355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Леонид Вишняцкий » Неандертальцы: история несостоявшегося человечества » Текст книги (страница 6)
Неандертальцы: история несостоявшегося человечества
  • Текст добавлен: 29 сентября 2016, 04:27

Текст книги "Неандертальцы: история несостоявшегося человечества"


Автор книги: Леонид Вишняцкий


Жанры:

   

История

,

сообщить о нарушении

Текущая страница: 6 (всего у книги 23 страниц)

Ископаемые гены

Палеогенетике от роду – четверть века. Первая успешная попытка извлечь, реконструировать и проанализировать ДНК из мёртвых тканей была осуществлена в США в 1984 г., причём «тканям» этим – шкуре вымершей к тому времени разновидности зебры под названием квагга – было всего-то 140 лет. Затем пришёл черед египетских мумий и палеоиндейских скелетов возрастом в несколько тысяч лет, а сегодня вполне обычным делом стало уже изучение генов людей и животных, живших десятки тысяч лет назад. Чуть ли не каждую неделю в специальных журналах появляются статьи с новой информацией о ДНК мамонтов, шерстистых носорогов, пещерных медведей и прочих экзотических существ. С 1997 г. в число этих прочих входят и неандертальцы.

Прорыв, начало которому было положено двадцать пять лет назад, стал возможен благодаря методу, именуемому полимеразной цепной реакцией. Этот метод, изобретённый американским биохимиком К. Маллисом в 1983 г., позволяет получить неограниченное количество пригодных для анализа копий фрагментов ДНК – как современной, так и древней. Сопоставляя последовательность нуклеотидов во фрагментах ДНК, добытых из костей (или, скажем, слюны, если речь идёт о доселе здравствующих представителях животного мира) разных индивидов и/или видов, можно оценить генетическое расстояние между ними, определить, кто из сравниваемых друг другу близкая родня, а кто – седьмая вода на киселе, и даже рассчитать – пусть и очень приблизительно – время, когда жил их последний общий предок.

Всё перечисленное проделали и с ДНК неандертальцев. Результаты получились очень интересные. Однако прежде чем познакомиться с ними, нам следует, наверно, вспомнить некоторые азы биологии. Ну, хотя бы для того, чтобы у читателей, успевших несколько подзабыть школьный курс этой науки, не появилось подозрение, что их просто пытаются водить за нос с помощью непонятных слов.

Итак, ДНК. Эту аббревиатуру генетики придумали, чтобы не мучиться по сто раз на дню, выговаривая или набирая на клавиатуре компьютера слова «дезоксирибонуклеиновая кислота». Молекулы, или, точнее, макромолекулы ДНК – место хранения генетической информации, определяющей индивидуальные особенности и характер развития каждого организма и передаваемой от поколения к поколению. Каждая такая макромолекула – это цепочка, образованная двумя тяжами (нитями), спирально закрученными один относительно другого, а каждый тяж представляет собой последовательность тысяч и миллионов нуклеотидов. Эти нуклеотиды были бы похожи между собой, как близнецы, если бы не так называемые азотистые основания, входящие в их состав наряду с молекулой сахара (дезоксирибоза) и фосфата (фосфорная кислота) и представленные четырьмя разными типами. Два типа – гуанин и аденин – называются пуриновыми основаниями, а ещё два – тимин и цитозин – пиримидиновыми.

Рис. 3.14.Структура двойной спирали ДНК: Ф – фосфат, С – сахар, А – аденин, Т – тимин, Г – гуанин, Ц – цитозин

Молекулы сахара и фосфата образуют остов тяжей (нитей) ДНК, а основания находятся между тяжами и посредством слабых водородных связей соединяют между собой противолежащие нуклеотиды (рис. 3.14). При этом аденин может соединяться только с тимином, а гуанин только с цитозином. Последовательность этих парных оснований – шифр, в котором закодированы свойства белковых молекул и, в конечном счёте, свойства всего живого. Гены, т. е. сегменты ДНК, отвечающие за синтез разных белков, могут иметь длину от нескольких десятков до нескольких миллионов парных оснований.

Иногда вследствие слабости водородных связей при репликации ДНК происходят мутации, т. е. «перестановки» оснований, или, иными словами, изменения в порядке последовательности нуклеотидов. В большинстве своём такие мутации нейтральны по отношению к естественному отбору. Они не выбраковываются и не подхватываются им, поскольку не отражаются на приспособленности организмов, и благодаря этому обстоятельству скорость их накопления на молекулярном уровне в целом постоянна. Следовательно, если для истории изучаемой группы организмов имеются более или менее чёткие и надёжно датированные палеонтологические реперы (точки отсчёта), то эту скорость можно рассчитать. Например, для гоминид, а иногда и для всех обезьян вообще в качестве основы расчётов используется генетическое расстояние (т. е. количество различий в последовательности нуклеотидов в ДНК) между современными людьми и шимпанзе, эволюционные пути которых, судя по ископаемым находкам, разошлись около 6 млн. лет назад.

Зная скорость накопления мутаций и генетическое расстояние между разными особями или таксонами (т. е. видами, родами и т. д.), можно не только судить о близости их родства, но и рассчитывать время дивергенции, расхождения от общего предка, применяя для этого упоминавшийся уже выше метод молекулярных часов. Обычно для таких расчётов используют ДНК из митохондрий клеток (мтДНК), которая, в отличие от ДНК, содержащейся в ядрах, представлена в каждой клетке сотнями и тысячами идентичных копий, наследуется только по женской линии и к тому же характеризуется более высокими темпами накопления мутаций.

На основании изучения митохондриальной ДНК (мтДНК) были получены и первые сведения о генетике неандертальцев. Сначала, в 1997 г., удалось выделить пригодный для анализа фрагмент мтДНК из одной из костей, найденных в 1856 г. в гроте Фельдгофер, и сравнить его с аналогичным участком ДНК современного человека. Следующими «поставщиками» ископаемого генетического материала стали кости из пещер Виндия (Хорватия) и Мезмайская (Северный Кавказ, Россия). К настоящему времени генетические данные имеются уже примерно по 15 неандертальцам, жившим или погребённым в разное время в пещерах Испании (Эль Сидрон), Франции (Ля Шапелль-о-Сен, Ле Роше де Вилленёв), Бельгии (Анжи, Складина), Италии (Монте Лессини), Узбекистана (Тешик-Таш) и Южной Сибири (пещера Окладникова).

В последние годы палеогенетики всё больше внимания стали уделять изучению ядерной ДНК. Это и не удивительно, поскольку именно в ней сосредоточена львиная доля генетической информации [75]75
  Кольцевидная молекула митохондриальной ДНК содержит всего лишь шестнадцать с половиной тысяч пар нуклеотидных оснований, тогда как в ядерных хромосомах их свыше трёх миллиардов.


[Закрыть]
. В 2006 г. группа исследователей из Института эволюционной антропологии им. Макса Планка в Лейпциге объявила о предстоящей в скором времени полной расшифровке неандертальского ядерного генома, и хотя названный тогда срок выполнения проекта – два года – оказался, как вскоре выяснилось, чересчур оптимистичным, недавно эта работа всё же была завершена, и завершена вполне успешно. К началу 2009 г., по оценке одного из её инициаторов и руководителей С. Пээбо, было «раскодировано» около 60 % ядерной ДНК неандертальцев (а точнее, двух неандерталок) из Виндии, а в мае 2010 г. в журнале «Сайенс» были опубликованы результаты анализа полного неандертальского генома, собранного «по кусочкам» из ядерной ДНК трёх индивидов [76]76
  Green et al. 2010.


[Закрыть]
.

Что же касается митохондриального генома, то здесь стопроцентный результат был достигнут ещё в 2008 г. Исходным материалом тоже послужила кость из Виндии, имеющая прямую (т. е. полученную по само́й этой кости, а не по сопровождающим её находкам) радиоуглеродную дату 38,3±2,1 тыс. лет назад. Исследование мтДНК, выделенной из этой кости, позволило идентифицировать и расставить по местам все 16 565 пар нуклеотидных оснований, составлявших кольцевую молекулу митохондриальной дезоксирибонуклеиновой кислоты неандертальца, и сравнить полученную таким образом последовательность с последовательностями, выявленными у 53 современных людей разной расовой принадлежности. При попарном сопоставлении оказалось, что из шестнадцати с половиной тысяч позиций у нас и неандертальцев не совпадают в среднем 206, тогда как геномы современных людей различаются между собой гораздо меньше: максимум по 118 позициям, минимум по 2 [77]77
  Green et al. 2008.


[Закрыть]
. Эти данные в целом подтверждают выводы первых палеогенетических работ, согласно которым разница в последовательности нуклеотидов в мтДНК неандертальцев и современных людей примерно в три или три с лишним раза превышает «генетическое расстояние» между ныне существующими расовыми группами человека. Много это или мало? Этого достаточно, чтобы продолжать рассматривать неандертальцев как особый вид, но совсем недостаточно, чтобы вообще не считать их за людей. Ведь если провести аналогичное сравнение, например, с мтДНК шимпанзе, то выяснится, что от них мы отличаемся в среднем по 1500 позиций.

Генетический материал был получен также из костей гомо сапиенс ранней поры и середины верхнего палеолита. Сравнение одних и тех же участков цепей ДНК поздних неандертальцев, верхнепалеолитических гомо сапиенс и современных людей показало, что, если между последними двумя группами, несмотря на хронологический разрыв в 20 с лишним тысяч лет, нет сколько-нибудь заметных различий, то неандертальцы явно стоят особняком. В частности, от людей из грота Пальиччи, живших 23–25 тыс. лет назад, их отделяет такая же генетическая дистанция, как и от современных людей. Ни один из изученных до сих пор образцов ДНК гомо сапиенс – современных и палеолитических – не дал последовательности, типичной для неандертальцев, а все неандертальские образцы, из какой бы части Европы они ни происходили и каким бы временем ни датировались [78]78
  Возраст неандертальских костей, давших генетический материал, варьирует примерно от 100 тыс. лет (Складина) до 32 тыс. лет (Виндия).


[Закрыть]
, оказались в целом довольно близки между собой [79]79
  Lalueza-Fox et al. 2006; Orlando et al. 2006.


[Закрыть]
.

Таким образом, палеогенетические данные, как и анатомические, говорят в пользу обособленного видового статуса неандертальцев. Оценки времени происхождения этого вида (или, точнее говоря, времени, когда жил последний общий предок всех «классических» неандертальцев), полученные методом молекулярных часов, укладываются в интервал от 150 до 250 тыс. лет назад, а с учётом стандартного отклонения – от 120 до 350 тыс. лет назад. Разделение линий неандертальцев и современных людей произошло, судя по первым результатам применения того же метода, скорее всего, где-то в интервале от 500 до 700 тыс. лет назад, или, если брать крайние даты, от 320 до 850 тыс. лет назад [80]80
  Green et al. 2006; Noonan et al. 2006.


[Закрыть]
. Самые последние расчёты времени этого события, основанные на данных по полностью расшифрованной мтДНК из Виндии, дали дату 660±140 тыс. лет [81]81
  Green et al. 2008.


[Закрыть]
. Она хорошо согласуется с палеоантропологическими данными и является, вероятно, наиболее реалистичной. Вместе с тем, следует иметь в виду, что результаты датировок, получаемых методом молекулярных часов, зависят от целого ряда плохо поддающихся проверке допущений. Таковы, в частности, допущения относительно скорости накопления различий (мутаций) [82]82
  Как уже говорилось, для расчёта темпа накопления мутаций необходимы надёжные и хорошо датированные палеонтологические реперы (точки отсчёта), которые на самом деле имеются лишь в редких случаях. Например, для людей в качестве такого репера часто используют, как уже говорилось, время расхождения линий гоминид и шимпанзе, но датировка этого события зависит от того, кого мы принимаем за первого гоминида. Если сахельантропа, то расчёт нужно вести от даты 7 млн. лет назад, а если оррорина, то 6 млн. лет назад, а ведь есть ещё и иные варианты. Авторы первых генетических датировок происхождения Homo sapiens(или, точнее, времени существования последнего общего «митохондриальоного предка» ныне живущих людей) в качестве репера использовали время дивергенции американоидов и монголоидов, которую тогда (четверть века назад) относили в прошлое на 12 тыс. лет (Cann et al. 1987). Сегодня почти никто не сомневается, что это событие (т. е. заселение Америки) произошло, по крайней мере, на 2 тыс. лет раньше, а многие готовы увеличить его древность и ещё больше.


[Закрыть]
, постоянства этой скорости, «нейтральности» мутаций, т. е. отсутствии влияния отбора на их накопление, размера популяций и их демографической истории. Есть и другие факторы, осложняющие расчёты и заставляющие воспринимать молекулярные датировки с осторожностью. Они, безусловно, полезны, и во многих случаях остаются единственным способом оценить время интересующих нас филогенетических событий, но точность их не стоит переоценивать.

Литература

Эволюционная история гоминид: Вишняцкий 2004, 2005б; Зубов 2004; Фоули 1990; Arsuaga and Martínez 2006; Cameron and Groves 2004; Cela-Conde and Ayala 2007; Finlayson 2009; Johanson and Edgar 1996; Klein 1989; Lewin 2005; Lewin and Foley 2004; Tattersall and Schwartz 2000; Wood 2005; Wood and Lonegran 2008.

Происхождение и эволюция неандертальцев: Дробышевский 2004, 2006; Зубов 1999, 2004: 245–340; Хрисанфова 1997; Arsuaga et al. 1996, 1997; Condemi 2000; Deanetal. 1998; Harvati 2007; Hawks and Wolpoff 2001; Howell 1951; Hublin 1998, 2007, 2009; Rightmire 2008; Rosas et al. 2006; Schrenk and Müller 2009: 51–71; Tattersall 1995: 130–147; Tattersall and Schwartz 2006; Trinkaus 1988.

Таксономический статус неандертальцев: Харитонов 1973; Harvati 2003b; Harvati et al. 2004; Schillaci and Froehlich 2001; Smith 2010; Tattersall 2007; Wolpoff 2009.

Генетика неандертальцев: Овчинников и др. 2009; Briggs et al. 2009; Goodwin and Ovchinnikov 2006; Green et al. 2006, 2008, 2010; Hebsgaard et al. 2007; Lalueza-Fox et al. 2006, 2007; Noonan et al. 2006; Orlando et al. 2006; Pennisi 2009; Serre and Pääbo 2006.

Глава 4
На краю света

Почему неандертальцы стали такими, какими они стали? Что привело к появлению у них тех анатомических особенностей, которые отличают их от гомо сапиенс и других гоминид и позволяют считать особым биологическим видом? Вопрос этот очень труден, но не неразрешим. Антропологам есть что на него ответить. Ответ, конечно, будет далеко не исчерпывающим, но, как ни странно, гораздо более полным, чем в том случае, если бы мы поставили тот же вопрос применительно к своему собственному виду. Хотя очень многие специфические черты неандертальской морфологии пока ещё не получили сколько-нибудь удовлетворительного объяснения, причины и общий функциональный смысл эволюции неандертальцев понятны сегодня всё же лучше, чем причины и смысл большинства тех анатомических изменений, которые сопутствовали появлению гомо сапиенс. В целом, конечно, мало кто сомневается в том, что направление биологической эволюции обоих видов, особенности их анатомии и образа жизни в значительной мере зависели от природных условий, в которых им приходилось жить и к которым они должны были приспосабливаться. Однако если характер задач, которые окружающая среда могла ставить перед неандертальцами, более или менее ясен, то о гомо сапиенс этого пока не скажешь. Ведь становление первых происходило на севере, в краю с довольно суровой, переменчивой и очень требовательной природой, а вторые формировались в тропиках, где климат неизмеримо мягче, а перепады его далеко не столь резки и непредсказуемы, как в высоких широтах. К разговору о гомо сапиенс нам ещё предстоит вернуться в одной из следующих глав, а сейчас попытаемся представить, каковы были естественные условия существования неандертальцев, и как конкретно сказалось влияние этих условий на их анатомии и внешнем облике.

Мир вокруг них

Для начала несколько слов о погоде. О том, какой она была во времена неандертальцев и как удалось об этом узнать. Откуда, в частности, стало известно, что климат Европы в те далёкие времена был суров и переменчив? И можно ли эту – слишком уж общую – характеристику как-то развернуть, наполнить подробностями, конкретными деталями?

Для реконструкции природной обстановки минувших эпох используются самые разные методы и материалы. О климате и ландшафтах плейстоцена очень многое можно узнать, изучая ископаемые зёрна пыльцы растений, кости животных, формы рельефа земной поверхности, характер чередования и структуру геологических напластований, химический состав ископаемых почв и т. д. Например, по пыльце, сохраняющейся в погребённом состоянии на протяжении сотен тысяч лет, можно определить, каков был характер и состав растительности в том или ином регионе в тот или иной период. Эти данные, в свою очередь, могут много сказать о климате, поскольку каждый вид трав, кустарников и деревьев требует определённой температуры и влажности. У животных также всегда были и есть свои климатические и ландшафтные предпочтения, и знание их не менее полезно для палеоклиматических реконструкций, чем знание «привычек» растений. Находка, скажем, костей песца и северного оленя в древнем слое где-нибудь в верховьях Дуная или в среднем течении Дона – это явное свидетельство того, что здесь некогда было намного холоднее, чем сейчас, и что зона тундры заходила в соответствующий период далеко на юг.

Особенно большое значение для палеогеографических реконструкций приобрёл в последние десятилетия метод, основанный на анализе изотопного состава раковин некоторых морских микроорганизмов (фораминифер), хорошо сохраняющихся в ископаемом состоянии. С помощью глубоководного бурения получают колонки донных отложений, накапливавшихся сотни тысяч лет, а затем сравнивают соотношение концентрации стабильных (т. е. нерадиоактивных) изотопов кислорода 18O и 16O у фораминифер из разных слоёв. Поскольку первый из этих изотопов тяжелее второго, и содержащие его молекулы воды испаряются медленнее, то его роль в построении раковин (или доля в составе раковин) была неодинакова в холодные и тёплые эпохи. Во время оледенений, когда огромные массы испарившейся влаги не возвращались обратно в мировой океан, а оказывались «запертыми» в ледниках, концентрация 18O в морской воде увеличивалась, тогда как в периоды межледниковий она, наоборот, уменьшалась. Таким образом, по изменению соотношения 18O/ 16O можно проследить общий ход колебаний температуры на протяжении длительных периодов времени. Выделенные таким образом эпохи истории климата называют кислородно-изотопными стадиями или морскими изотопными стадиями (рис. 4.1).

Рис. 4.1.Общая направленность колебаний климата в среднем и верхнем плейстоцене, т. е. в период после проникновения людей в Европу. Цифрами от 1 до 19 пронумерованы кислородно-изотопные стадии (чётные номера соответствуют похолоданиям, нечётные – потеплениям), показаны также их хронологические рамки

Кроме колонок глубоководных отложений, аналогичным же образом анализируют изотопный состав ледниковых кернов из Гренландии или Антарктиды, а в районах, удалённых от моря и ледников, информацию об изменениях климата можно «считать» с пещерных сталагмитов. Последний метод особенно широко применяется в Западной и Центральной Европе. Его использование возможно благодаря тому, что в глубине некоторых пещер сохранились сталагмиты, сформировавшиеся ещё в плейстоцене, многие десятки тысяч лет назад. Сталагмиты растут очень долго, причём скорость их роста, а также и содержание определённых изотопов углерода ( 13C) и кислорода ( 18O) в разных слоях этих натёчных образований зависят от температуры и влажности в районе пещеры. Поскольку же кальцит, слагающий тело сталагмита, хорошо поддаётся датировке торий-урановым методом, то, работая с этим материалом, можно не только получить подробную температурную кривую для нескольких (иногда нескольких десятков) тысяч лет, но и с высокой степенью надёжности определить возраст разных сегментов этой кривой [83]83
  См., напр.: Wainer et al. 2009.


[Закрыть]
.

Имеющиеся данные убедительно свидетельствуют о том, что в течение последних миллионов лет климат постепенно становился всё холодней и суше. Правда, процесс похолодания и иссушения не был непрерывным, и холодные периоды чередовались с потеплениями, но общая тенденция к понижению температуры просматривается вполне явственно. Особенно чётко она обозначилась в среднем и позднем плейстоцене. Почти на всём протяжении двух этих эпох, охватывающих семьсот с лишним тысяч лет, климат в Европе и других частях света был намного более суровым, чем сегодня. Лишь на пике потеплений, соответствующих кислородно-изотопным стадиям 5e и 11, среднегодовая температура поднималась несколько выше современных значений, но суммарная продолжительность этих оптимумов составляет не более 3 % общей продолжительности названного отрезка времени.

Поскольку, как уже говорилось, в холодные периоды огромное количество влаги уходило из атмосферы в ледники, в низких широтах, как правило, климат в это время становился суше. Когда же ледники на севере начинали таять, на юге происходило увлажнение – выпадало больше осадков, реки становились полноводней, поднимался уровень воды в озёрах и морях. Изменения климата, естественно, отражались на характере растительности и составе животного мира разных регионов, а это, в свою очередь, самым непосредственным образом сказывалось на жизни людей. Кроме того, значительное воздействие на древние человеческие популяции могли оказывать различные тектонические события, извержения вулканов, а также связанные с климатом колебания уровня мирового океана, имевшие следствием образование сухопутных перемычек между континентами и островами или, наоборот, появление изолирующих водных барьеров. В периоды наиболее сильных похолоданий уровень моря мог падать до 120 м ниже современных отметок, что приводило к существенным изменениям в очертаниях суши: некоторые острова (например, Британские) становились полуостровами, а полуостровные территории (например, Крым) сливались с «большой землёй».

Эпоха существования классических неандертальцев, как мы уже знаем, приходится на конец среднего и первую половину позднего плейстоцена. На протяжении этого времени имели место многократные и притом весьма значительные по амплитуде и скорости перепады температуры и влажности, объединяемые в климатические циклы продолжительностью от нескольких сотен до нескольких тысяч лет каждый. По именам впервые выделивших и описавших их исследователей – датчанина В. Дансгарда и швейцарца Г. Эшгера – они получили название циклов или событий Дансгарда–Эшгера ( Dansgaard–Oeschger events). Для периода последнего оледенения (или, как ещё говорят, ледниковья) [84]84
  Замечу на всякий случай, что слово «оледенение», когда оно используется в качестве названия той или иной геологической эпохи, не следует понимать буквально, как указание на то, что ледники якобы сплошь покрывали всю землю. Территория, занимаемая ледниками, в такие эпохи, действительно, увеличивалась, и иногда очень значительно, но при этом даже в северном полушарии бо́льшая часть поверхности суши оставалась всё же свободной ото льда.


[Закрыть]
, которое в Западной и Центральной Европе обычно называют вюрмским или вислинским, а в европейской России валдайским, выделяют 24 таких цикла (рис. 4.2). Это оледенение длилось около 100 тысяч лет от конца эемского (микулинского) межледниковья (примерно 110 тыс. лет назад) и до начала современной геологической эпохи, именуемой голоценом (примерно 12 тыс. лет назад) [85]85
  Хотя формально голоцен является понятием, иерархически равнозначным плейстоцену, фактически он представляет собой всего лишь очередное межледниковье.


[Закрыть]
.

Рис. 4.2.Колебания температуры в позднем плейстоцене и голоцене. Числа внизу обозначают время (тыс. лет назад), а цифрами вверху обозначены циклы Дансгарда–Эшгера (источник: Hofreiter and Stewart 2009)

Эемский климатический оптимум, т. е. тёплый пик последнего межледниковья, продолжался примерно от 130 до 115 тыс. лет назад. Среднегодовые температуры в это время были примерно на 1–2 °C выше, чем сейчас, и на 5–15 °C выше, чем в период предшествовавшего заальского оледенения, которым закончился средний плейстоцен [86]86
  См., напр.: Bernard et al. 2009: 141, fig. 7.


[Закрыть]
. В эеме бо́льшую часть равнинной Европы, включая юг нынешних Британских островов, покрывали широколиственные леса, а в них вместе с зубрами, оленями, лосями, кабанами и медведями жили такие экзотические животные как носорог, слон и даже гиппопотам. Затем наступило похолодание, в северных районах распространились открытые субарктические ландшафты, а леса, состоявшие преимущественно из сосны и берёзы, сохранились лишь в долинах или даже только поймах рек. Ареалы теплолюбивых животных отступили на юг, место благородных оленей заняли северные, место южных слонов – мамонты. Правда, в последующий период, именуемый брёрупским интерстадиалом, опять произошло повышение температуры и влажности, и границы ландшафтных зон несколько сдвинулись на север, но примерно 90 тыс. лет назад началось новое ухудшение климата, ещё более сильное и продолжительное, чем предыдущее. В северной части Европы древесная растительность исчезла даже в речных поймах, а на открытых пространствах свирепствовали холодные ветры, которым сопутствовали пылевые бури. Частичный возврат к межледниковым условиям имел место во время интерстадиала одераде (примерно от 85 до 75 тыс. лет назад), более тёплого, чем брёруп, однако и наступившее затем похолодание тоже превзошло по своим масштабам все предшествовавшие. Не случайно период от конца одераде и до начала голоцена, т. е. всю вторую половину позднего плейстоцена, часто называют пленигляциалом, что буквально означает «полное ледниковье». Его подразделяют на ранний пленигляциал, интерпленигляциал и поздний пленигляциал, широко известный также как «эпоха последнего ледникового максимума». Хронологически эти подразделения соответствуют кислородно-изотопным стадиям 4, 3 и 2.

Рис. 4.3.Колебания температуры во второй половине позднего плейстоцена: а– изотопная кривая, построенная по результатам анализа раковин фораминифер (планктона) из глубоководных кернов, взятых у побережья Португалии; б– изотопная кривая, построенная по кернам из гренландских ледников. Горизонтальные отрезки под нижней кривой соответствуют эпизодам Хайнриха 1–6 (источник: Roucoux et al. 2005)

Особенно высокими частота и амплитуда климатических колебаний были, судя по всему, в середине позднего плейстоцена. На изотопные стадии 4 и 3, охватывающие период примерно от 71 до 24 тыс. лет назад, приходится 17 циклов Дансгарда–Эшгера (с 19-го по 3-й). Они включают в себя относительно тёплые межстадиалы длительностью от 500 до 2000 лет, разделённые холодными и более короткими стадиалами. Во время самых тёплых позднеплейстоценовых межстадиалов средняя температура была лишь на 1–2° меньше местных голоценовых температур, а иногда, возможно, и сравнивалась с ними, тогда как при наиболее суровых похолоданиях она опускалась намного ниже современной нормы, приближаясь к значениям, установленным для последнего ледникового максимума. При этом, однако, относительно тёплые эпизоды длились дольше холодных (тысячи и сотни лет, соответственно), и переходы от холода к теплу происходили быстрее, чем переходы от тепла к холоду (рис. 4.3).

Наиболее сильные похолодания тоже имеют своё название – они известны как эпизоды или события Хайнриха ( Heinrich events). Во время таких похолоданий огромные массы льда под воздействием собственной тяжести и/или иных, не очень пока хорошо понятных факторов, отрывались от лаврентийского щита у берегов Северной Америки и начинали дрейфовать на восток. Их следы в виде прослоев обломочного материала, образовывавшихся по мере таяния айсбергов, хорошо прослеживаются в морских отложениях Атлантического океана. В периоды, соответствующие эпизодам Хайнриха, среднегодовая температура в Европе опускалась намного ниже современных значений, границы ландшафтных зон сдвигались с севера далеко на юг, и там, где сейчас произрастают хвойные или даже смешанные леса, распространялись тундры. Например, как показал изотопный анализ сталагмитов из пещеры Виллар, в период примерно от 49 до 48 тыс. лет назад, т. е. на пике похолодания, известного как эпизод Хайнриха 5, среднегодовая температура на юго-западе Франции была приблизительно на 10 °C ниже, чем сейчас (в наши дни она составляет здесь 12°), а значит, зимой в этом районе обычным делом были сильные и длительные заморозки [87]87
  Wainer et al. 2009: 138.


[Закрыть]
. Это подтверждают и результаты более ранних климатических реконструкций по ископаемым фаунам грызунов. В частности, температурная кривая, полученная для французской пещеры Жиньи, опускается в соответствующий период до 0°, а для расположенной севернее немецкой пещеры Кематенхёле до −2°, что в обоих случаях ниже современной нормы на те же 10° (рис. 4.4).

Рис. 4.4.Среднегодовая температура в разных частях Европы на разных стадиях позднего плейстоцена, реконструированная на основании анализа фауны грызунов. Арабскими цифрами на графике и карте обозначены местонахождения Ля Шенеля ( 1), Жиньи ( 2), Кематенхёле ( 3), Карлуково ( 4), Бачо Киро ( 5). Стрелки и римские цифры справа от графика показывают современную среднегодовую температуру в центральной Болгарии (I), восточной Франции (II) и южной Германии (III). Источник: Hernández Fernández 2006

Накапливающиеся в последние годы данные говорят о том, что картина, выявленная по ледниковым и глубоководным кернам с севера Атлантики, отражает динамику изменений позднеплейстоценового климата не только в этом регионе, но и во многих других частях света. Материалы, подтверждающие это, были получены в итоге изучения лёссов Восточной Азии, сталагмитов из пещер юга Западной Европы, морских отложений тропических и субтропических районов Индийского и Тихого океанов, ледников Южной и Северной Америки, а также Новой Зеландии [88]88
  Явным исключением из общей картины является, пожалуй, только Антарктика, ледниковые керны которой дают иную ритмику и хронологию климатических колебаний. Удовлетворительного объяснения этому, насколько мне известно, пока нет.


[Закрыть]
. Таким образом, циклы Дансгарда–Эшгера и эпизоды Хайнриха можно, видимо, рассматривать как климатические события, имеющие глобальное значение. Тем не менее из этого совсем не следует, что соответствующие им похолодания и потепления проявлялись повсюду одинаково. Так, в северном полушарии переход от холодного максимума одного цикла к тёплому максимуму другого происходил обычно быстро, в течение нескольких десятков лет, тогда как последующее понижение температуры растягивалось на значительно более долгое время. В низкоширотных же районах, напротив, потепление происходило медленно, и амплитуда температурных колебаний была меньше. Если говорить только о неандертальском ареале, то и здесь природные условия были далеко не однородными. В его южной части – на Ближнем Востоке, Балканах, Пиренейском полуострове и т. д. – климат оставался сравнительно мягким даже в периоды, соответствующие эпизодам Хайнриха, когда значительная часть континентальной Европы становилась малопригодной или вовсе непригодной для постоянного обитания человека.

Помимо ритмических колебаний температуры и влажности, действие которых сказывалось постепенно, большое влияние на географию и экологию человеческих популяций в рассматриваемый период могли оказывать разовые события катастрофического характера, обусловленные, например, тектоническими процессами, или падением на Землю небесных тел. Правда, столкновений с особо крупными метеоритами или астероидами нашей планете в позднем плейстоцене, видимо, удалось избежать, но вот тектонические «удары» она переживала, и не раз. Чего стоит одно только извержение вулкана Тоба на Суматре! Оно произошло примерно 73–74 тыс. лет назад, став одним из самых крупных известных нам извержений в истории Земли и самым крупным в четвертичном периоде. Из жерла Тобы было выброшено не менее 2000 км 3лавы, потоки которой покрыли территорию в несколько десятков тысяч квадратных километров, и около 800 000 км 3пепла, осевшего затем толстым (от 10 см до нескольких метров) слоем на суше и океанском дне от Аравийского до Южно-Китайского моря [89]89
  Jones 2007.


[Закрыть]
. По мнению многих исследователей, это извержение повлекло за собой так называемую «вулканическую зиму» – очень резкое похолодание, затянувшееся на несколько лет [90]90
  Rampino and Self 1992; Williams et al. 2009.


[Закрыть]
. Особенно чувствительно оно могло отразиться на жизни обитателей и без того холодного северного полушария. Согласно некоторым расчётам, в районах, лежащих между 30 и 70 параллелями, среднегодовая температура в это время понизилась сразу на 10–15°. Кстати, не исключено, что одним из отдалённых последствий этой «вулканической зимы», нежданно-негаданно пришедшей в Европу с жаркой Суматры, стало переселение части неандертальцев на Ближний Восток, где их присутствие впервые достоверно фиксируется как раз около 70 тыс. лет назад (см. главу 9).

Не меньшую роль в истории обитателей Европы могло сыграть и другое вулканическое извержение, произошедшее примерно через 30 тыс. лет после Тобы, т. е. около 40 тыс. лет назад. Его называют кампанским игнимбритовым, по месту, где оно случилось (Кампанья) и по составу выброшенной породы (игнимбрит). По некоторым оценкам, в первые два-три года после этого извержения среднегодовая температура на западе Европы могла упасть сразу на 3–4° и затем оставаться намного ниже температуры предшествующего периода ещё десятки, а то и сотни лет [91]91
  Fedele et al. 2008.


[Закрыть]
. Возможно, отражением этого на палеоклиматической кривой является холодный пик эпизода Хайнриха 4.


    Ваша оценка произведения:

Популярные книги за неделю