, обычно называемой «кризисом классической физики».

В это самое время гениальные соображения неизвестного служащего Патентного бюро в г. Берне (Швейцария) укрепили теоретические основы понимания явлений испускания и поглощения света. Этим неведомым служащим был Альберт Эйнштейн. Как мы увидим, Эйнштейн полностью принял концепцию квантования и предположил, что излучение ведет себя так, как если бы оно состояло из квантов энергии, что проявляется не только в процессах испускания и поглощения, но что кванты существуют независимо в виде частиц в вакууме. Однако прежде чем обсуждать эти фундаментальные концепции, нам нужно описать еще одну важную революцию, связанную с открытием строения атома и ее роль в излучении света.


ГЛАВА 4
ATOM РЕЗЕРФОРДА—БОРА

Концепция атома как сложной системы, содержащей внутри себя как отрицательные заряды (электроны), так и положительные (необходимые для нейтрализации электронов и делающие атом электрически нейтральным), была введена, как мы видим, между 19 и 20 столетиями. В 1911 г. благодаря фундаментальным экспериментам, выполненными Резерфордом, была разработана модель, которой мы, с некоторыми модификациями, пользуемся и поныне.


Резерфорд и планетарный атом

Эрнст Резерфорд (1871—1937) родился в маленьком городке Южного острова Новой Зеландии в семье выходца из Шотландии. Его мать была школьной учительницей и великолепно играла на рояле, что было необычным в Новой Зеландии того времени. Его отец, энергичный и умелый фермер, организовал выгодный бизнес по производству веревок и канатов. Многочисленная семья молодого Эрнста жила вдали от больших городов на семейной ферме.

В 10 лет Эрнст прочел популярную книгу по физике и, как это случалось с другими физиками в подобных случаях, был увлечен ею. После школы второй ступени и колледжа, где он был первым на экзаменах по английскому языку, латыни, истории, математике, физике и химии, в 1889 г. получил стипендию университета Новой Зеландии. Там он получил ученую степень, представив диссертацию по магнетизму железа, получаемого при высокочастотных электрических разрядах. В 1894 г. он выиграл стипендию, которая позволяла ему продолжить занятия в Англии. История гласит, что он получил эту новость во время выкапывания картошки и воскликнул: «Это последняя картошка, которую я выкапываю в моей жизни»; после чего одолжил деньги на билет и отправился в 1895 г. в Кембридж, куда был принят студентом-исследователем в знаменитую Кавендишскую лабораторию, возглавляемую Дж. Дж. Томсоном, открывателем электрона.

Как раз до этого Кембриджский университет решил больше сосредоточиться на экспериментальных исследованиях, открывая лаборатории и для студентов из других университетах, среди которых первым был Резерфорд. Он быстро стал известен среди других соучеников, один из которых писал: «У нас здесь появился кролик от Антиподов, и он копает очень глубоко».

В Кембридже Резерфорд продолжил свои исследования магнетизма и получил интересные результаты по передаче и детектированию электромагнитных волн. Затем, после открытия (в 1895 г.) В. Рентгеном рентгеновских лучей, Резерфорд, с энтузиазмом и энергией, которые были отличительными чертами его характера, присоединился к Томсону в его исследованиях рентгеновских лучей, а позднее (1896 г.) радиоактивности. В эту область он внес фундаментальные вклады, работая сначала в Кембридже, а после 1898 г. в Монреале (Канада), где он был назначен профессором физики в университете МакГилла. Он выдвинул идею, что радиоактивность заключается в разрушении первоначальных атомов с превращением их в другие элементы. С помощью этой теории дезинтеграции он раскрыл природу явлений радиоактивности. Эта теория получила полное подтверждение экспериментами, которые он выполнил вместе с молодым сотрудником, химиком Фредериком Содди (1877-1956), который получил Нобелевскую премию по химии в 1921 г. «за его вклад в наши знания химии радиоактивных веществ и его исследования происхождения и природы изотопов». Эти эксперименты включали изучение природы излучений, испускаемых радиоактивными веществами, которые открыл Резерфорд и обозначил их как альфа– и бета-лучи (ядра гелия – альфа, электроны – бета). В 1907 г. Резерфорд возвратился в Великобританию в качестве профессора физики в Манчестере (занял эту позицию после Артура Шустера). В следующем году он получил Нобелевскую премию по химии «за его исследования по дезинтеграции элементов и химию радиоактивных веществ». Наконец, в 1911 г. в результате изучения рассеяния альфа-частиц в твердотельных мишенях он предложил планетарную интерпретацию атома. В 1919 г. он объявил о первом искусственном развале атомного ядра и занял после Дж. Дж. Томсона пост директора Кавендишской лаборатории. В 1914 г. он был возведен в рыцарское звание, в 1932 г. удостоился титула Барона Резерфорда Нельсона. В 1925– 1930 гг. он был президентом Королевского общества.

Когда он неожиданно умер от ущемления грыжи, его прах был похоронен в Вестминстерском Аббатстве, к востоку от захоронения Ньютона и рядом с лордом Кельвином, в присутствии короля и представителей правительства.

Резерфорд, который считается выдающейся фигурой в развитии физики, был человеком вулканической энергии, огромного энтузиазма, исключительной работоспособности и твердого здравого смысла. Один из его сотрудников сказал, что он является человеком «не симпатичным, но просто великим». Фальшивая скромность была неведома ему.

Рис. 16. Рисунок атома Резерфорда. Пример в отношении водорода. Электрон (отрицательный заряд) вращается вокруг ядра (положительный заряд) подобно вращению Земли вокруг Солнца

В 1911 г. он постулировал модель атома, в которой было, наконец, дано правильное распределение отрицательных (электронов) и положительных зарядов. С помощью эксперимента, который стал классическим в истории физики, он продемонстрировал, что сильная концентрация положительного заряда помещается в центральной области каждого атома, в которой также сосредоточена большая часть массы атома. Эта центральная часть, которая по размерам, по крайней мере, в 100 000 раз меньше, чем весь атом, и в настоящее время обозначается как атомное ядро. Отрицательный заряд, которым окружается ядро, образуется электронами, которые вращаются вокруг ядра под действием сил электрического взаимодействия. Поскольку атом в целом электрически нейтрален, общий заряд электронов, вращающихся вокруг ядра, должен быть равен положительному заряду ядра (рис. 16).

Атомы различных элементов содержат разное число электронов, вращающихся вокруг ядра. К этому заключению пришли последовательно, отталкиваясь от открытия Менделеевым: химические элементы можно расположить в последовательности с прогрессивно увеличивающимися атомными весами в таблице Менделеева так, что элементы со сходными химическими свойствами располагаются в одной определенной колонке. Позднее (1913 г.) английский физик Генри Г. Дж. Мозли (1887-1915), который погиб молодым в Галлиполи во время Первой мировой войны, выполнил серию экспериментов по рассеянию атомами рентгеновских лучей. Эти эксперименты позволили ему определить число электронов, которые содержит атом. Он показал, что перемещение одного элемента до другого соседнего в таблице Менделеева получается путем добавления электрона. Таким образом, было установлено, что число электронов в атоме конечно и много меньше, чем воображали. Водород является простейшим атомом с одним электроном, гелий имеет два, и т.д. вплоть до самого тяжелого элемента – урана, известного в то время, который содержит 92 электрона (сегодня искусственно создают атомы с числом электронов до 118).

Мы можем сказать, что эта модель атома подобна системе планет, вращающихся вокруг Солнца под действием сил всемирного тяготения, с важным отличием, которым нельзя пренебрегать. Электроны, которые вращаются вокруг ядра, несут электрический заряд и поэтому должны, согласно законам электромагнетизма Максвелла, испускать электромагнитные волны подобно антенне радиовещательной станции. Но поскольку эти «атомные антенны» много меньше, электромагнитные волны, испускаемые атомами, в миллиарды раз меньше тех, что испускаются обычной антенной. Эти волны лежат в видимом диапазоне, и их испускание делает тела светящимися.

Таким образом, согласно модели Резерфорда, электроны, которые вращаются вокруг ядра, должны испускать световые волны, и поскольку эти волны несут энергию, электроны будут терять свою кинетическую энергию из-за испускания ими излучения. Легко рассчитать, что если это так, то все электроны атома полностью потеряют свою кинетическую энергию за пренебрежимо малую долю секунды и должны упасть на поверхность ядра.

Однако наблюдения показывают, что это не так, и атомные электроны бесконечно долго вращаются вокруг ядра на относительно большом расстоянии от них. Вдобавок к этому противоречию с фундаментальной природой атома, имеется ряд других несоответствий между теоретическими предсказаниями и экспериментальными результатами. Например, опыт говорит, что атомы излучают свет только определенных цветов или длин волн (спектральные линии, которые обсуждались в главе 2), в то время как движение электрона в модели Резерфорда должно приводить к излучению всех цветов (т.е. всех длин волн).


Нильс Бор

Команда молодых людей, собравшихся в Манчестере вокруг Резерфорда, были в основном физиками-экспериментаторами. Они были похоже на самого Резерфорда, который, несмотря на свою образование, не предавал большой важности теории и был, по существу, экспериментатором. Он заявил однажды: «Когда молодой человек в моей лаборатории использует слово "вселенная", я говорю, что самое время ему убираться вон». «А почему же вы доверяете Бору?» – спросили его. «Ну, он же футболист!» – ответил Резерфорд.

Кафедра в Манчестере, в одном из провинциальных английских университетов, была занята Резерфордом, когда спектроскопист сэр Артур Шустер решил уйти в отставку. Шустер, немецкого происхождения, унаследовал состояние, которое он частично использовал для обеспечения своего института прекрасной лабораторией, поддерживая таких физиков-теоретиков как Г. Бейтмен (1882—1946), Ч. Г. Дарвин и молодой датский физик Нильс Бор (1885-1962).

Нильс родился в Копенгагене в состоятельной семье. Его отец был хорошо известный профессор физиологии, мать происходила из семьи английских банкиров еврейского происхождения.

В то время Дания была культурным водоразделом между английскими и германскими традициями, что давало удачный синтез английской экспериментальной науки с более формальным теоретическим подходом германских университетов. Во многих отношениях характер Бора сочетал британское влияние, происходящее от эмпиризма здравого смысла Локка с типичными германскими подходами Канта относительно субъективных и объективных аспектов опыта.

У Бора была старшая сестра, Дженни, и старший на полтора года брат, Харальд (1887—1951). Между братьями всегда были замечательные отношение, и это имело важное влияние на метод работы Бора. С детства братья старались выражать свои мысли в форме оживленного диалога, тем самым развивая содержательный и диалектически обмен мнениями. Их непрерывный диалог приучил Бора к необходимости вырабатывать свои идеи путем обсуждения их с собеседником. Такая форма общения с Харальдом, который позднее стал знаменитым математиком и директором Института математики, расположенным, кстати, рядом с Институтом теоретической физики Нильса, дала ему математические данные необходимые в его работе.

Весной 1911 г. Нильс закончил и защитил свою докторскую диссертацию по электронной теории металлов. На рубеже столетий несколько выдающихся физиков, основываясь на доказательствах существования электронов во всех веществах, данных Дж. Дж. Томсоном, и на теории поведения электронов, данной X. А. Лоренцем, старались объяснить все физические явления, как следствия взаимодействия электронов друг с другом и с окружающими атомами и молекулами.

Первый успех был достигнут в теории металлов. Томсон, Лоренц, Поль Друде (1863—1906) и другие получили многообещающие данные из экспериментов на основе предположения, что электроны движутся в металлах подобно молекулам в идеальном газе. В 1990 г. Друде заключил, что отношение теплопроводности к электропроводности должно быть одно и то же для всех металлов и прямо пропорционально абсолютной температуре. Его выражение, однако, отличалось в два раза от экспериментально полученного значения. Лоренц в 1905 г. получил результаты, лучше согласующиеся с экспериментом, рассматривая свободные электроны в металле с помощью статистических методов, применимых в случае газов. Даже излучение, испускаемое при нагревании металлов, было в 1903 г. рассчитано Лоренцем, а Поль Ланжевен (1872– 1946) представил в 1905 г. теорию магнитного поведения.

Бор в своей диссертации рассмотрел все эти разные проблемы и пришел к заключению, что электронную теорию металлов можно модифицировать так, чтобы дать результаты, согласующиеся с экспериментами, причем внутренняя структура атомов не принимается во внимание. Напротив, проблема излучения и объяснение магнитного поведения требуют новых радикальных гипотез, относительно которых у него нет идей.

В то время докторская степень давала возможность провести постдокторское исследование за границей, и поскольку в диссертации обсуждалось поведение электронов в металлах, то вполне понятно, что Бор выбрал поездку в Кембридж, чтобы работать с Дж. Дж. Томсоном.

Первая встреча с Томсоном не установила хороших отношений между ними. Бор вошел в кабинет Томсона с книгой, открыл ее и вежливо сказал: «Этот пункт неверен». Надо сказать, что в то время Бор не очень хорошо владел английским языком и поэтому выражал свои мысли в виде коротких фраз. Во всяком случае в октябре 1911 г. он писал своему брату Харальду:

«...с Томсоном пока нелегко иметь дело, как я думал в первый день. Он прекрасный человек, исключительно умен и полон воображениями (ты бы послушал одну из его элементарных лекций) и весьма приветлив; но он так сильно занят многими вещами и настолько погружен в свою работу, что очень трудно поговорить с ним. Он до сих пор не нашел времени прочесть мою работу (его диссертацию), и я не знаю примет ли он мой критицизм».

Фактически Томсон прекратил работу по теории металлов, и более того, импульсивно отверг тесное сотрудничество и постоянные разговоры с Бором, нужные ему для развития идей. Тем не менее во время своего пребывания в Кембридже Бор познакомился с работой Томсона о моделях атомов и пришел к пониманию их фундаментальной несостоятельности, но в целом он был неудовлетворен.


    Ваша оценка произведения:

Популярные книги за неделю