Текст книги "Путешествие к далеким мирам"
Автор книги: Карл Гильзин
сообщить о нарушении
Текущая страница: 3 (всего у книги 26 страниц)
Часть вторая
ЧУДЕСНЫЙ ДВИГАТЕЛЬ

Глава 4
ТРЕТЬЕ РОЖДЕНИЕ
Циолковский нашел изумительно простое, гениальное решение, казалось, неразрешимой задачи – организовать полет космического корабля так, чтобы были удовлетворены главные требования, о которых шла речь в предыдущей главе.
Было ясно, что простой бросок межпланетного корабля в мировое пространство не годится – это должен быть какой-то особенный «бросок». Сила его должна быть огромна, чтобы корабль приобрел колоссальную скорость. Он должен быть затяжным, чтобы разгон корабля был плавным и чтобы плотные слои атмосферы корабль пролетал с небольшой скоростью. Но и этого мало – надо предоставить возможность командиру корабля по своему усмотрению изменять направление и скорость полета корабля в мировом пространстве, иначе корабль станет игрушкой стихий и не будет удовлетворять своему назначению.
Но это значит, что толчок, который получит корабль при взлете, не должен быть единственным. Может появиться, даже заведомо появится, надобность в других подобных толчках во время самого полета, причем командир корабля должен иметь возможность сам избирать момент совершения этих толчков, их интенсивность, длительность и даже направление. Это должны быть какие-то особенные, управляемые толчки.
И, что самое главное, надобность в этих дополнительных толчках появляется тогда, когда корабль уже мчится в мировом пространстве, где нет воздуха, от которого он мог бы оттолкнуться, где не дуют ветры, где нет твердой опоры, как при отлете с Земли. Очевидно, единственным решением было бы найти источник толчков… на самом же межпланетном корабле. Такое решение возможно, и это единственное решение нашел Циолковский. В этом и заключается одна из основных его заслуг как создателя астронавтики.
Циолковский предложил использовать для межпланетного полета реактивный принцип, предложил установить на межпланетном корабле изобретенный им реактивный двигатель. Эта замечательная идея Циолковского лежит в основе всей современной астронавтики.
Реактивный принцип знаком теперь каждому школьнику. Впрочем, он был известен людям и использовался ими уже с давних времен, хотя сформулирован был в науке только Ньютоном в XVII веке.
Взгляните на рисунок. На нем изображены гонки каких-то странных кораблей. Эти корабли установлены на тележках, способных передвигаться по горизонтальному рельсовому пути. Чтобы тронуться в путь, корабли должны получить толчок вперед. Гонщики пытаются достичь цели различными способами.

Вот, например, пассажиры корабля решили отталкиваться от земли, упираясь в нее баграми, как это делают гребцы, когда лодка попадает на мелководье. Опираясь о землю, пассажиры толкают ее с какой-то силой. Но действие равно противодействию – это один из основных законов науки о движении, механики. Земля отталкивает пассажиров и корабль вместе с ними с такой же по величине, но направленной в обратную сторону силой отдачи, или, по-латыни, реакции. Одна и та же сила толчка заставляет тело двигаться с разными скоростями в зависимости от того, как велика масса тела. Скорость движения Земли под действием силы толчка пассажиров ничтожна, так как масса Земли огромна. Зато корабль, если он легкий, приобретает заметную скорость, как и спортсмен, отталкивающийся от земли, чтобы перепрыгнуть планку.
Гонщики могут отталкиваться и не от земли. Воспользовавшись тем, что вдоль рельсового пути корабля 2 проложены длинные каналы, заполненные водой, пассажиры этого корабля отталкиваются от воды с помощью весел, как гребцы на лодке, и с помощью гребного винта, как это делает теплоход. Сила толчка весел и винта заставляет в этом случае какую-то массу захваченной ими воды двигаться с некоторой скоростью назад. Чем сильнее толчок, тем больше эта ускоряемая масса воды и скорость ее движения. Но такая же по величине и обратно направленная сила реакции отбрасываемой массы воды вызывает движение корабля вперед.
Корабль 3 лишен водной опоры, но его пассажир с таким же успехом отталкивается от окружающего его воздуха. Для этого пришлось воспользоваться воздушным гребным винтом, или пропеллером, вращаемым с большим числом оборотов, как это делается на обычном самолете. Этот винт отбрасывает назад воздух, заставляет его двигаться с большой скоростью; сила реакции отбрасываемого воздуха толкает корабль вперед. Опять реакция!
Однако можно при желании обойтись и вовсе без багров, весел и винтов, без этих движителей, с помощью которых пассажиры кораблей 1, 2 и 3, трудясь в поте лица своего, создают толчок, необходимый для движения корабля. Вот что придумал гонщик корабля 4. Он соорудил длинный лоток вдоль рельсового пути и заполнил его чугунными шарами. Вот гонщик взял шар из лотка и бросил его назад. Сила реакции этого шара толкнула бросавшего, а вместе с ним и корабль вперед. Пока корабль движется вдоль лотка и в лотке есть шары, скорость движения корабля может непрерывно увеличиваться в результате реакции отбрасываемых шаров. Подобное движение, вызываемое отбрасыванием массы и происходящее без помощи движителей, обычно и называют реактивным. Именно так осуществляет свой полет, как мы увидим ниже, реактивный самолет. Только отбрасывает он, конечно, не чугунные шары из лотка, а воздух, который он черпает из окружающей атмосферы.
Иначе поступил гонщик последнего корабля 5. Вместо того чтобы строить лоток, он запас некоторое количество таких же чугунных шаров непосредственно на корабле. Конечно, запас шаров в этом случае не может быть таким большим, как в лотке, но зато корабль перестает зависеть от лотка, и пассажир при желании может вызвать необходимый толчок корабля, отбросив шар даже… в безвоздушном пространстве. Не правда ли, это как раз то, что и нужно межпланетному кораблю?
Именно эта идея реактивного движения под действием силы реакции отбрасываемой массы, запасенной на самом же движущемся аппарате, положена Циолковским в основу межпланетного полета.
Эта идея не нова. На этом же принципе основан полет простейшей пороховой ракеты, а такие ракеты люди умели запускать уже в глубокой древности. Однако от этих первых ракет до изобретенного Циолковским двигателя межпланетного корабля так же далеко, как от воздушного змея древних китайцев до современных самолетов.
Циолковский в простой пороховой ракете нашел прообраз будущего межпланетного корабля. Опережая эпоху, он создал реактивный двигатель, без которого невозможно осуществление заветной мечты человечества о межпланетном полете.
История ракет уводит нас в седую старину, она теряется в глубине веков, в древних легендах. Это не простая история спокойного, непрерывного развития – это история взлетов и падений, умирания и возрождения на новой основе.
Последними исследованиями в области истории ракет установлено, что в нашей стране ракеты использовались в военном деле еще в первой половине X века, 1000 лет назад. Однако можно полагать, что ракеты применялись и раньше, может быть, даже еще в Греции и, уж вероятно, в древнем Китае. Описание летающих огненных стрел, применявшихся китайцами, отчетливо показывает, что эти стрелы были ракетами. По имеющимся данным, ракетное оружие распространилось именно из Китая.
Китайские огненные стрелы отличались от обычных тем, что к ним прикреплялась трубка из уплотненной бумаги, открытая только с заднего конца и заполненная горючим составом вроде пороха. Этот заряд поджигался, и затем стрела выпускалась с помощью лука. Раскаленные газы, образующиеся при сгорании заряда, вытекали из трубки с большой скоростью назад, оставляя огненный след. Сила реакции вытекающих газов увеличивала скорость и дальность полета стрел, а также силу удара при попадании в цель; их горящий заряд вызывал пожары. Эти стрелы применялись в ряде случаев – в частности при осаде укреплений, против судов, кавалерии и т. д.
Однако после этого первого рождения ракет они были снова забыты, и в средние века уже не встречается упоминаний об использовании ракет в качестве оружия.
Второе рождение боевых ракет состоялось примерно 150–200 лет назад.
В Европе такие ракеты появились в начале XIX века. Они были заимствованы англичанами у индийцев, вероятно сохранивших древние китайские секреты. По имеющимся данным, в Индии в конце XVIII века ракетное оружие применялось весьма широко, и, в частности, существовали особые отряды ракетчиков, общая численность которых достигала примерно 5000 человек.
Эти отряды причиняли вторгшимся в конце XVIII века в Индию англичанам, по их собственному свидетельству, много «неприятностей» ракетными стрелами-снарядами, представлявшими собой трубки с зарядом горючего вещества. [12]12
Эти трубки были изготовлены из железа, и к ним прикреплялся стабилизатор – бамбуковый стержень длиной 3 метра. Вес этих ракет достигал 5 килограммов, а дальность их полета – более 1 километра.
[Закрыть]

К. Э. Циолковский (1857–1935).
Английский генерал Конгрев называл действие этих снарядов «потрясающим»; он организовал затем производство подобных снарядов в Англии и усовершенствовал их. В середине XIX века реактивная артиллерия находилась уже на вооружении большинства европейских государств.
Создателем замечательных русских боевых ракет был прошедший суворовскую выучку генерал Александр Дмитриевич Засядко. Ракеты Засядко впервые были применены в военных действиях русской армии на Кавказе в 1825 году, а затем в русско-турецкую войну 1828–1829 годов.
Большого успеха в совершенствовании ракет достиг в середине прошлого века талантливый инженер и изобретатель – генерал артиллерии Константин Иванович Константинов. Работа Константинова «О боевых ракетах» была переведена на многие языки мира и долгие годы служила настольной книгой для артиллеристов.
Машины для производства ракет, созданные Константиновым (они так и назывались – «машины Константинова»), вытеснили опасный и непроизводительный ручной труд при набивке ракет и получили распространение во всей Европе. Ракеты Константинова были лучшими для своего времени и, в частности, с успехом применялись в знаменитую Севастопольскую оборону 1854–1855 годов.
Многое сделал Константинов и в отношении производства ракетного вооружения и выработки тактики его военного использования.
Ракетная артиллерия широко применялась в Европе вплоть до конца прошлого века. Так, она еще использовалась в туркестанских походах русской армии в 80-х годах. Это объяснялось преимуществами ракет перед обычными гладкоствольными орудиями в отношении веса и подвижности. Дальность же и меткость огня были плохими как у ракет, так и у гладкоствольных пушек.
Однако во второй половине прошлого века ракетные орудия начали быстро вытесняться появившимися нарезными артиллерийскими орудиями, стрелявшими продолговатыми снарядами современного типа. Вращение этих снарядов в полете сильно увеличило кучность огня по сравнению с круглыми ядрами. К концу XIX века ракетная артиллерия была всюду снята с вооружения. Уже в первых войнах XX века, а также в первой мировой войне 1914–1918 годов она не применялась в боевых действиях. Сохранились лишь фейерверочные, сигнальные и другие ракеты вспомогательного назначения.
Третье рождение ракетного вооружения, сопровождавшееся его бурным развитием, произошло совсем недавно, в дни Великой Отечественной войны. В руках советских воинов, впервые в этой войне широко и смело применивших на поле боя реактивную артиллерию, она стала могучим и грозным оружием, вселявшим страх и ужас в сердца врагов. Весь мир знает о славных боевых подвигах реактивных минометов, получивших почетное звание гвардейских и ласковое имя «катюш», которое им дал советский народ.
Кто видел и слышал хоть раз в жизни, как «поют» «катюши», как они «играют», тот никогда этого не забудет. А кто этого не видел и не слышал, тот наверняка читал о впечатлениях очевидцев. Вот, например, что пишет об этом известный латвийский писатель Вилис Лацис:
«…внезапно заполыхали огнем кусты. Некоторое время казалось, что воздух наполнился ревом бури: реактивные снаряды, следующие со сказочной быстротой один за другим, проносились через нейтральную зону. В одном из секторов неприятельской оборонительной линии закипела, казалось, сама земля; все закружилось, задымилось, горели кусты, все почернело. Невозможно полностью описать последствия взрывов реактивных снарядов – это надо видеть собственными глазами, только тогда можно получить точное представление о мощи этого оружия».
Главное преимущество реактивной артиллерии перед обычной заключается в том, что для стрельбы реактивными снарядами не нужно тяжелых, сравнительно малоподвижных, громоздких пушек. Для этого применяются легкие, небольшие по размерам реактивные орудия, которые служат лишь для направления снаряда в первый момент выстрела. Такими реактивными орудиями служат обычно простые направляющие салазки, лоток или труба. Это позволяет установить большое число реактивных орудий на самолете, как, например, это было сделано на прославленном самолете-штурмовике Ильюшина «ИЛ-2», который немецкие фашисты называли «черной смертью». А «катюша» – это автомобиль с большим числом установленных на нем реактивных орудий, способных вести огонь реактивными снарядами весьма крупного калибра. Большая подвижность «катюш» позволяла легко маневрировать ими, наносить мощные, массированные, обычно совершенно внезапные огневые удары по врагу.
Реактивный снаряд начинает свой полет, когда запускается его пороховой ракетный двигатель. В камере сгорания этого двигателя находится заряд из специально изготовленного пороха. Обычно порох содержится в камере в виде одной или нескольких пороховых шашек. Когда порох после запуска воспламеняется и затем постепенно сгорает, то образующиеся в результате такого сгорания раскаленные газы вытекают из двигателя назад, через сопло, с очень большой скоростью, иногда превышающей 7000 километров в час. Сила реакции этой струи вытекающих газов и толкает вперед снаряд, заставляя его лететь с большой скоростью. Значит, в этом случае происходит принципиально то же, что и с кораблем, участвующим в гонках под номером 5. Только вместо чугунных шаров в реактивном двигателе снаряда запасен порох и отбрасываются назад для создания движущей силы реакции, или реактивной тяги, не шары, а частицы газов, образующихся при сгорании пороха.

Залп реактивных орудий самолета «ИЛ-2».
Так как порох для своего сгорания не нуждается в воздухе, то, казалось бы, пороховой ракетный [13]13
Ракетными и называются двигатели, обладающие именно этим свойством. Двигатели, которые не могут работать без воздуха, потому что используют кислород воздуха для сжигания топлива, называются воздушно-реактивными. О них речь в следующей главе.
[Закрыть] двигатель вполне пригоден для установки на межпланетном корабле. Однако это не так. Пороховой двигатель работает, пока в нем горит порох, – обычно секунды и даже доли секунды. Ясно, что этого недостаточно для межпланетного полета. [14]14
Это не значит, что пороховые ракетные двигатели не играют никакой роли в астронавтике. В следующих главах будет рассказано о некоторых примерах их применения в настоящее время. Еще больше возможности применения этих двигателей в будущем, когда будут созданы твердые топлива, не уступающие по скорости истечения продуктов их сгорания жидким топливам; такие возможности имеются. Возможны также различные сочетания жидких и твердых топлив.
[Закрыть]Оказывается, мало найти подходящий реактивный двигатель, надо еще заставить его работать достаточно долго.
Но ведь двигатели реактивных самолетов работают много часов подряд. Нельзя ли их установить на межпланетном корабле?

Устройство авиационного реактивного снаряда.
Глава 5«ЗВУКОВОЙ БАРЬЕР» ВЗЯТ!
Мысль о возможности использовать реактивные двигатели на транспортных экипажах для передвижения по земле, а потом и по воздуху появилась в давние времена.
Неоднократно обращались взоры изобретателей к реактивному двигателю, когда начиналось покорение воздушного океана. Это было связано с тем, что развитие воздухоплавания, а затем и авиации задерживалось тогда из-за отсутствия достаточно легкого, мощного и надежного двигателя для дирижаблей и самолетов.
Идея использования реактивного принципа в воздухоплавании высказывалась русскими изобретателями Третесским и Соковниным. Третесский в 1849 году предложил свой проект аэростата, передвигающегося под действием силы реакции струи пара или газа, вытекающего под давлением из отверстия в корме аэростата. Несколько более совершенный проект подобного же рода разработал в 1866 году Соковнин, писавший в пояснительной записке к своему проекту, что «воздушный корабль должен лететь способом, подобным тому, как летит ракета».
Мысль о создании летательного аппарата тяжелее воздуха с реактивным двигателем принадлежит нашему соотечественнику – Николаю Ивановичу Кибальчичу. Имя Кибальчича известно и дорого советскому народу как имя революционера, человека, отдавшего свою жизнь за дело революции. Как известно, Кибальчич вместе с другими народовольцами был казнен царским правительством за участие в покушении на царя Александра II 1 марта 1881 года. Кибальчич ведал лабораторией народовольцев, он изготовил бомбу, которой был убит царь.
Вероятнее в процессе работы над этой бомбой, а может быть и раньше, Кибальчичу пришли в голову мысли, которые он затем, уже сидя в камере смертников, за несколько дней до казни, изложил в докладной записке на имя царского правительства. Кибальчич предлагал построить летательный аппарат тяжелее воздуха с пороховым ракетным двигателем разработанной им конструкции. Эта идея 27-летнего революционера намного опережала свою эпоху, однако царское правительство, как и можно было ожидать, не стало рассматривать его предложение. Если судить по резолюции на докладной записке Кибальчича, царское правительство считало нежелательным привлекать внимание к участи осужденного народовольца, хотя Кибальчич в своей записке вовсе не просил о помиловании или даже об отсрочке казни – он хотел только встретиться с учеными, чтобы рассказать им о своей идее. Кибальчич был казнен, и только через 36 лет после этого, в августе 1917 года, в архивах полиции была обнаружена его докладная записка.
Попытки установить пороховые ракеты на автомобиле, глиссере, мотоцикле, планере и других средствах передвижения в начале нашего века были довольно частыми. Первые такие попытки должны были доказать правильность самого принципа реактивного движения, да и в дальнейшем многие из них неплохо содействовали популяризации этой новой тогда идеи, но в основном эти попытки носили рекламный или спортивный характер. Никакого практического значения они не имели, так как нельзя было избежать основного порока порохового ракетного двигателя – ничтожной продолжительности его работы.
Этот порок органически присущ пороховому двигателю, так как в таком двигателе весь запас топлива – пороха – должен заранее находиться в камере сгорания, что сильно ограничивает величину этого запаса. Подача новых порций твердого топлива в камеру сгорания связана с исключительными трудностями и, несмотря на ряд изобретательских предложений этого рода, в частности того же Кибальчича, до сих пор не была осуществлена.
Между тем по мере развития авиации все сильнее стала ощущаться необходимость в новом двигателе для самолетов, который мог бы обеспечить достижение еще невиданных скоростей полета.
Увеличение скорости полета – это одна из важнейших задач, неизменно стоящих перед авиацией. В авиации не зря говорят, что «кто быстрее в воздухе, тот и сильнее в воздухе». Начиная с первого полета самолета Можайского и до наших дней во всем мире ведется настойчивая борьба за увеличение скорости полета. И если первые самолеты летали со скоростью 40–45 километров в час, то к началу минувшей войны скорость достигла уже 700–750 километров в час. Огромный прогресс!
И все эти годы авиации надежно служил поршневой авиационный двигатель внутреннего сгорания, приводящий в движение воздушный винт. Это был единственный тип двигателя, нашедший применение в авиации. Со времени полета первых самолетов этот двигатель прошел огромный путь развития. Его мощность выросла от нескольких десятков до нескольких тысяч лошадиных сил. Конструкция двигателя усовершенствовалась – он стал очень компактным и легким. Экономичность двигателя значительно улучшилась – он стал расходовать в несколько раз меньше топлива на каждую лошадиную силу. Надежность двигателя стала необычайной – он приобрел способность работать без перерыва многие сотни часов подряд.
Поршневой авиационный двигатель стал высокосовершенной машиной, одним из замечательных достижений техники, человеческого гения. Кто не знает блестящих побед авиации, достигнутых с помощью этого двигателя, – исторических перелетов Чкалова и Громова через Северный полюс, высотных полетов Коккинаки и многих других!
И, несмотря на это, к концу второй мировой войны слава поршневого двигателя начала меркнуть: все сильнее стало ощущаться, что этот двигатель становится тормозом на пути дальнейшего развития авиации. Несмотря на несомненные достоинства поршневого двигателя, уже отчетливо стал выявляться и его главный недостаток – он оказался непригодным для полетов с теми скоростями, которые требовались теперь от авиации. Никакие конструктивные усовершенствования не могли уже исправить дело. Этот двигатель пасовал перед новыми скоростями. Замена его двигателем другой системы стала неизбежной.
Когда самолет летит со все большей скоростью, ему приходится преодолевать все большее сопротивление воздуха. Но это значит, что и двигатель самолета должен развивать при этом все большую мощность, ибо работа, совершаемая двигателем, и затрачивается на преодоление сопротивления воздуха. К сожалению, поршневой авиационный двигатель развивает практически одну и ту же мощность вне зависимости от скорости полета. Если на аэродроме двигатель в состоянии развивать, скажем, 2000 лошадиных сил, то практически те же 2000 сил он будет развивать и в полете, когда самолет мчится со скоростью 600 или 700 километров в час. Если же установить более мощный двигатель, то он будет и более тяжелым, а это увеличит размеры самолета и, следовательно, снова повысит требования к мощности двигателя. Заколдованный круг, из которого выхода для поршневого двигателя нет!

Советский поршневой авиационный двигатель АШ-82.
Кроме того, стал еще подводить и неизменный товарищ поршневого двигателя – воздушный винт. С увеличением скорости полета концы лопастей винта, вращающегося с очень большим числом оборотов, начинают двигаться в воздухе с такой огромной скоростью, что это делает работу винта малоэффективной. Все большая часть мощности двигателя тратится при этом винтом бесполезно из-за увеличения потерь, связанных со сжимаемостью воздуха, и все меньшая часть затрачивается на полезную работу продвижения самолета в воздухе. А ведь потребность в этой работе с ростом скорости полета все возрастает!
Наконец, обнаружилась и еще одна преграда, окончательно доконавшая поршневой двигатель. На пути увеличения скорости полета самолетов грозной невидимой стеной стал «звуковой барьер». Этот таинственный «порог» взволновал умы авиационников; ему посвящалось все большее число статей в специальных журналах, все большее количество научных исследований. Выяснилось, что по мере увеличения скорости полета, как это показали опыты в аэродинамических трубах, сопротивление, которое оказывает воздух летящему самолету начинает вдруг резко увеличиваться. Как будто какая-то незримая рука внезапно упирается в нос летящего самолета и мешает ему лететь с большей скоростью, тормозит его. Чем больше скорость полета, тем сильнее эта рука, и тем больше должна быть мощность самолетного двигателя, чтобы преодолеть ее тормозящее усилие. И без того мощность поршневого двигателя уже недостаточна, а тут еще такая напасть…

«Звуковой барьер».
Как это неоднократно бывало и в других случаях, оказалось, что причины такого внезапного увеличения сопротивления воздуха с ростом скорости полета не только были предсказаны задолго до того, как самолеты стали его ощущать в полете, но и были подвергнуты весьма тщательному теоретическому исследованию.
Еще в прошлом веке ученый-артиллерист профессор Артиллерийской академии Н. В. Маиевский первым в мире указал на связь этого внезапного увеличения сопротивления со скоростью звука в воздухе, то есть с той скоростью, с которой распространяются в воздухе звуковые волны. В 1902 году вышло в свет блестящее научное исследование тогда еще молодого ученого Сергея Алексеевича Чаплыгина – будущего академика, ученика и друга Николая Егоровича Жуковского. Это исследование заложило основы теории полета со скоростями, приближающимися к скорости звука. Более трети века этот выдающийся труд Чаплыгина оставался, по существу, незамеченным и рассматривался лишь как оригинальное математическое исследование, пока развитие авиации не поставило перед наукой проблемы, оказавшиеся во многом уже решенными этой работой русского ученого.
Теперь уже хорошо известно, что по мере приближения скорости полета самолета к скорости звука в воздухе, равной примерно 340 метрам в секунду, или 1225 километрам в час, [15]15
У земли, при обычной температуре воздуха. Эта скорость меняется прямо пропорционально корню квадратному из температуры воздуха и, следовательно, с увеличением высоты полета уменьшается.
[Закрыть]сопротивление воздуха резко увеличивается. Чем ближе скорость полета к скорости звука, тем больше это дополнительное, так называемое волновое, сопротивление. При этом сам полет становится неустойчивым, самолет начинает вибрировать, управление им нарушается.
Немало пришлось потрудиться советским ученым-аэродинамикам, опиравшимся на идеи Чаплыгина, пока им удалось найти средства уменьшения неприятностей, связанных с полетом, скорость которого приближается к скорости звука. Результатами этих трудов являются и непривычно тонкие крылья скоростных самолетов, [16]16
Показательно для характеристики диапазона научных интересов Циолковского, что им предложен профиль крыла сверхзвукового самолета, так называемый двусторонний клин (рис. на стр. 39), который, возможно, в будущем найдет широкое применение – в частности, для крыла межпланетного корабля, совершающего планирующую посадку в земной атмосфере.
[Закрыть]и необычная форма этих крыльев, придающая современному скоростному самолету вид стремительно летящей стрелы, и многие другие особенности этих машин.
Стало окончательно ясно, что перешагнуть через скорость звука, пробить звуковой барьер с обычным поршневым двигателем не удастся, об этом нечего и мечтать. Авиация обратилась за помощью к реактивной технике.
Это был естественный и логичный шаг, ибо реактивные двигатели наиболее выгодны именно для высоких скоростей полета. В этом легко убедиться на примере хотя бы той же пороховой ракеты.
Представьте себе испытание такой ракеты на стенде. Двигатель работает, порох сгорает; из сопла ракеты с огромной скоростью вырываются раскаленные пороховые газы, но… все это напрасно, никакой полезной работы при этом двигатель не совершает. Действительно, ведь работа есть действие силы на некотором пути, а в данном случае сила имеется: это сила реакции струи вытекающих газов, но путь-то отсутствует – ракета неподвижна. Это все равно, как если бы, скажем, вам было велено передвинуть тяжелый ящик в сторону, метра на два. Сколько бы вы ни трудились, пытаясь сдвинуть этот ящик, вы бы еще полезной работы не совершили. Вот если бы ящик сдвинулся со своего места, то работа была бы совершена, именно работа, равная произведению вашего усилия на пройденный ящиком путь. Пока ящик неподвижен, затрачиваемая вами энергия теряется бесполезно.

Профиль крыла сверхзвукового самолета, предложенный К. Э. Циолковским.
Но вот ракета полетела и мчится со все большей скоростью. Теперь уже работа ракеты совершается, она равна силе реакции струи газов, помноженной на пройденный ракетой путь.
Чем больше скорость полета, тем больше эта полезная работа. Легко сообразить, когда энергия газов будет полностью использована для совершения полезной работы – продвижения ракеты в окружающей среде.
Очевидно, как раз тогда, когда скорость полета ракеты станет в точности равной скорости истечения газов. Действительно, в этом случае газы, вытекающие из ракеты с огромной скоростью, будут относительно окружающего их воздуха совершенно неподвижными. Это и значит, что всю свою кинетическую энергию газы потеряли – она перешла в полезную работу движения ракеты. Правда, чтобы наступил такой момент, пороховая ракета должна лететь с очень большой скоростью – примерно 6–7 тысяч километров в час, но чем ближе скорость полета к этой наивыгоднейшей скорости, тем более эффективной становится работа реактивного двигателя.
Мы видим, что реактивные двигатели действительно рождены для высоких скоростей. Именно поэтому реактивные двигатели, вероятно, никогда не найдут широкого применения в наземном или водном транспорте – на железных дорогах, автомобилях, судах. При относительно малых скоростях передвижения, возможных в этих случаях, реактивные двигатели невыгодны и уступают тому же поршневому двигателю внутреннего сгорания. Другое дело в воздухе, где возможны огромные скорости, – в авиации и артиллерии. Здесь реактивные двигатели не имеют себе равных. Что же говорить о безвоздушном межпланетном пространстве?.. Кстати сказать, этот вывод о выгодности использования реактивных двигателей при больших скоростях полета был впервые в мире также получен Циолковским.
Пока скорость полета самолетов была относительно небольшой, авиацию вполне устраивал поршневой двигатель, а применение реактивных было бы невыгодным. Но вот скорость сильно выросла, поршневой двигатель стал сдавать – и все взоры обратились к двигателю реактивному.
Но авиационный реактивный двигатель должен, очевидно, во многом отличаться от двигателей реактивной артиллерии, и в первую очередь тем, что он должен обеспечивать длительный полет. Уже не секундами, как у пороховых реактивных двигателей, а часами должна измеряться продолжительность работы реактивного двигателя самолета. В этом случае все топливо нельзя разместить в камере сгорания, как в пороховом двигателе, а его нужно подавать туда небольшими порциями. Следовательно, топливо для авиационного двигателя не должно быть твердым. Но это еще не все, – такой двигатель должен расходовать мало топлива, то есть быть экономичным, чтобы обычных запасов топлива на самолете было достаточно для сравнительно продолжительного полета.
Двигатели, удовлетворяющие этим требованиям, известны. Это так называемые воздушно-реактивные двигатели. Они работают не на твердом, а на жидком топливе и используют для сжигания его кислород из атмосферы. В результате этого продолжительность их работы неизмеримо больше, чем пороховых двигателей.
Первые проекты воздушно-реактивных двигателей появились в ряде стран, в том числе и в нашей, еще в прошлом веке.
В 1867 году русский изобретатель Н. Телешов запатентовал воздушно-реактивный двигатель с компрессором для сжатия воздуха. Этот двигатель он назвал теплородным духометом. Аналогичные двигатели были предложены за рубежом почти на полвека позже.
В мае 1884 года изобретатель Якубинский доложил на заседании воздухоплавательного отдела Русского технического общества свой первый в мире проект воздушно-реактивного двигателя, специально предназначенного для летательных аппаратов.
Талантливый инженер и изобретатель Кузьминский еще в 1897 году построил и испытал на катере, на Неве, первый в мире газотурбинный двигатель, весьма похожий по конструктивной схеме на двигатели современных реактивных самолетов.
Интересные проекты воздушно-реактивных двигателей разработали в начале XX века изобретатели Караводин, Антонович, Горохов и Никольский.
Конструктор Базаров в 1924 году получил авторское свидетельство на схему так называемого турбовинтового двигателя для самолетов, в котором тяга создается как винтом, приводимым в движение турбиной, так и реакцией струи вытекающих газов. Двигатели современных реактивных самолетов во многих основных элементах конструкции повторяют это предложение.








