Текст книги "История лазера"
Автор книги: Марио Бертолотти
сообщить о нарушении
Текущая страница: 24 (всего у книги 31 страниц)
Война патентов
Война лазерных патентов свирепствовала 30 лет. Если бы Гоулду в свое время дали бы хороший, квалифицированный совет, то он мог бы подать заявку на патент раньше Таунса и Шавлова, в период своих записей в ноябре 1957 г., и, определенно, получил бы его. Однако он думал, что сначала должен реализовать свою идею практически. Таким образом, он упустил время и представил свою просьбу спустя только два года после Таунса и Шавлова. Но, как мы видели, Гоулд не сдался и вместе с TRG получил британские патенты на некоторые различные решения лазерной технологии. Эти патенты не сделали Гоулда богатым, но они содействовали его стремлению поддержать его американские заявки. Когда в начале 1960-х гг. компания TRG была продана и проходила процедура переоформления активов, Гоулд сказал, что ему должны быть возвращены права на патент. В это время он активно работал в лазерной области в качестве профессора Бруклинского политехнического института, вплоть до 1973 г., когда он оставил эту должность и основал Optelecom, одну из первых организаций по разработке оптоволоконной связи.
В тот же год Апелляционный Патентный Суд США решил по делу о модуляции добротности (методика, позволяющая генерировать одиночные и мощные лазерные импульсы), что патент Шавлова—Таунса не описывает адекватно оптическую накачку лазерной среды. В это же время Гоулд решил продать половину своих прав одной нью-йоркской фирме, занимающейся патентным лицензированием (Refac Technology Development Corp.), в обмен на получение своих легальных вознаграждений.
Итак, в 1977 г., Патентное Бюро, через 18 лет после подачи заявки, выдало Гоулду патент на оптическую накачку лазеров (рис. 49), и Refac немедленно уведомила производителей, что они должны платить вознаграждение за лазеры с оптической накачкой. Это составляло от 3,5 до 5% от прибыли, что давало более 1 миллиона долларов в год, за счет продажи только твердотельных лазеров. О других типах лазеров, попадающих под действие патента, речь не шла. В течение действия патента (17 лет) на оптический мазер Таунса (17 лет), он принес ему только 1 миллион долларов, поскольку Bell Labs, по согласованию с правительством, соглашалась запрашивать только минимальные вознаграждения за свои патенты.
Рис. 49. Чертеж из патента Голда
Поэтому производители лазеров сопротивлялись требованиям платить, и Refac через неделю после получения патента начала процесс против Control Laser Corp, которая была лидером среди семи других лазерных компаний, отказывающихся платить по патенту Гоулда.
В следующем году Гоулд получил второй патент на обширную область применений, включая лазерную технологию. Сообщение об этом повысило стоимость акции Refac на бирже с 10 долларов до 34. Гоудд продал часть своих прав настырным адвокатам и компаниям, которые умели получить прибыль.
Один из аргументов, которые компании, отказывающиеся платить, выдвигали в судах, заключался в том, что информация в патенте Гоулда была недостаточной, чтобы построить лазер. Поэтому Гоудд вместе с некоторыми другими исследователями в Optelecom Inc. и при финансовой поддержке фирм, которые купили часть его прав, использовал коммерчески доступные натриевые лампы для накачки органических красителей. Используя краситель родамин В, он построил лазер, опираясь лишь на ту информацию о конструкции, которая содержалась в его патенте от 1958 г., и на информацию, которая была доступна в то время. Этот результат нанес удар по компаниям, противившимся его патенту.
Первое дело в суде было против маленькой компании General Photonics. Она не предпринимала сильной защиты, и 1 марта 1982 г. федеральный судья постановил выплачивать вознаграждение за патент на оптическую накачку. Однако, вскоре после этого, противники патента добились пересмотра патентов, которые уже были выданы. В начале 1983 г. Патентное Бюро отвергло притязания Гоулда. Но он был упорным и снова обратился в суд. Это привело его к окончательной победе в мае 1987 г. В октябре 1987 г. Гоулд получил свой третий патент на газоразрядный лазер и четвертый патент на брюстеровские окна для лазеров.
Победы в судах сделали Гоулда мультимиллионером. Кстати, если бы он получил свои патенты без задержки, они принесли бы ему существенно меньше денег, поскольку объем рынка лазеров был сначала невелик. Именно так и случилось с патентом Таунса, срок которого истек до того, как объем лазерной продукции стремительно вырос.
Для людей, которые желают спросить, насколько идеи Таунса и Гоулда развились из общедоступной информации, учитывая, что оба были в Колумбии и хорошо знали друг друга, можно дать ответ, принимая во внимание два соображения.
Первое: идея нуждается в питательной среде для своего развития, т.е. все общие соображения должны быть развиты, прежде чем идея другого человека будет оставлена, но и благоприятно сработает на новую идею. Другими словами, идея пускает корни только в подготовленных умах. Даже если разговоры с Таунсом и дали Гоулду идею, что можно возбуждать атомы путем оптической накачки, Гоулд должен был бы уже разработать концепцию использования инверсной населенности, оптического резонатора и т.д., чтобы объединить их в своем лазерном проекте.
Второе если мы посмотрим, как два человека разрабатывают идею лазера и, конкретно, как они приходят к решению одной из принципиальных проблем, а именно резонатора, мы увидим, что два предложенных решения типичны для их разных индивидуальностей. Таунс – изобретатель мазера и эксперт по микроволнам, начинал рассмотрения с куба, с отражающими стенками, т.е. типичной формы микроволнового резонатора. И лишь позднее, по предложению Шавлова, убрал все стенки, кроме двух. Гоулд, с оптической подготовкой, с самого начала рассматривал резонатор, образованный длинной трубкой (~ 1 м) с двумя плоскопараллельными зеркалами на концах, а затем разработал все возможные конфигурации с плоскими внешними зеркалами, сферическими зеркалами, призмами полного внутреннего отражения и т.д.
Гоулд был, прежде всего, изобретателем (по свидетельству жены, его идолом с детства был Томас Эдисон). Набросав в своей записной книжке эскиз своей идеи и ряд особо разработанных предложений, он оформил их в предложении для контракта по монтажу всего устройства. Таунс и Шавлов, с их мировоззрением профессиональных физиков, сперва подумали о написании статьи для сообщения их идеи научному миру, не без того, чтобы первыми получить патент (не будем забывать, что их поддерживала коммерческая фирма), и уж затем они работали над деталями теоретически, прежде чем включиться в экспериментальную работу. Поэтому, как следует из этой истории, мало сомнений в том, что идея лазера родилась независимо и одновременно у этих трех исследователей [7]7
Гоулд был в 1991 г. занесен в реестр Национального Холла славы изобретателей. Он скончался 16 сентября 2005 г. – Прим. пер.
[Закрыть].
ГЛАВА 13
И НАКОНЕЦ-ТО, ЛАЗЕР!
Сразу же после опубликования работы Шавлова и Таунса и даже до того целый ряд людей стали размышлять о разных способах создания инверсной населенности в инфракрасной и видимой областях. Творческая ментальность исследователя, который стремится улучшить существующие знания и прорваться в новом направлении без предубеждений, приводит почти одновременно и независимо к рассмотрению нескольких различных систем. В ряде случаев, например, как тот, в котором используется излучение, испускаемое за счет стимулированной рекомбинации электрон-дырочных пар в полупроводнике, исследования проводились до обсуждения Шавловым и Таунсом.
Конечно, главные темы исследований были под воздействием идей этих двух ученых, и большинство людей ожидало, что первая работа лазера осуществится в возбужденном газе. Но получилось так, что первый работающий лазер был создан в июле 1960 г. [8]8
Первый лазер был создан Т. Мейманом 16 мая 1960 г. – Прим. пер.
[Закрыть]в Исследовательских лабораториях фирмы Hughes (Малибу, Южная Калифорния, США) Теодором Мейманом, который использовал рубин в качестве активного материала. Затем последовало огромное число других лазеров на твердотельных материалах, газах и жидкостях. Это продемонстрировало, что многие люди в различных частях мира устремились к проблеме с разных направлений, работая, более или менее, независимо друг от друга. Более того, они показали, как, сравнительно легко сделать лазер, после того как поняты основные принципы его работы.
Мейман начинает создавать рубиновый мазер
Теодор Мейман родился в 1927 г. После учебы в университете Колорадо и после получения докторской степени по физике в 1955 г. в Стэнфордском университете по диссертации, посвященной микроволновой спектроскопии, он стал работать в промышленности. Вначале он был исследователем в Lockheed Aircraft, где занимался изучением проблем коммуникаций для управляемых снарядов. Затем он перешел в Hughes для работы над мазером.
Во время своей работы над диссертацией в Стэнфорде Мейман изучал тонкую структуру возбужденных состояний гелия. В своей работе он использовал разработанные им измерительные методики, которые представляли комбинацию электроники, техники микроволн и оптических приборов. В Hughes он стал работать во вновь созданном Отделе атомной физики. Главной целью была генерация когерентных частот, более высоких, чем удавалось получать в то время. Это было время, когда появился аммиачный мазер. В Hughes возник большой интерес к исследованиям мазеров. Однако Мейман сперва работал по другому контракту. Когда он окончил эту работу, то пожелал работать в области фундаментальных исследований, но ведомство Армии, которое финансировало эту работу, требовало в то время практический мазер, работающий на длине волны 3 см. Их не интересовали какие-либо научные достижения, они просто хотели иметь такой мазер, и Меймана попросили возглавить проект. У него это не вызвало энтузиазма, поскольку проект был чисто техническим, а он стремился к исследовательской деятельности. Но затем он заинтересовался и, хотя заказчики не требовали, чтобы он сделал выдающееся изделие, решил, что может сделать мазер более практичным.
Мазеры в то время имели два серьезных практических недостатка. Главная трудность была в том, что твердотельный мазер (наиболее полезный тип) требовал для своей работы очень низких температур. В самом деле температура жидкого гелия, которая требовалась, всего лишь на 4 К выше абсолютного нуля. Другая проблема была в том, что в обычном мазере использовался огромный магнит весом около двух тонн. Он был нужен, чтобы получить зеемановские уровни, требуемые для работы мазера. Внутри магнита помещался дьюар (специальный сосуд, в котором может продолжительное время сохраняться сжиженный газ). В него приходилось подливать жидкий азот с температурой – 166° С, которая была первой стадией охлаждения гелия. В дьюар с жидким азотом помещался второй дьюар с жидким гелием. Сам мазер представлял маленький резонатор с кристаллом внутри него. Все это помещалось в дьюар с жидким гелием, который, в свою очередь, помещался между полюсами магнита. Магнит должен был обеспечить сильное поле во всей области, занимаемой дьюарами, резонатором и кристаллом. Поэтому он имел большие размеры и вес.
Предпочтительным материалом для мазера в то время был рубин. Мейман решил, что он может кое-что сделать, также используя рубин. Он сделал миниатюрный резонатор, используя сам кристалл рубина. С этой целью рубин вырезался в виде маленького параллелепипеда. Его грани покрывались слоем серебра, имеющего высокую проводимость. В одной из стенок, делалось маленькое отверстие. Таким образом получался резонатор и, одновременно, активный материал. Затем он решил, вместо того, чтобы помещать двойной дьюар в громадный магнит, взять маленький постоянный магнит и поместить его в дьюар. Были опасения, что магнит лопнет, но все сработало прекрасно. В результате все устройство стало весить не более 15 кг вместо двух тонн и работало много лучше и много более стабильно, чем прежде.
Позднее он сделал еще меньшие мазеры весом не более 2 кг и разработал «горячий» мазер, который работал при температуре жидкого азота и даже сухого льда.
Рубиновый лазер
В первой половине 1960 г. предположения о лазерных материалах сосредоточивались на газах, и более конкретно на парах щелочных металлов, возбуждаемых оптическим излучением, а также на инертных газах, возбуждаемых электрическим разрядом. Успех, полученный Мейманом с рубиновым лазером, был поистине сюрпризом. Однако это не было случайным открытием. Уже работая с рубином как с материалом для мазера, Мейман решил использовать его в качестве отправного материала для лазера. Вначале он выполнил некоторые расчеты, но без успеха, поскольку Ирвин Видер опубликовал работу, в которой указал, что квантовая эффективность рубина (т.е. число фотонов люминесцентного излучения на каждый поглощенный фотон) была всего лишь около 1%.
Рис. 50. Энергетические уровни хрома в рубине, которые участвуют в излучении лазера
Рубин является кристаллом окиси алюминия (Аl 2O 3), в которую добавлено небольшое число атомов хрома в качестве примеси (мы говорим допирование хромом [9]9
Вообще-то, “мы говорим” – легирование (OCR)
[Закрыть]). Атом хрома теряет три своих электрона и становится ионом хрома, который замещает один из ионов алюминия в кристаллической решетке. Эти ионы хрома имеют серию энергетических уровней в видимой области (рис. 50), которые делают прозрачный и бесцветный материал окрашенным от розового до тёмно-красного, в зависимости от концентрации примеси. На рис. 50 показаны две серии уровней, которые настолько близки друг к другу, что практически сливаются в две непрерывные полосы. Эти две полосы имеют центры на длине волны 0,55 мкм (зеленая; эту полосу в спектроскопии обозначают 4F 2) и на длине волны 0,42 мкм (фиолетовая; обозначенная 4F 1) соответственно. Если кристалл облучается зеленым или фиолетовым светом, возбужденные ионы релаксируют на два промежуточных уровня, обозначаемых 2Е, за очень короткое время, вместо того, чтобы непосредственно спадать в основное состояние. Переход из зеленой и из фиолетовой полос на эти уровни происходит без испускания света, но дает избыток энергии решетке через колебания ее атомов. С этих очень близко расположенных уровней (обозначаемых 2A и Ē) ионы медленно спадают (за время порядка миллисекунды) на основной уровень, причем в это время испускается красный свет, который имеет очень узкое спектральное распределение (узкие линии) около 6928 А° (спектроскописты называют ее R 2линией) или 6943 A° (R 1). Этот свет, испускаемый после освещения кристалла, называется люминесценцией. Наименование этих уровней и полос было предложено теоретиками согласно рассмотрению на основе теории групп, которое отражает определенные свойства симметрии соответствующих состояний. Это не представляет интереса в нашем случае.
Ирвин Видер из Исследовательских лабораторий Вестингауза занимался исследованием излучения, соответствующего узким линиям рубина, т.е. R линий. Он использовал лампу накаливания, свет которой поглощался и возбуждал обе зеленую и фиолетовую полосы рубина. Затем энергия передавалась на 2Ē уровень. Видер рассчитал, что эффективность этого преобразования энергии была около 1% (т.е. около одной сотой энергии, поглощенной в этих двух полосах, оказывается в виде красного света, испускаемого в R линиях). Если это так, то лишь один красный фотон получается на каждые 100 поглощенных фотонов, что, практически, закрывает возможность использования оптической накачки для получения лазера. Однако после исследования других материалов, Мейман решил выполнить более точные измерения для рубина, путем изучения спектроскопии ионов хрома в розовом рубине. Он обнаружил, что на самом деле, квантовая эффективность была очень высока. Эти и другие результаты точных исследований люминесценции составили предмет статьи, которая была направлена 22 апреля 1960 г. в журнал Physical Review Letters и была опубликована в июне того же года.
В этом исследовании Мейману помогал И. Д'Хейнес, который только частично был связан с фирмой и придерживался мнения своих руководителей Дж. Бирнбаума и Г. Лайона, высказывавших скептицизм относительно успеха.
В результате исследований было обнаружено распределение энергии в ионах хрома, которое мы описали и которое изображено на рис. 50, причем время жизни 2Ē уровней, оказалось около 5 мс. Это, относительно длинное, время жизни, в течение которого атомы остаются в метастабильном состоянии, и их последующий распад с испусканием излучения (радиационный распад) является ответственным за явление люминесценции рубина, т.е. явления, которое и дает материалу его красный цвет. Рубины, которые исследовал Мейман, относились к так называемым розовым рубинам, в которых концентрация ионов хрома составляет только около 0,05% по весу. Поэтому, хотя обе линии 6943 A° и 6928 А° красные, полная окраска получается розовой (отсюда и название). Измерения квантовой эффективности люминесценции, т.е. числа фотонов, испускаемых при люминесценции, по сравнению с числом поглощенных фотонов зеленого возбуждающего света, показали, что это отношение близко к единице. Это означает, что практически каждый поглощенный зеленый фотон приводит к испусканию одного красного фотона. Это результат опровергал данные Видера и делал возможным осуществление лазера.
Мейман рассчитал, что достаточно интенсивный зеленый свет может желательным образом заселить промежуточное состояние 2Ē. Это, в свою очередь, должно было изменить населенность основного состояния (уменьшить его населенность). Все эти результаты побудили его использовать рубин для первого лазеры и продолжить расчеты.
На этом этапе принципиальной проблемой было найти источник зеленого света, достаточно мощного, чтобы накачать атомы на верхний уровень. Грубо говоря, лампа излучает свет, как если бы она была черным телом с высокой температурой.
Предварительные расчеты показали, что требуется лампа с эквивалентной температурой черного тела 5000 К. Мейман начал свои расчеты с коммерчески доступными ртутными лампами, но убедился, что их характеристики на пределе. Тогда он вспомнил, что импульсные ксеноновые лампы имеют эквивалентную температуру 8000 К. Не было причин исключать работу лазера в импульсном режиме, так как во многих случаях импульсный источник был привлекательным.
Теперь мы можем легко понять динамику процесса, снова обращаясь к рис. 50. Освещение зеленым светом возбуждает некоторые ионы хрома с основного уровня (на рисунке он имеет спектроскопическое обозначение 4А 2и обозначен числом 1) в полосу уровней, обозначенную как 4F 2и числом 3. Отсюда ионы быстро, за доли микросекунды (путем передачи энергии при столкновениях с атомами решетки), переходят на уровень 2Ē, обозначенный числом 2. С него они возвращаются на основной уровень в течение ~ 5 мс, испуская красный свет.
Мейман измерил уменьшение числа ионов, остающихся на основном уровне после поглощения зеленого света на 5600 А°, путем наблюдения фиолетового света на 4100 А°, который поглощается на переходе от 4A 2на 4F 1. За счет этого перехода энергия ионов хрома возрастает с основного уровня 1 в полосу, обозначенную 4F 1. На образец рубина посылался интенсивный короткий импульс излучения зеленого света на 5600 А° и одновременно образец просвечивался фиолетовым светом на 4100 А°. Когда интенсивный импульс излучения на 5600 А° посылается на образец, излучение на 4100 А°, также посылаемое в это же время на образец, испытывает резкое увеличение (поглощение уменьшается), которое спадает за ~ 5 мс. Этот эффект легко объяснить. Импульс света на 5600 А°, который возбуждает ионы с основного уровня в полосу 4F 2уменьшает число ионов на основном уровне, которые можно возбудить светом на 4100 А° в полосу 4F 1. Тем самым уменьшается поглощение фиолетового света. Только после ~ 5 мс, когда ионы возбужденные в полосу 4F 2, пройдя уровень 2Ē, возвратятся на основной уровень, поглощение фиолетового света возвратится к первоначальному состоянию. Этот и другие эксперименты позволили Мейману рассчитать, что изменение населенности основного уровня в 3% вполне осуществимо.
Воодушевленный этим результатом, он модифицировал условия эксперимента, чтобы возбудить максимально возможное число ионов хрома с основного уровня 1 на уровень 2. Для этого он использовал рубин в виде цилиндра, окруженного спиральной импульсной лампой (лампой-вспышкой). Чтобы собрать побольше света на образец рубина, он поместил все в цилиндр с посеребренными внутренними стенками. Таким образом, около 98% света лампы отражалось от них на образец. После внимательного изучения каталога ламп-вспышек, выпускаемых для профессиональных фотографов фирмой Дженерал Электрик, он установил, что три из них, FT 503, FT 506, FT 634, в принципе годятся. Чтобы получить резонатор, он отполировал оба основания цилиндра рубина и сделал их грани параллельными. На них испарением в вакууме наносились слои серебра (получался эталон Фабри-Перо). Один из слоев имел максимальный коэффициент отражения, а другой имел некоторое малое пропускание для вывода излучения из резонатора. Цилиндр рубина имел длину около 2 см и диаметр несколько меньший 1 см, и полностью окружался спиралью импульсной лампы (рис. 51). Мейман выбрал самую маленькую лампу, FT 506. Через лампу разряжалась батарея конденсаторов, заряженная до нескольких киловольт. Напряжением на батарее определялась интенсивность излучения лампы– Когда энергия разряда была не слишком высока, через не полностью отражающую грань рубина проходил красный свет люминесценции, который можно было наблюдать глазом на экране. С помощью подходящего приемника (фотоэлемент или фотоумножитель) можно было также прослеживать изменение интенсивности этого света во времени, убеждаясь, что она затухает за характерное время ~ 5 мс, типичное для люминесценции. Однако когда энергия разряда достигала определенного значения, внезапно на экране наблюдалось интенсивное красное пятно диаметром около 1 см.
Рис. 51. Схема лазера на рубине Меймана
Этот результат был получен в мае 1960 г. Сигнал лазера был не очень сильным, поскольку образец рубина выбирался из тех, что использовались в мазерах, и был довольно плохого оптического качества. Мейман заказал специальные рубины и немедленно подготовил сообщение о своих впечатляющих результатах, которое он отправил 24 июня в Physical Review Letters. Однако редактор журнала не принял статью для публикации, считая, что физика мазеров уже достигла значительного уровня и новые результаты в этой области не заслуживают быстрой публикации. Нет необходимости говорить, что он ничего не понял по существу дела. Однако не будем забывать, что в то время соответствующее устройство обозначалось как оптический мазер, а также то, что люди были склонны верить Шавлову, что R-линии рубина не годятся для лазера. Поэтому можно оправдать скептицизм редактора в отношении достоверности результатов. Во всяком случае, Мейман сделал известным свое изобретение через сообщение в New York Times 7 июля 1960 г., а статья, отвергнутая Physical Review Letters, через короткое время появилась в британском журнале. В выпуске от 6 августа в Nature был описан этот выдающийся эксперимент.
Когда люди, отвечающие за рекламу в Hughes, решили сделать фотографию первого лазера и его создателя Меймана, они использовали самую большую спиральную лампу-вспышку FT503, поскольку фотография Меймана на ее фоне была более фотогенична. Широкое распространение этой фотографии создало представление, что именно такая лампа используется в рубиновом лазере. Это способствовало продаже этой лампы, так как желающие воспроизвести результаты Меймана использовали эту лампу.
Когда Мейман работал над своим проектом, в фирме не было особого энтузиазма. В больших компаниях часто имеется огромное сопротивление к чему-то новому и необычному. Многие люди были настроены скептически и не верили, что оптические мазеры будут созданы. Более того, они видели, что многие занимаются этой проблемой без какого-либо успеха. И наконец, даже если лазер удастся построить, на что он будет нужен? Если этого недостаточно, отметим, что Шавлов сказал, что рубин не годится, а Мейман как раз использовал именно этот материал. Люди фирмы заботились о деньгах. Стоит ли компании финансировать такую работу? Мейман не работал по контракту, но использовал общие фонды на исследования. Во всяком случае к концу девяти месяцев было потрачено 50 000 долларов.
Однако Мейман не опустил руки и был намерен продолжать. Через какое-то время, он 14 ноября 1967 г. получил патент на свой лазер. Сразу же после создания лазера, он оставил Hughes и в 1962 г. основал собственную компанию, Korad Corporation, которая стала лидером рынка, выпуская рубиновые лазеры высокой мощности. В последующие годы Мейман занимался коммерческой деятельностью. В 1984 г. его ввели в Зал славы Национальных изобретателей.
На следующий день, после того, как Мейман объявил, что рубин успешен, многие продолжали сомневаться в этом. В августе группа, включающая Шавлова, воспроизвела в Bell Labs лазер Меймана и показала, что он эффективно работает. Свои результаты они опубликовали в октябрьском выпуске Physical Review Letters. Многие, из тех кто не видел английских работ Меймана, посчитали, что первый лазер был создан в научном центре Bell Labs. Это заблуждение поддерживалось тем, что предложение лазера было сделано в том же Bell Labs Шавловым и Таунсом, которые, как было известно, работают над практической реализации своей идеи. Hughes в Калифорнии была полностью в стороне от этих исследований и от принципиальной команды на Восточном Побережье.
Работу лазера легко понять. Когда возбуждение импульсной лампой достаточно сильное, населенность состояния 2Ē становится больше, чем населенность основного состояния. В этой ситуации, некоторые из спонтанно испущенных фотонов люминесценции, которые распространяются параллельно оси системы и которые отражаются обратно и вперед на зеркалах концов рубина, многократно проходят через усиливающую среду, стимулируя излучение возбужденных ионов, производя, тем самым, вынужденное излучение. Таким образом, лазерное действие инициируется спонтанным излучением и протекает за счет усиления только того излучения, которое из-за селективных свойств резонатора, распространяется взад и вперед вдоль оси стержня. Фотоны, распространяющиеся не вдоль оси, а по другим направлениям, теряются после нескольких отражений.
В принципе лазерное действие можно получить на R 1или R 2линиях, но обычно оно получается на R 1, линии. Лазер характеризуется некоторыми особенными свойствами, присущими источнику этого типа: когерентностью, т.е. способностью производить интерференционные явления; направленностью пучка испусканием очень узкой полосы частот с очень большой мощностью. Расходимость пучка, т.е. угол, под которым он расходится, был около 5°, на расстоянии 10 м пятно излучения было меньше 9 см в диаметре. Более того, пучок был пространственно когерентным, что было немедленно продемонстрировано путем наблюдения способности производить интерференционные полосы. Испускаемая мощность была около 10 кВт, это означало, что поток, испускаемый в частотном интервале (спектральная мощность), почти в миллион раз превосходил тот, что соответствует солнечному свету на поверхности земли для того же спектрального интервала.
При исследовании временных характеристик лазерного излучения с помощью фотоэлектрического приемника и осциллографа оказалось, что излучение состоит из ряда тесно расположенных импульсов («пичков»), каждый длительностью порядка микросекунды (рис. 52). Эта особенность была названа пичковым режимом, а лазер обозначался как работающий в режиме свободной генерации. Вскоре была использована специальная техника, называемая Q-switching, или модуляция добротность. Этот метод заставляет лазер излучать лишь один импульс с существенно меньшей длительностью и соответственно с существенно большей (в сотни раз) пиковой мощностью. Получались импульсы света с пиковыми мощностями в сотни и даже тысячи мегаватт. Такие импульсы стали называть гигантскими.
Рис. 52. Излучение рубинового лазера в режиме «свободной генерации» (пички)
Появление лазера произвело в научном мире эффект разорвавшейся бомбы, вызвав разработку целого ряда систем лазеров, в реальность которых никто не верил несколькими месяцами ранее. Практически, любая субстанция, включая воздух, могла быть использована для создания лазера. Мы рассмотрим лишь несколько случаев и начнем рассмотрение с примеров твердотельных лазеров, а затем опишем реализацию первого газового лазера, гелий-неонового лазера, который даже сегодня является одним из наиболее широко используемых лазеров с прекрасными характеристиками. Мы также рассмотрим цезиевый лазер, неодимовый лазер, а также лазеры, основанные на растворах органических красителей. Эти лазеры можно перестраивать в очень широком диапазоне частот, и они являются некоторыми из наиболее универсальных лазеров. Наконец, полупроводниковые лазеры, имеющие фундаментальное значение для современных систем коммуникации, основанных на применении оптических волокон. Для этого применения полупроводниковый лазер является идеальным источником.