Текст книги "Путешествие к далеким мирам"
Автор книги: Карл Гильзин
сообщить о нарушении
Текущая страница: 4 (всего у книги 26 страниц)
В 1932 году Циолковский, работавший и над проблемой применения реактивных двигателей в авиации, предложил так называемый двухконтурный турбореактивный двигатель. Конструкция такого двигателя была разработана в 1937 году инженером Люлька.
Это показывает, что многие типы воздушно-реактивных двигателей были созданы в нашей стране. У нас же были разработаны основы теории и расчета этих двигателей.
Еще в конце прошлого века Николай Егорович Жуковский в своих знаменитых работах «О силе реакции вытекающей и втекающей жидкости» (1882 и 1886 гг.) дал формулу для определения силы тяги, которой пользуются в настоящее время во всем мире. Ученик Жуковского академик Б. С. Стечкин в 1929 году опубликовал разработанную им впервые в мире теорию воздушно-реактивных двигателей.
Работники нашей реактивной техники гордятся этим первенством нашей страны в создании авиационных реактивных двигателей. Своим настойчивым и упорным трудом они завоевывают и в настоящее время качественное превосходство отечественной реактивной авиации над зарубежной. Двигатели, которые разрабатываются и строятся дружными коллективами советских ученых, конструкторов инженеров и рабочих, не имеют равных себе в мире. И в полной мере достойны этих двигателей наши замечательные реактивные самолеты, создаваемые прославленными авиационными конструкторами Туполевым, Микояном, Ильюшиным, Мясищевым, Яковлевым, Лавочкиным, Сухим, Антоновым и другими. Родина авиации и реактивной техники имеет могучую реактивную авиацию, охраняющую мирный труд нашего великого советского народа.
Скоростные самолеты над Красной площадью в Москве 1 Мая 1954 года.
Если пороховой реактивный двигатель поражает своей простотой и не имеет ни одной движущейся части, то турбореактивный двигатель современного реактивного самолета представляет уже довольно сложную машину. Однако оба эти двигателя имеют одну и ту же задачу – развивать реактивную тягу, создаваемую струей вытекающих из двигателя газов.
Схемы турбореактивных двигателей: вверху – с центробежным компрессором, внизу – с осевым.
Воздух, попадающий в турбореактивный двигатель через специальные воздухозаборные отверстия, сжимается в нем до давления в несколько атмосфер. Для этого служит специальная машина – компрессор. Это может быть центробежный компрессор, представляющий собой крыльчатку большого диаметра, вращающуюся с большим числом оборотов, либо осевой компрессор. Осевым он называется потому, что при сжатии в этом компрессоре воздух течет параллельно его оси, а не по радиусам от центра к периферии, как в центробежном компрессоре. Осевой компрессор представляет собой ряд колес с лопатками на ободе, вращающихся между рядами неподвижных лопаток.
В сжатый воздух в камере сгорания двигателя впрыскивается топливо, которым чаще всего является обычный керосин. Продукты сгорания топлива – раскаленные газы – поступают в газовую турбину и расширяются в ней, передавая лопаткам турбины часть своей энергии. Вследствие этого турбина вращается, развивая мощность, необходимую для приведения в действие компрессора. Именно для этой цели и предназначена турбина в двигателе, и поэтому она связывается с компрессором прочным стальным валом. Этот вал действительно должен быть прочным, так как мощность турбины и практически равная ей мощность компрессора в турбореактивных двигателях превышает иной раз 50 тысяч лошадиных сил.
Отечественный турбореактивный двигатель с центробежным компрессором РД-500.
Вытекающие из двигателя через реактивное сопло газы обладают значительной скоростью, намного превышающей скорость полета. Эта разница в скоростях и приводит к возникновению силы реакции, представляющей собой реактивную тягу двигателя. Сила реакции струи вытекающих из двигателя газов – вот та сила, которая заставляет лететь с большой скоростью реактивный самолет.
Турбореактивные двигатели, применяемые на современных самолетах, развивают тягу 5–7 тонн и более (по данным журнала «Интеравиа» № 10, 1958 г., и др.). Легко подсчитать, какую мощность развивает в полете двигатель подобной тяги. Так, мощность двигателя тягой 6000 килограммов при скорости полета 400 метров в секунду, что соответствует 1440 километрам в час, равна 32 тысячам лошадиных сил.
И это в то время, как наиболее мощные поршневые авиационные двигатели развивают по крайней мере в 8 раз меньшую мощность. А ведь поршневые двигатели имеют более чем полувековую историю развития.
Мало того: примерно четверть всей мощности, развиваемой поршневым двигателем, теряется бесполезно винтом, так что при мощности двигателя в 4000 лошадиных сил его полезная мощность составит примерно 3000 лошадиных сил. И вместе с тем такой двигатель будет иметь больший вес и большие размеры, чем турбореактивный двигатель, во много раз более мощный. Вот в чем секрет успеха реактивных двигателей в авиации.
А успех этот, кстати сказать, поистине необычайный. За несколько послевоенных лет вся скоростная авиация мира стала авиацией реактивной. Можно смело говорить о технической революции, вызванной в авиации применением реактивных двигателей.
Когда мы об этом говорим, то не можем не вспомнить с законной гордостью пророческие слова Циолковского, сказанные им еще тогда, когда к самой мысли о создании реактивных самолетов относились как к безудержной фантазии: «За эрой аэропланов винтовых должна следовать эра аэропланов реактивных». Эти вещие слова, сказанные четверть века назад, сбылись. Мы живем с вами в самом расцвете эры реактивной авиации. [17]17
Интересно вспомнить в связи с этим, что в официальном документе английского правительства, относящемся к 1934 году (письмо основателю Английского межпланетного общества Клетору), было сказано буквально следующее: «…Научные исследования возможностей реактивных двигателей не дают указания, что они могут быть серьезными конкурентами винтомоторной силовой установке» (!).
[Закрыть]
Вместо четырех турбореактивных двигателей реактивного бомбардировщика на нем нужно было бы установить не менее 24 сверхмощных поршневых двигателей.
Достижения реактивной авиации поразительны. Ее возраст еще только немногим больше десятилетия, и все же «таинственный» звуковой барьер уже преодолен! И, как и следовало ожидать, ничего таинственного по ту сторону этого барьера не оказалось, по авторитетному свидетельству многократно побывавших там летчиков. Сейчас уже реактивные самолеты летают со скоростью, превышающей скорость звука в 2,5 и более раз.
Покоривший весь мир красавец реактивный пассажирский самолет «ТУ-104» за 3 часа переносит десятки пассажиров из Москвы в Лондон, за 11 часов – в далекий Владивосток. Пассажир, вылетевший утром из Петропавловска-Камчатского, в тот же день вечером слушает оперу в Большом театре в Москве – кто мог поверить в это еще несколько лет назад!
Новые пассажирские реактивные самолеты, выходящие сейчас на авиалинии, будут перевозить не десятки, а сотни пассажиров. Кто мог ждать что так скоро работникам нашей гражданской авиации придется задуматься над несколько необычной для них задачей – как поскорее довезти пассажиров до… аэродрома. Ведь уже сейчас иной раз пассажиры затрачивают больше времени на поездку из города на аэродром, чем на перелет за сотни километров!
Но эти успехи воздушно-реактивных двигателей в авиации – только первые шаги. Впереди их ждут еще более блестящее будущее, еще большие скорости полета: 3-4-5 тысяч километров в час. И очень интересно, что при таких больших скоростях полета двигатель не только не станет более сложным, но, наоборот, предельно упростится.
Сложность турбореактивного двигателя связана главным образом с его движущимися, вращающимися частями: компрессором и турбиной. Именно они, с одной стороны, уменьшают надежность двигателя, а с другой – ограничивают возможность дальнейшего увеличения его тяги, а значит, и возможность дальнейшего увеличения скорости полета. Но, к сожалению, без компрессора, а следовательно, и без турбины обойтись пока нельзя: для того чтобы двигатель мог работать, развивая большую тягу и расходуя мало топлива, нужно сжимать воздух, увеличивать его давление в камере сгорания. И вот оказывается, что при полете со скоростью, в 3–4 раза превышающей скорость звука, компрессор становится лишним: удается получить нужное высокое давление воздуха в двигателе и без его помощи.
Секрет здесь прост. Почему, когда высовываешься из окна вагона быстро мчащегося поезда, спускаешься на лыжах с крутой горы или с разбегу прыгаешь с высокого трамплина, воздух становится таким упругим? Отчего перехватывает в этих случаях дыхание, какая сила бьет с размаху в грудь и лицо? Почему таким страшным становится обыкновенный ветерок, когда он с силой урагана набрасывается на деревья, строения, людей, срывая крыши с домов, опрокидывая железнодорожные вагоны?
Реактивные самолеты: вверху – военный, внизу – пассажирский («ТУ-104»).
Эта сила рождается, когда стремительно мчащийся воздух задерживается неожиданным препятствием, внезапно и резко останавливается, прерывая свой бешеный бег. Вся мощь, вся кинетическая энергия воздуха затрачивается в этих случаях на его сжатие, на увеличение давления, создавая так называемый скоростной напор. Он-то и валит с ног людей и ломает деревья.
Что же происходит, когда в воздухе мчится с огромной скоростью, быстрее любого урагана, реактивный самолет? Воздух, врывающийся с этой скоростью в двигатель, почти останавливается внутри него. Легко представить себе, каким большим оказывается при этом скоростной напор воздуха. И все же при тех скоростях, с которыми летают современные реактивные самолеты, этот скоростной напор еще не в состоянии создать нужного давления в двигателе, он только помогает компрессору.
Схема прямоточного воздушно-реактивного двигателя.
Но когда скорость полета начинает значительно превышать скорость звука, то только в результате использования этого скоростного напора давление в двигателе может быть доведено до многих атмосфер и даже до десятков атмосфер.
Тогда в компрессоре, а следовательно, и в турбине не будет никакой надобности. Турбореактивный двигатель превратится, по существу, в одну, летящую с огромной скоростью топку, в летающую трубу, вовсе не имеющую движущихся частей. И, несмотря на эту свою простоту, такой прямоточный воздушно-реактивный двигатель будет при этих больших скоростях полета развивать при тех же размерах и гораздо меньшем весе, чем у современных турбореактивных двигателей, в десятки раз большую тягу и расходовать во много раз меньше топлива. [18]18
Недостатком такого двигателя является то, что он не развивает тяги во время стоянки самолета и поэтому не может обеспечить его взлет; для этой цели на самолете должен быть установлен какой-нибудь дополнительный двигатель.
[Закрыть]Неудивительно поэтому то внимание, которое уделяется прямоточным двигателям уже сейчас, для того чтобы эти двигатели стали широко применяться в сверхскоростной авиации завтрашнего дня.
Развитие авиационной реактивной техники уже привело к созданию воздушно-реактивных двигателей, способных работать сотни часов подряд, мощных, экономичных, легких. Это были бы замечательные двигатели для межпланетного корабля, если бы… если бы они вообще годились для него. Но они, конечно, не годятся, ибо нуждаются для своей работы (для сгорания топлива) в воздухе, а именно его-то и нет в мировом пространстве.
Значит, для межпланетного корабля нужен реактивный двигатель, сочетающий способность порохового (работать без воздуха) со способностью воздушно-реактивного (работать продолжительное время). Такой двигатель и был изобретен Циолковским. [19]19
Следует подчеркнуть, что этот двигатель изобретен Циолковским раньше, чем были созданы первые воздушно-реактивные двигатели.
[Закрыть]
ЗАПРЯЖКА В ПОЛМИЛЛИОНА ЛОШАДЕЙ
Циолковский начал интересоваться проблемой межпланетного полета и, в связи с ней, реактивным движением в конце прошлого века. В архиве ученого обнаружена не опубликованная им статья «Свободное пространство», написанная в 1883 году. В этой статье рассматриваются принципы реактивного полета в мировом пространстве.
В 1895 году Циолковский начал работать над повестью «Вне Земли», в которой в качестве межпланетного корабля описывается ракета.
В 1903 году появилась первая печатная работа Циолковского о ракетах как средстве осуществления межпланетных полетов. Это была статья «Исследование мировых пространств реактивными приборами», опубликованная в журнале «Научное обозрение» № 5 за 1903 год. Появление этой статьи означало официальное рождение новой науки – ракетной астронавтики. При дальнейших многократных переизданиях статьи, начиная с 1924 года, она получила название «Ракета в космическое пространство».
Циолковский в этой классической статье наряду с разработкой теории межпланетных полетов изложил проект межпланетного корабля с изобретенным им жидкостным ракетным двигателем. Именно этому двигателю суждено решить проблему космического полета, ибо только он счастливо сочетает в себе возможности удовлетворения всех противоречивых требований, предъявляемых к двигателю межпланетных кораблей. Одного этого изобретения было бы достаточно, чтобы обессмертить имя Циолковского.
Жидкостный ракетный двигатель, как и пороховой, не нуждается в воздухе для своей работы и, следовательно, может работать и в безвоздушном пространстве даже с большим успехом, чем в атмосфере. Вместе с тем он обладает гораздо большей продолжительностью работы, чем пороховой, ибо он работает, как показывает и само название двигателя, не на твердом, а на жидком топливе, которое можно постепенно подавать из баков в камеру сгорания. Именно в этой высказанной Циолковским идее использования в ракетном двигателе жидкого топлива и заключается замечательная суть его изобретения. Эта идея широко используется не только в жидкостных ракетных двигателях, но и в воздушно-реактивных двигателях, о чем было рассказано в предыдущей главе.
Однако топливо для жидкостных ракетных двигателей представляет собой не одну какую-нибудь жидкость, как, например, бензин для поршневых и керосин для турбореактивных двигателей, а обычно состоит из двух различных жидкостей. Каждая из них хранится в особом баке или отсеке корабля, как это показано на схеме Циолковского, и только обе вместе они составляют топливо.
Одна из этих жидкостей – это так называемое горючее. Как видите, в данном случае горючее и топливо – не одно и то же; горючее – это только часть топлива.
Роль горючего и в этом случае такова же, как всегда, – при его сгорании должно выделяться тепло, необходимое для работы жидкостного ракетного двигателя. В качестве горючих применяются обычные нефтяные горючие – бензин, керосин, а также спирт, анилин и другие вещества (на схеме корабля Циолковского на отсеке с горючим написано «углеводород»).
Легко сообразить, какая жидкость должна заполнять второй бак. Ведь для сгорания горючего необходим кислород. Где же взять его, если нельзя заимствовать из окружающей атмосферы? Очевидно, во втором баке должна находиться жидкость, содержащая в себе в достаточном количестве кислород, или так называемый окислитель. В качестве окислителя применяются такие жидкости, как крепкая азотная кислота, перекись водорода высокой концентрации и другие вещества. Широко применяется также предложенный Циолковским чистый кислород, только, конечно, не газообразный (его вошло бы в бак очень мало, да и бак пришлось бы делать очень прочным), а жидкий. Для сжижения, как известно, кислород приходится охлаждать до температуры минус 183°.
Схема межпланетного корабля К. Э. Циолковского с жидкостным ракетным двигателем.
Обе части топлива – горючее и окислитель – подаются под высоким давлением в камеру сгорания двигателя. Давление, достигающее десятков атмосфер, может создаваться, например, каким-либо газом, вытекающим в баки с топливом из баллона высокого давления, где он содержится. Подача топлива может осуществляться также с помощью специальных насосов, как это показано на схеме Циолковского.
В камере сгорания происходит встреча составных частей топлива, заканчивающаяся химической реакцией сгорания. При этом выделяется большое количество тепла, так что температура в камере сгорания оказывается очень высокой – она превышает в некоторых случаях 3000°. Раскаленные газы, продукты этого сгорания, вытекают из двигателя через сопло наружу с огромной скоростью, достигающей 2,5 километра в секунду и даже больше.
Естественно, что сила реакции струи вытекающих газов, представляющая собой реактивную тягу двигателя, оказывается очень большой: ведь эта сила прямо пропорциональна скорости истечения газов из двигателя. Реактивная тяга и должна сообщить межпланетному кораблю необходимую большую скорость.
За полвека, прошедшие со времени изобретения Циолковским жидкостного ракетного двигателя, он прошел большой путь развития. Первые десятилетия характеризовались в этом отношении главным образом настойчивым трудом отдельных изобретателей-энтузиастов, их скромными попытками построить жидкостный ракетный двигатель и использовать его для полета ракеты. В настоящее время созданы уже многие проверенные, надежные конструкции таких двигателей. Они устанавливаются на различных самолетах и ракетах, используются для самых разнообразных целей. Над этой проблемой работают научно-исследовательские институты и конструкторские коллективы. Выросла новая, стремительно развивающаяся отрасль промышленности по производству жидкостных ракетных двигателей и реактивных летательных аппаратов.
Как и в других отраслях реактивной техники, не только первое слово, но и дальнейшие заслуги в развитии жидкостных ракетных двигателей принадлежат во многом нашей стране.
Несколько позже Циолковского и независимо от него начал работать над проблемой межпланетных полетов и, в этой связи, реактивной техникой талантливый исследователь и изобретатель-самоучка Ю. В. Кондратюк. Наряду с теорией межпланетных полетов, которую рассматривал в своих работах Кондратюк, он высказал ряд оригинальных мыслей в отношении совершенствования жидкостных ракетных двигателей. В частности, им было высказано независимо от Циолковского, первым выдвинувшего эту идею, предложение об использовании в качестве окислителя озона вместо кислорода, что является перспективным и в настоящее время.
Много сделал для развития жидкостных ракетных двигателей последователь и продолжатель идей Циолковского – Ф. А. Цандер. Это был первый инженер в нашей стране, который посвятил себя работе в области межпланетного полета и ракетной техники. Цандеру принадлежит ряд идей, способствующих успешному решению задачи межпланетного полета. Он осуществил исследования многих вопросов развития и совершенствования двигателей для межпланетных кораблей.
Жидкостный ракетный двигатель Ф. А. Цандера на испытательном стенде (1933 г.).
Еще в 1920 году, когда наша страна только выходила из пламени гражданской войны и перед ней стояли тяжелые задачи восстановления разрушенного войной народного хозяйства, Цандер выступал на Московской конференции изобретателей с докладом о проекте своего межпланетного корабля и двигателя для него. Владимир Ильич Ленин обещал тогда изобретателю поддержку в его дальнейшей работе. Это явилось ярким свидетельством того повседневного внимания, которым окружено в нашей стране смелое творчество и дерзание в науке.
В 1930 году Цандер построил свой первый двигатель, работавший на бензине и газообразном воздухе. Этот двигатель представлял собой, по существу, только модель другого, большего двигателя, развивавшего тягу до 50 килограммов и работавшего на бензине и жидком кислороде, который был построен Цандером в 1932 году. Он проходил испытания уже после преждевременной смерти Цандера в 1933 году. Это был один из первых жидкостных ракетных двигателей в мире. Цандер высказал мысль об использовании некоторых металлов в качестве горючего для жидкостных ракетных двигателей (независимо от Цандера эта мысль была высказана также Кондратюком). Это позволяет, в частности, сжигать части конструкции самого межпланетного корабля, становящиеся ненужными в процессе полета: опустошившиеся баки и т. п. Цандер разработал также методику расчета жидкостных ракетных двигателей.
Первый у нас в стране жидкостный ракетный двигатель был создан коллективом советских ученых, конструкторов, инженеров и рабочих в 1930 году. Этот двигатель, получивший название ОРМ-1 («Опытный реактивный мотор – первый»), был для того времени весьма совершенным по своей конструкции. Он состоял из 93 деталей, имел цилиндрическую стальную камеру сгорания и набор сменных стальных сопел. Двигатель работал на топливе, состоявшем из четырехокиси азота – в качестве окислителя и толуола – в качестве горючего. Три форсунки служили для подачи окислителя и три – для подачи горючего. При испытании двигатель развивал тягу до 20 килограммов.
Тогда же были осуществлены важные исследования в области теории жидкостных ракетных двигателей, предложен ряд топлив для них, в том числе нашедшие широкое применение азотная кислота и перекись водорода, и некоторые перспективные топлива, а также создано большое число жидкостных ракетных двигателей различного назначения. Так, двигатель ОРМ-50 тягой 150 килограммов, работавший на азотной кислоте и керосине, был предназначен для установки на отечественной экспериментальной ракете. Кстати сказать, 17 августа 1933 года состоялся первый запуск этой ракеты, вслед за которым были совершены и многие другие полеты, в том числе и на значительные высоты.
Одним из наиболее совершенных жидкостных ракетных двигателей того времени был двигатель ОРМ-65 тягой 175 килограммов, созданный в 1936 году для установки на новых видах летательных аппаратов – «воздушной торпеде» и ракетоплане.
«Воздушная торпеда» представляла собой первую из ракет такого рода – беспилотную крылатую ракету с автоматическим управлением. Дальность полета торпеды должна была составлять по проекту 50 километров. Торпеда успешно прошла летные испытания в 1939 году (29 января и 8 марта). Ракетоплан представлял собой экспериментальный самолет-моноплан небольшого размера, предназначенный для установки на нем жидкостного ракетного двигателя, – это был первый не только у нас в стране, но и во всем мире летательный аппарат подобного типа. Он был создан путем переоборудования двухместного планера, успешно летавшего начиная с 1935 года. Во время наземных испытаний двигателя на ракетоплане он проработал (в марте 1938 года) непрерывно 230 секунд, что было большим достижением для того времени.
Взлет отечественной ракеты с жидкостным ракетным двигателем (1933 г.).
Крупнейшим успехом в развитии жидкостных ракетных двигателей был ознаменован 1940 год: в этом году совершен первый полет человека на самолете с жидкостным ракетным двигателем. 28 февраля 1940 года с одного из подмосковных аэродромов взлетел самолет, на буксире у которого находился упомянутый выше ракетоплан (с другим ракетным двигателем). В воздухе летчик В. П. Федоров, пилотировавший ракетоплан, перевел его на самостоятельный полет и включил двигатель. Так был совершен этот исторический полет человека на самолете с жидкостным ракетным двигателем. Началась новая страница в развитии реактивной техники.
Через два с небольшим года, 15 мая 1942 года, капитан Г. Я. Бахчиванджи совершил первый полет уже на специально спроектированном самолете с жидкостным ракетным двигателем. Первый раз в истории такой самолет поднял человека в воздух.
Жидкостные ракетные двигатели применяются сейчас в авиации для различных целей.
В ряде случаев они используются для облегчения взлета тяжелых самолетов. Иногда эти двигатели устанавливаются на самолетах в дополнение к основному двигателю другого типа, например турбореактивному, с целью увеличения скорости полета в нужный момент – при наборе высоты, в воздушном бою и т. д. Такая установка применялась в нашем Военно-Воздушном Флоте еще в годы минувшей войны; в частности, жидкостный ракетный двигатель РД-1 был установлен в хвосте известного пикирующего бомбардировщика «ПЕ-2» конструкции В. М. Петлякова.
Устанавливаются жидкостные ракетные двигатели на самолетах и в качестве основного и единственного двигателя. Самолеты с этими двигателями предназначаются обычно для исследовательских целей – изучения особенностей полета на очень больших, сверхзвуковых скоростях. С их помощью удается достигать наибольших, доступных пока, скоростей полета. Имеются и военные самолеты с такими двигателями – так называемые истребители обороны, или истребители-перехватчики, задачей которых является борьба с бомбардировщиками врага.
Однако самолеты с жидкостным ракетным двигателем обладают и одним очень серьезным недостатком по сравнению с другими самолетами – они могут находиться в полете гораздо меньшее время. Это объясняется тем, что жидкостные ракетные двигатели обладают исключительной «прожорливостью» – они расходуют в 15–20 раз больше топлива, чем турбореактивные двигатели такой же тяги. Это не удивительно. Ведь турбореактивные двигатели современных самолетов, хотя бы нашего хорошо всем известного авиалайнера ТУ-104, помимо топлива, находящегося в баках самолета, используют для своей работы атмосферный воздух, точнее – кислород из этого воздуха. Таким образом, вся окружающая нас атмосфера служит для этого двигателя как бы вторым огромным «топливным» баком. Иначе обстоит дело в случае жидкостного ракетного двигателя. Как уже было отмечено в начале этой главы, на самолете с таким двигателем, помимо бака с горючим, должен иметься и бак с окислителем – допустим, тем же кислородом, но только жидким. Понятно, что общий расход топлива, то есть горючего вместе с окислителем, получается значительно большим, чем расход топлива в турбореактивном двигателе. Вот почему при непрерывной работе жидкостного ракетного двигателя на полной мощности запаса топлива на истребителе-перехватчике хватает лишь на 3–5 минут! Чередуя разгон самолета при работающем двигателе с последующим планированием, когда двигатель выключен, летчик такого самолета может довести общую продолжительность полета до 20–30 минут. Этого только-только хватает для того, чтобы взлететь, навязать бой противнику в районе своего аэродрома и сесть с пустыми баками. Поэтому жидкостные ракетные двигатели применяются пока только на единственном типе самолетов – истребителях-перехватчиках, да и то вдобавок к другому двигателю.
Главное использование жидкостных ракетных двигателей связано, однако, в настоящее время не с авиацией, а с различного рода ракетами. Это и тяжелые снаряды противовоздушной обороны, и ракетные авиабомбы, и снаряды дальнего действия, и высотные ракеты.
Применение тяжелых ракет с жидкостным ракетным двигателем с каждым днем все расширяется, и некоторые из таких ракет начинают уже сильно походить на небольшие межпланетные корабли, как их обычно рисуют в книжках…
Вот одна из таких ракет, применявшаяся в минувшую войну в качестве тяжелого дальнобойного реактивного снаряда. Боевая головка этого снаряда заключала в себе ¾ тонны взрывчатого вещества, и снаряд пролетал расстояние около 300 километров. Конечно, ни одна самая тяжелая и дальнобойная пушка такими тяжелыми снарядами и так далеко не стреляла. На этом снаряде был установлен мощный жидкостный ракетный двигатель.
Ракета имела длину около 14 метров, диаметр – 1,7 метра, а сзади, по хвостовому оперению, – даже 3,6 метра. Поневоле поражаешься размерам этой ракеты, когда сравниваешь ее с фигурами стоящих рядом людей. Ну, и вес ракеты тоже внушительный – примерно 13 тонн, так что вес «полезной нагрузки» – взрывчатки – составляет только небольшую часть, несколько процентов от общего веса ракеты.
Двигатель установлен в «корме» ракеты, как это будет, очевидно, и на межпланетном корабле. Работает он на топливе, состоящем из двух жидкостей. Вот почему на этой ракете, в ее средней части, установлены два гигантских бака.
В переднем баке находится горючее, которым в данном случае служит этиловый, то есть винный, спирт (крепкий, не менее 75°). Задний бак служит для хранения окислителя – чистого жидкого кислорода, как это и предлагал в свое время Циолковский. Запас топлива на ракете равен примерно 9 тоннам. Вот что составляет большую часть, примерно ⅔, общего веса ракеты. Из этих 9 тонн около 4 тонн – спирт, остальное – жидкий кислород.
Для выстрела, то есть запуска, ракета устанавливается в вертикальном положении, в котором она поддерживается с помощью специального легкого станка-люльки. Почти как межпланетный корабль, приготовившийся к прыжку в мировое пространство! В таком положении заполняются топливом гигантские баки ракеты – ракета заправляется. Для этой цели служат мощные автозаправщики, но какими игрушечными они кажутся рядом с устремленной ввысь ракетой!
Исследовательский сверхзвуковой самолет с жидкостным ракетным двигателем.
Но вот заправка кончена, ракету можно запускать. Открываются топливные краны, спирт и кислород поступают в камеру сгорания двигателя. Там происходит воспламенение топлива, и образовавшиеся в результате сгорания раскаленные газы с большой скоростью начинают вытекать из двигателя через сопло в атмосферу.
Подготовка ракеты к запуску. На заднем плане видна ракета в момент взлета.
Устройство тяжелого дальнобойного снаряда-ракеты (Фау-2) с жидкостным ракетным двигателем.
Сила реакции струи вытекающих из двигателя газов направлена вверх; она стремится поднять ракету, оторвать ее от земли.
Сделать это, правда, не так просто, ведь ракета весит 13 тонн! Однако, оказывается, при нормальной своей работе двигатель ракеты развивает тягу, вдвое превосходящую вес ракеты, – тягу в 25–26 тонн. Это тяга современных мощных паровозов, водящих тяжеловесные поезда. И вот с такой огромной силой газы, вырывающиеся из ракеты вниз, толкают ее вверх. На этот режим полной тяги двигатель выходит только через несколько секунд после его запуска (вначале устанавливается так называемый предварительный режим – с тягой 8 тонн). Быстро увеличиваясь, тяга выравнивается с весом ракеты, потом становится больше этого веса – ракета вздрагивает, медленно, как бы нехотя, отрывается от земли, а затем все быстрее и быстрее взмывает кверху, очень скоро исчезая из глаз наблюдателя.
Весь дальнейший полет ракеты осуществляется автоматически. Он управляется приборами, стоящими на самой же ракете, в специальном приборном отсеке, за боевой головкой. Повлиять на полет ракеты с земли после того, как она уже взлетела, невозможно. Ракета взлетает, а потом, подчиняясь команде приборов, установленных на ней, мчится к цели, находящейся на расстоянии 300 километров от места взлета.
Первые 10–11 секунд после старта ракета летит прямо вверх, в небо. Затем приборы управления полетом ракеты отклоняют ее рули, расположенные сзади. Вследствие этого ракета перестает подниматься вертикально и начинает полет по сложной криволинейной траектории, впрочем близкой к дуге круга. Летя таким образом, ракета достигает весьма большой высоты – примерно 40 километров. На этой высоте двигатель ракеты выключается, останавливается. К этому моменту он успевает выработать все топливо, запасенное на ракете в гигантских баках, – все 9 тонн.