Текст книги "Путешествие к далеким мирам"
Автор книги: Карл Гильзин
сообщить о нарушении
Текущая страница: 8 (всего у книги 26 страниц)
ИСКУССТВЕННЫЙ СПУТНИК ЕСТЬ!
Ты слышал, быть может, что скоро Луна,
Которая по небу бродит одна,
Обзаведется сестрою,
Ей люди сестренку построят.
И эту игрушечную Луну
Как мячик с Земли зашвырнут в вышину:
Пускай днем и ночью с подругой
Гуляет по звездному кругу.
Джанни Родари, «Стихи о Луне».
Если при достаточно большой начальной скорости ракета способна облететь вокруг Земли с посадкой на месте старта, то при еще большей скорости она сможет, вероятно, облететь вокруг Земли дважды, трижды…
А нельзя ли заставить ее обращаться вокруг Земли бесконечно долго? Ведь обращаются же так Луна вокруг Земли и Земля вокруг Солнца? Вероятно, можно создать с помощью подобной ракеты и «искусственную Луну», искусственный спутник Земли?
Конечно. Однако для этого должны быть выполнены определенные условия.
Прежде всего, ракета должна летать вокруг Земли на очень большой высоте, чтобы сопротивление воздуха практически не сказывалось на скорости полета, не уменьшало ее. Ведь двигатель ракеты в таком полете работать не должен, за исключением начального периода разгона, в противном случае полет этот очень быстро закончится из-за выработки всего топлива, запасенного на ракете. Если бы Луна совершала свой полет вокруг Земли в атмосфере, то мы бы не только давно лишились очарования лунных ночей, но и сама Земля, вероятно, уже давно перестала бы существовать в результате катастрофы при неизбежном падении Луны на Землю.
Конечно, идеальным был бы полет в мировом пространстве, на расстоянии в тысячи и десятки тысяч километров от Земли. Однако необходимости в таком углублении в мировое пространство нет. Даже и на гораздо меньших высотах полет становится уже вполне возможным. Траектория полета в верхних слоях атмосферы будет, конечно, не круговой, а спиральной, с постепенным снижением, вызываемым сопротивлением воздуха, но снижение это будет небольшим – тем меньшим, чем больше высота полета.
Практически можно считать, что ракета, летящая вокруг Земли на высоте примерно 200 километров, будет описывать почти точный круг. Может быть, лишь время от времени – раз в 2–3 дня – придется включать на короткое время двигатель, чтобы восстановить высоту. Итак, первое условие – высота полета не меньше 200 километров. [35]35
Интересно отметить, что на Международном астронавтическом конгрессе в 1955 году американский ученый Эрике предложил создать искусственный спутник на высотах порядка 150 километров. В отличие от истинных спутников на этом, как его назвал Эрике, «сателлоиде» должен быть установлен двигатель, чтобы компенсировать уменьшение скорости, связанное с воздушным сопротивлением. Однако мощность двигателя должна быть очень небольшой – по расчету «сателлоид» сможет пролететь примерно 10 тысяч километров на 1 килограмм затраченного топлива. Такой «сателлоид» может иметь научное значение в связи с тем, что он будет совершать свой полет на высотах, которые самолетам еще недоступны. С его помощью могут быть получены сведения о верхних слоях атмосферы, очень важные для решения проблемы полета на больших высотах, для осуществления полетов высотных ракет, посадки межпланетных кораблей и др.
[Закрыть]
Второе очевидное условие – это достаточная скорость полета. Легко видеть, что скорость должна быть строго определенной: если она уменьшится, ракета начнет, терять высоту; если увеличится, ракета будет удаляться от Земли. Чему же равна так называемая круговая (иногда ее называют циркуляционной, или первой космической) скорость, при которой высота полета над Землей будет оставаться постоянной?
Оказывается, круговая скорость равна примерно 7,91 километра в секунду. [36]36
Как находится эта величина, рассказано в Приложении (стр.308–309).
[Закрыть]Вот с какой скоростью должна мчаться ракета, чтобы она бесконечно долго обращалась вокруг Земли с остановленным двигателем, превратившись в искусственного спутника Земли.
Искусственный спутник может обращаться вокруг Земли только в плоскости большого круга.
Итак, при скорости 7,91 километра в секунду ракета станет спутником Земли, а при скорости отрыва, равной 11,2 километра в секунду, навсегда покинет ее. Что же произойдет с ракетой, имеющей скорость больше круговой, но меньше скорости отрыва – например, 9 или 10 километров в секунду? При такой скорости она тоже станет спутником Земли и будет бесконечно обращаться вокруг нее. Но только обращаться она будет не по круговой орбите, а по эллиптической, тем более вытянутой, чем ближе скорость ракеты к скорости отрыва.
Наконец, существует еще одно – третье – условие для того, чтобы ракета стала спутником Земли. Свой полет вокруг Земли такая ракета должна совершать в плоскости большого круга, то есть в одной из плоскостей, проходящих через центр земного шара.
Понятно, что чем выше летит ракета над Землей, тем с меньшей круговой скоростью она должна лететь, ибо при этом она все медленнее падает на Землю. Если бы ракета летела на таком же расстоянии от Земли, на каком находится от нее Луна, то ее скорость равнялась бы скорости движения Луны вокруг Земли, то есть примерно 1 километру в секунду. [37]37
Точнее, скорость ракеты была бы все же меньше скорости Луны, так как Луна обладает по сравнению с ней неизмеримо большей массой (это вытекает из уточненного третьего закона Кеплера).
[Закрыть]
Легко подсчитать, за сколько времени ракета, летящая с круговой скоростью, совершит один оборот вокруг Земли, то есть каков будет период обращения вокруг Земли этого нового спутника.
Так, например, при полете у самой Земли период его обращения будет равен примерно 5070 секундам, или 1 часу 24 минутам. Меньше чем за 1½ часа вокруг света!
С увеличением высоты полета период обращения будет увеличиваться. На высоте, равной земному радиусу, то есть 6378 километрам, период обращения будет равен уже примерно 14 200 секундам, или почти 4 часам.
Очень интересной оказывается такая высота полета, на которой период обращения ракеты вокруг Земли будет в точности равен 24 часам, то есть периоду одного оборота Земли вокруг своей оси. Эту высоту легко определить – она равна 5,64 земного радиуса, или примерно 35 800 километрам. [38]38
Такая орбита спутника была предложена Циолковским.
[Закрыть]Если ракета будет мчаться вокруг Земли в плоскости экватора в том же направлении, в котором вращается Земля, то есть с запада на восток, со скоростью, равной круговой скорости на этой высоте (примерно 3080 метров в секунду), то она будет как бы висеть неподвижно над одной и той же точкой земной поверхности. Ракета будет напоминать вертолет, парящий неподвижно над Землей, хотя вместе с тем она будет с головокружительной скоростью мчаться вокруг нее. Если бы высота не была столь большой, то с такого космического корабля можно было бы спуститься по веревочной лестнице с таким же успехом, с каким это сделал летчик, доставивший с вертолета, парившего над стадионом «Динамо» в Москве, букет цветов футбольной команде, выигравшей первенство СССР по футболу.
Своеобразной особенностью обладает и орбита, радиус которой на 58 тысяч километров меньше радиуса лунной орбиты, равного, как известно, примерно 380 тысячам километров. Спутник, вращающийся по такой орбите, может находиться все время на прямой, соединяющей центры Земли и Луны, – он будет неизменно виден на фоне лунного диска.
При этом спутник окажется в так называемой точке либрации. Существуют и другие точки либрации (всего их 5), характеризующиеся тем, что в каждой из них спутник будет неподвижным относительно Земли и Луны. Эти точки найдены французским ученым Лагранжем в результате исследования проблемы «трех тел». [39]39
Интересно отметить, что, по одному из предложений, в точке либрации, находящейся на прямой с центрами Земли и Луны и расположенной по ту сторону Луны на расстоянии около 65 тысяч километров от ее центра, целесообразно устроить космическую радиообсерваторию. Огромный радиотелескоп, расположенный на такой обсерватории, был бы полностью экранирован Луной от различных радиошумов, возникающих на Земле, и в результате работы электрических и радиоустановок и вследствие явлений в земной атмосфере. По другому предложению, в аналогичной внешней точке либрации в системе Солнце – Земля (на прямой за Землей) выгодно было бы разместить обсерваторию с мощным обычным оптическим телескопом. Это объясняется тем, что при всех преимуществах космической обсерватории, связанных с возможностью создания телескопов большого размера (об этом подробнее смотри в следующей главе), недостатком такой обсерватории является необходимость в защите телескопа от действия солнечного и земного излучения. Без такой защиты колебания температуры телескопа вызовут его деформации, а проникающий свет не позволит осуществлять фотографирование с большими выдержками. В указанной точке либрации телескоп будет защищен от этого нежелательного влияния, так как будет находиться в зоне постоянного «солнечного затмения». Правда, как показывает расчет, затмение будет только частичным, и идеальной в этом смысле была бы аналогичная точка за Марсом.
[Закрыть]
Точки либрации в задаче трех тел: Земля – Луна – искусственный спутник. Точки 2 и 3 соответствуют устойчивому равновесию (так называемые треугольные точки либрации, образующие с Землей и Луной равносторонние треугольники), точки 1, 4 к 5 – неустойчивому. Очевидно, что во всех точках либрации орбита спутника будет 27-дневной, как и орбита Луны.
Циолковский первый в мире понял (независимо от него позже эта идея была высказана зарубежными учеными Обертом в Германии и Годдардом в США), какое огромное значение могут иметь искусственные спутники Земли для решения проблемы межпланетного полета, да и для многих других научных целей. Теперь уже эта роль спутников является общепризнанной – именно с запуска спутников начинается космическая эра в истории человечества.
Вот почему с таким восторгом была воспринята всей мировой наукой весть о запуске первого искусственного спутника Земли в Советском Союзе 4 октября 1957 года. Впервые в истории человек разорвал путы земного тяготения и вырвался на просторы мирового пространства. Эта замечательная победа человеческого гения открыла путь в Космос.
На официальной эмблеме Международного геофизического года Земля опоясана орбитой искусственного спутника.
Первые советские искусственные спутники были созданы в связи с работами, выполнявшимися по программе Международного геофизического года, который начался 1 июля 1957 года и должен был закончиться 31 декабря 1958 года, но затем продлен еще на год – до 31 декабря 1959 года. Исследования, проводимые с помощью искусственных спутников, оказались, пожалуй, самым важным отличием этого геофизического года от двух предыдущих (они назывались полярными). Недаром даже официальной эмблемой геофизического года является изображение земного шара с мчащимся вокруг него искусственным спутником!
Общий вид трехступенчатой ракеты для запуска искусственного спутника «Авангард» (по журналу «Интеравиа», 1957 г.).
Конечно, запуск искусственного спутника – сложнейшее техническое мероприятие, задача, посильная лишь для стран с передовой индустрией, высокоразвитой наукой, мощной реактивной техникой. Неудивительно, что во время геофизического года только две страны включили в план своих научных исследований запуск искусственных спутников – Советский Союз и США. Решить же эту задачу первому удалось Советскому Союзу – стране победившего социализма, родине реактивной техники.
Главная трудность создания искусственного спутника Земли связана с тем, что спутник должен двигаться на огромной высоте с колоссальной скоростью. Как же можно этого достичь?
Для того чтобы ракета, стоящая на Земле, превратилась в искусственный спутник, необходимо затратить какую-то энергию. Эта энергия будет израсходована на то, чтобы поднять ракету на высоту ее орбиты, сообщить ей нужную круговую скорость по орбите, пробить «панцирь» атмосферы, то есть преодолеть сопротивление воздуха, возместить различные другие потери энергии, неизбежные в таком полете. Необходимая для всех этих целей энергия должна быть заключена в топливе, запасенном на ракете. Какова же должна быть величина этой энергии?
Если бы ракета летела в свободном пространстве, где нет ни воздуха, ни силы тяжести, то вся энергия топлива, запасенного на ракете, расходовалась бы только на разгон ракеты, на увеличение скорости ее полета. В таком случае конечная скорость ракеты была бы, очевидно, гораздо большей, чем скорость ракеты, взлетающей с Земли. Неудивительно, что эту скорость часто называют идеальной, чтобы показать, что в действительности достичь ее нельзя.
Обычно в астронавтике запас топлива на ракете, необходимый для совершения какого-нибудь межпланетного полета, оценивают именно величиной идеальной скорости. [40]40
Иногда ее называют также характеристической скоростью, чтобы показать, что именно она характеризует необходимый запас топлива на ракете.
[Закрыть]Чем сложнее и труднее полет, чем больше энергии нужно затратить на его осуществление, тем больше топлива нужно запасти на ракете, и, значит, тем больше должна быть идеальная скорость ракеты.
Если ракета должна стать искусственным спутником Земли, то величина необходимой идеальной скорости ракеты будет зависеть главным образом от высоты ее орбиты над Землей. Расчеты показывают, что эта скорость растет от 8 до примерно 13 километров в секунду, когда высота орбиты растет от нуля до 35 тысяч километров.
Методы, которыми можно воспользоваться для достижения необходимой скорости, известны, они определяются формулой Циолковского, – это увеличение скорости истечения газов из двигателя и увеличение относительного запаса топлива на ракете.
Вспомните еще раз дальнюю ракету, описанную в главе 6. Отношение взлетной и конечной масс этой ракеты равно 3,25, а скорость истечения – примерно 2100 метрам в секунду. Формула Циолковского показывает, что ракета, которая могла бы стать спутником, обращающимся вокруг Земли на высоте до 500 километров, должна иметь при указанном отношении масс скорость истечения газов порядка 7000 метров в секунду, что недостижимо для современной реактивной техники. При сохранении величины скорости истечения, равной 2100 метрам в секунду, соотношение масс должно равняться примерно 60, что может быть, хоть и не без труда, осуществлено с помощью трех– или четырехступенчатой ракеты.
Если же учесть, что в настоящее время достигнуты и большие значения скорости истечения, и большие величины относительного запаса топлива, характеризующего конструктивное совершенство ракеты, то станет очевидно, что принципиально запуск искусственных спутников Земли вполне возможен при современном уровне развития ракетной техники. Для этого нужно воспользоваться «ракетным поездом» – ракетой, состоящей из ряда ступеней.
Но ведь такие многоступенчатые ракеты уже имеются, за чем же тогда дело стало?
Оказывается, наибольшим препятствием на пути создания искусственного спутника являются его размеры. С возрастанием размеров искусственного спутника трудности его запуска быстро увеличиваются. Эти трудности связаны с взлетным весом «ракетного поезда», то есть весом всей составной ракеты при взлете с Земли.
О том, каковы эти трудности, можно судить, например, по сообщениям американских ученых, сделанным ими, в частности, на Международном астронавтическом конгрессе в Риме в сентябре 1956 года, относительно разработанного в США проекта запуска искусственного спутника «Авангард». По этому проекту спутник должен представлять собой небольшой шар диаметром от трети метра до полуметра и весом около 10 килограммов. Запуск же такого спутника осуществляется с помощью трехступенчатой ракеты взлетным весом примерно 10 тонн. Это значит, что на 1 килограмм веса спутника приходится 1 тонна взлетного веса ракеты – в тысячу раз больше! А ведь эта ракета, длина которой равна примерно 22 метрам, а наибольший диаметр – 114 сантиметрам, весьма совершенна по своей конструкции: из общего ее веса 10 тонн на долю самой конструкции ракеты приходится не более 1,5 тонны.
Это отношение 1000: 1 выглядит весьма обескураживающим. Легко видеть, насколько важно добиваться его уменьшения, стремиться к лучшим весовым соотношениям. И, конечно, усилия ученых и конструкторов в этом направлении будут не только не ослабевать в связи с успешным запуском первых спутников, но непрерывно возрастать. Можно предполагать, что совершенствование конструкции ракет и двигателей, применение новых, более тепло-производительных топлив, развитие приборной техники и радиоэлектроники (в особенности здесь важно применение полупроводниковых приборов, сочетающих большую надежность и простоту с ничтожными по сравнению с обычными электронными лампами размерами и весом и расходующих несравненно меньше электроэнергии) позволят уменьшить это соотношение до 200, а может быть, даже до 100. Подобное соотношение было бы замечательной победой науки и техники, значительно расширило бы возможности научного использования искусственных спутников. Вместе с тем, конечно, оно облегчило бы и путь в мировое пространство, путь к далеким мирам…
Неудивительно, что при проектировании спутника борьба ведется в буквальном смысле за каждый грамм. Так, тот же американский спутник представляет собой магниевый шар со стенками толщиной всего 0,8 миллиметра; при общем весе спутника 10 килограммов вес этого шара равен всего 1,8 килограмма.
Несмотря на такую экономию в весе, этот спутник далеко не сразу удалось запустить из-за трудностей, возникших при создании ракеты. [41]41
Запуск спутника «Авангард» удалось осуществить только 17 марта 1958 года, да и то в облегченном варианте – спутник в этом случае представлял собой шар диаметром около 15 сантиметров и весом примерно 1,5 килограмма. Это был второй успешный запуск искусственного спутника в США. Первый спутник был запущен 31 января 1958 года. Он получил название «Эксплорер» («Исследователь») и представлял собой отрезок трубы диаметром примерно 150 миллиметров, длиной около двух метров и весом примерно 14 килограммов, причем на долю оборудования приходилось только 8 килограммов. Запуск этого спутника был осуществлен с помощью четырехступенчатой ракеты «Юпитер С». Первой ступенью служила модифицированная ракета с жидкостным двигателем «Редстоун», а остальные три ступени имели пороховые ракетные двигатели снаряда «Сержант». На второй ступени ракеты их было 2, на третьей – 3 и на четвертой – 1.
[Закрыть]В основном эти трудности связаны с двигателями, в особенности с двигателем первой ступени, который должен быть весьма мощным.
Тем более ошеломляющим для всей мировой науки было сообщение об успешном запуске первого советского искусственного спутника, также имеющего форму шара диаметром 58 сантиметров, но весящего 83,6 килограмма! По расчетам, опубликованным в иностранной печати, вес ракеты, с помощью которой был запущен этот спутник, должен составлять не менее 80-100 тонн.
Что же говорить о втором искусственном спутнике, запущенном в Советском Союзе 3 ноября 1957 года, и, в особенности, о третьем спутнике, запущенном 15 мая 1958 года? Ведь только вес научного оборудования, установленного на втором спутнике, равен 508,3 килограмма, а вес третьего спутника – 1327 килограммов! Если судить по лучшим зарубежным достижениям, взлетный вес ракеты, использованной для запуска этих спутников, должен составлять сотни тонн! Уменьшить этот вес можно только путем радикального усовершенствования конструкции ракет или же путем применения новых, улучшенных топлив.
Кстати сказать, запуск искусственных спутников стал возможен только после того, как у нас в стране была создана межконтинентальная баллистическая ракета, о которой говорилось в предыдущей главе как о вершине развития современной ракетной техники. Эта ракета и была использована для запуска спутников.
Несомненное превосходство советской ракетной техники, наглядно продемонстрированное перед всем миром запуском искусственных спутников, подчеркивается не только самим фактом запуска первых в мире искусственных спутников и во много раз большим весом этих спутников по сравнению со спутниками США. Об этом говорит также и сравнение орбит советских и американских спутников.
Действительно, как избрать орбиту искусственного спутника?
Прежде всего возникает вопрос о положении плоскости орбиты по отношению к плоскости экватора, а также о целесообразном месте запуска. При решении этого вопроса приходится учитывать два противоречивых требования.
Чтобы использовать скорость, которую Земля имеет в своем вращении вокруг оси, полет спутника по орбите должен осуществляться в том же направлении, что и вращение Земли, то есть с запада на восток. При таком запуске спутник «бесплатно», без затраты топлива, получает ту скорость, которой обладает точка запуска в своем вращении вокруг оси Земли, как приобретает скорость поезда выпрыгивающий из него на ходу пассажир. Максимальный выигрыш в скорости может быть при этом получен, очевидно, на экваторе – он равен 465 метрам в секунду. Чем больше географическая широта точки взлета ракеты, тем этот выигрыш меньше. Полет в противоположном направлении настолько же увеличивает необходимую идеальную скорость ракеты. При взлете с полюса направление полета, конечно, вообще не сказывается на величине идеальной скорости.
Таким образом, чтобы облегчить задачу запуска спутника, плоскость его орбиты должна быть расположена под возможно меньшим углом к экватору, а точка запуска – возможно ближе к нему.
Но при таком выборе орбиты спутника он будет пролетать над очень узкой полосой земной поверхности, расположенной у экватора. Следовательно, возможности наблюдений за спутником и со спутника будут сильно ограниченны, а ведь такие наблюдения весьма важны. Зато наилучшей в отношении наблюдений была бы полярная, или меридиональная, орбита, при которой спутник обращался бы вокруг Земли в плоскости, проходящей через полюсы, то есть по меридиану. Правда, при этом была бы полностью потеряна выгода, которую можно получить, используя окружную скорость Земли вокруг оси. Чем ближе плоскость орбиты спутника к полярной, тем больше возможности научных наблюдений с помощью спутника, но вместе с тем больше и необходимый запас топлива на ракете для достижения заданной высоты орбиты.
Плоскости орбит спутников, запущенных в США, расположены под небольшим углом к экватору, примерно 30–35°, орбиты же советских спутников расположены под углом 65° к экватору. Это значит, что запустить советские спутники было труднее, но зато больше и научное значение этих спутников. [42]42
Последний спутник США «Эксплорер» имеет угол орбиты 51°, а запущенный 14 апреля 1959 года спутник «Дискаверер» – орбиту, проходящую вблизи полюсов.
[Закрыть]
Но вот плоскость орбиты избрана. Как теперь установить форму самой орбиты? Должна быть орбита круговой или эллиптической? Если будет избран эллипс, то насколько вытянутый, с какой высотой перигея и апогея, то есть наименьшей и наибольшей высотой?
Конечно, наиболее просто было бы создать спутник, имеющий круговую орбиту на высоте, как уже говорилось, не менее 200 километров. Для запуска такого спутника потребовалось бы наименьшее возможное количество топлива. Но зато срок «жизни» такого спутника был бы также наименьшим – под действием воздушного сопротивления разреженной атмосферы первоначально круговая орбита превратится быстро в спиральную, спутник будет приближаться к Земле, терять высоту. В то же время он станет двигаться во все более плотной атмосфере, оказывающей ему все большее сопротивление, что еще сильнее снизит его скорость. Наконец все туже закручивающаяся спираль приведет спутник в столь плотную атмосферу, что, ворвавшись в нее с огромной, космической скоростью, спутник превратится в метеор – он вспыхнет, испарится. Так произойдет еще одна космическая катастрофа, на этот раз – с небесным телом, созданным рукой человека.
Чтобы удлинить срок жизни спутника, целесообразно увеличить его скорость при запуске выше круговой. Ниже, в главе 15, посвященной траекториям полета межпланетных кораблей, будет показано, что в этом случае орбита спутника будет уже не круговой, а эллиптической. Высота полета спутника над Землей будет при этом все время изменяться между перигеем и апогеем. Чем больше эта избыточная скорость при запуске спутника, тем более вытянутым окажется эллипс, тем больше будет высота апогея по сравнению с высотой перигея. Это и приведет к значительному увеличению срока жизни спутника. Теперь уже воздушное сопротивление, действие которого будет проявляться в моменты полета спутника у перигея, то есть на меньших высотах, будет постепенно снижать высоту апогея. [43]43
Высота перигея будет также уменьшаться, но в десятки раз медленнее.
[Закрыть]Эллипс, который описывает спутник вокруг Земли, постепенно начнет приближаться к кругу, его вытянутость – уменьшаться. Наконец спутник выйдет на круговую орбиту, а затем, как уже было сказано, перейдет на спиральный спуск.
Так ценой затраты дополнительного топлива при запуске спутника можно увеличить высоту апогея его орбиты и, тем самым, срок его жизни. Понятно, конечно, что необходимость в дополнительном топливе усложняет ракету и увеличивает ее взлетный вес.
Как известно, первый спутник, запущенный в Советском Союзе, имел начальную высоту апогея 947 километров, второй спутник – 1671 километр, а третий спутник – 1880 километров. Следовательно, наряду со все возрастающим весом спутников увеличивалась и высота их над Землей и, соответственно, срок жизни. [44]44
Миниатюрный американский спутник «Авангард» достиг максимальной высоты около 4000 километров.
[Закрыть]
Следует отметить, что большая вытянутость эллиптической орбиты, большая высота апогея дает и еще одно преимущество, помимо увеличения срока жизни. Совершая свои путешествия от перигея к апогею и наоборот, спутник пересекает различные слои земной атмосферы. Так, первый советский спутник в своем движении по орбите то входил в ионосферу, то выходил из нее, а второй и третий спутники, помимо этого, выходили практически вовсе за пределы земной атмосферы. Это чрезвычайно важно для некоторых исследований, о которых ниже будет сказано подробнее, в частности для исследований космических лучей.
На такой пусковой платформе устанавливается ракета «Авангард» перед запуском (по журналу «Миссайлз энд Рокетс», июль, 1958 г.).
Запуск советских искусственных спутников Земли был осуществлен с помощью составной многоступенчатой ракеты. Первый спутник, имевший шаровидную форму, был помещен в носовой части последней ступени ракеты и закрыт защитным носком-конусом, сбрасываемым в полете. Вторым спутником явилась сама последняя ступень ракеты, причем в этом случае также имелся сбрасываемый носок, защищавший при полете в плотной атмосфере научное оборудование спутника от воздействия давления встречного потока воздуха и перегрева. Таким же защитным носком был снабжен и третий спутник, который, как и первый спутник, при достижении орбиты отделился от последней ступени ракеты, так называемой ракеты-носителя, но, в отличие от него, имел не шаровидную, а конусообразную форму.
Примерное общее представление об устройстве ракет для запуска искусственных спутников Земли можно получить по американской ракете «Авангард», о которой были опубликованы подробные сведения. Одним из характерных отличий этой ракеты является отсутствие у нее стабилизаторов, что делает ракету похожей на простой карандаш или, еще лучше, на винтовочный патрон с пулей. Вместо стабилизаторов и рулей ракета управляется в полете путем изменения направления реактивной тяги двигателя, для чего весь двигатель должен поворачиваться на некоторый угол – до 4–5° от оси ракеты. Такая шарнирная подвеска двигателя для целей управления была в свое время предложена Циолковским и в 1931 году практически осуществлена в Советском Союзе. В ряде случаев она оказывается более выгодной по сравнению с обычными рулями, но обладает и некоторыми недостатками. В частности, отклонение двигателя от оси ракеты может быть лишь небольшим, так как иначе сильно усложняется подвод топлива к двигателю. Но из-за этого при запуске ракеты, когда она движется еще с малыми скоростями и потому неустойчива, управление ракетой может оказаться неудовлетворительным. Считается, что первые одна – две секунды после взлета могут оказаться роковыми для ракеты, если на нее подействует сильный порыв ветра.
Для запуска ракета устанавливается на специальной пусковой платформе высотой примерно 3,5 метра. В платформе имеется канал диаметром 2,5 метра для того, чтобы отвести газы, вытекающие из двигателя первой ступени ракеты при запуске. Так как газы имеют очень высокую температуру, то канал охлаждается водой. Для всех работ по монтажу ракеты и подготовке ее к запуску стенд имеет специальную высокую башню, которая перед запуском отводится в сторону по рельсовому пути.
Как же был осуществлен запуск советских искусственных спутников?
Конечно, во всех случаях, при запуске любых искусственных спутников, без ракет не обойтись. Но принципиально возможно несколько облегчить ракетам их задачу. Так, например, первоначальный подъем ракеты на некоторую высоту можно осуществить с помощью аэростата или самолета, а конечное, последнее, ускорение спутника на орбите – путем взрыва специального заряда на ракете. Подобные проекты предлагались. Однако все они рассчитаны на запуск небольших, скорее – миниатюрных спутников. Для спутников большого размера такие методы, вероятно, не годятся, их запуск с начала до конца должен осуществляться ракетами.
Полет ракеты для доставки спутника на его орбиту во многом похож на полет обычных высотных или дальних ракет, описанных выше, в главе 6. Но полет на орбиту – не только полет на гораздо большую высоту и с гораздо большей скоростью, – он имеет и одно принципиальное отличие. Если обычные ракеты разгоняются двигателем лишь при взлете, один-единственный раз, а весь остальной полет совершают с выключенным двигателем, то запустить спутник таким образом невозможно. Чтобы создать искусственный спутник Земли, двигатель его ракеты должен работать обязательно дважды – один раз при взлете с Земли, другой – уже на орбите спутника, чтобы разогнать его до нужной орбитальной скорости.
Траектория полета орбитальной ракеты.
При запуске советских искусственных спутников ракета стартовала вертикально, так же, как стартуют и высотные ракеты. На некоторой высоте ось ракеты стала отклоняться от вертикали под действием органов ее управления, работавших по определенной, заранее заданной программе. Ракета стала лететь под углом к горизонту, в общем направлении на северо-восток, причем двигатель ракеты разогнал ее до скорости, необходимой для достижения нужной орбитальной высоты. Вслед за тем ракета продолжала полет уже с неработающим двигателем; за счет накопленной при разгоне скорости она по-прежнему набирала высоту. Траекторией такого безмоторного полета, своеобразного «дрейфа» в мировом пространстве, был эллипс. Наконец на высоте в несколько сот километров ракета стала лететь почти горизонтально, параллельно земной поверхности, достигнув высоты заданной орбиты спутника. Вот теперь снова понадобилась помощь двигателя ракеты, чтобы разогнать ее до нужной орбитальной скорости; как уже указывалось выше, эта скорость несколько превышала круговую на данной высоте, она равнялась примерно 8 километрам в секунду.
К моменту, когда ракета, точнее – последняя ее ступень, достигла заданной высоты и скорости полета, все топливо на ней было выработано и двигатель снова прекратил работу, теперь уже навсегда, вслед за чем был сброшен защитный конус (носок) ракеты. При запуске второго спутника, которым служила последняя ступень ракеты, этим дело и ограничилось. Когда же запускался первый спутник, то после сбрасывания защитного конуса шаровидный спутник, находившийся в передней части ракеты, был вытолкнут из нее специальным устройством с небольшой скоростью. Примерно так же обстояло дело и при запуске третьего спутника, как это показано на рисунке.
Так как все перечисленные заключительные операции производились в то время, когда последняя ступень ракеты уже летела по орбите с нужной орбитальной скоростью, то Земля сразу получала по нескольку «спутников». В их числе были собственно спутник, ракета-носитель (при запуске первого и третьего спутников) и части защитного конуса. Однако дальнейшая судьба этих «спутников» оказалась различной.
Ракета, с помощью которой были запущены спутники, состояла, как указывалось выше, из нескольких ступеней. Они по очереди отделялись и падали на Землю по мере того, как на каждой ступени вырабатывалось все топливо.
В качестве примера, иллюстрирующего полет такой составной ракеты, можно привести опубликованные расчетные данные запуска трехступенчатой ракеты «Авангард», о которой выше уже упоминалось.
Первая ступень ракеты за 114 секунд работы жидкостного ракетного двигателя, развивающего тягу более 12 тонн, поднимает всю ракету на высоту 58 километров и сообщает ей скорость 1680 метров в секунду. Затем первая ступень (длина ее 13,5 метра при общей длине всей ракеты примерно 22 метра) отделяется и падает на Землю на расстоянии примерно 450 километров от места старта. В момент отделения запускается жидкостный ракетный двигатель второй ступени, имеющей длину примерно 9,5 метра и диаметр 81 сантиметр. Двигатель второй ступени увеличивает высоту полета ракеты до 210 километров и скорость до 4900 метров в секунду.
После остановки двигателя второй ступени из-за выработки всего запасенного на ней топлива ее тоже следовало бы отделить – ведь она теперь только мешает. Однако на самом деле вторая ступень не будет отделена, она будет продолжать полет вместе с третьей ступенью вплоть до достижения высоты орбиты. Это объясняется тем, что на второй ступени находятся все приборы управления полетом ракеты. Установить их на небольшой третьей ступени оказалось невозможным – слишком мала последняя ступень ракеты «Авангард». Конечно, на ракете больших размеров можно было бы все сделать иначе.
Схема отделения третьего советского спутника от ракеты-носителя.
Ракета с неработающим двигателем продолжает полет до высоты примерно 480 километров. Управление полетом ракеты на этом участке осуществляется с помощью небольших ракетных двигателей, струи газов из которых вытекают в боковом направлении. Одновременно третья ступень с установленным на ней спутником раскручивается вокруг своей оси с тем, чтобы потом, после отделения второй ступени, вращение третьей ступени обеспечивало устойчивость ее в полете.