355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Карл Гильзин » Путешествие к далеким мирам » Текст книги (страница 20)
Путешествие к далеким мирам
  • Текст добавлен: 10 октября 2016, 01:46

Текст книги "Путешествие к далеким мирам"


Автор книги: Карл Гильзин



сообщить о нарушении

Текущая страница: 20 (всего у книги 26 страниц)

Но мысль об астероидах приходит не только в связи с этим. Если можно отправить какую-нибудь из крохотных планеток в далекое путешествие вокруг Солнца или в полет вокруг Земли, то можно ведь и так изменить ее природную орбиту, чтобы планетка упала на Землю. Это столкновение двух небесных тел, вызванное человеком, может представлять, оказывается, большой смысл, и вовсе не только научный.

Дело в том, что некоторые астероиды могут состоять из очень ценных и редких на Земле веществ, например, платины и других редких металлов. Даже в обычных метеоритах содержание этих металлов весьма велико, иногда в десятки раз больше, чем это необходимо для экономически выгодной добычи. А ведь можно попытаться разыскать астероиды, в которых таких металлов содержится еще больше. Вот почему может оказаться целесообразной «межпланетная охота» – погоня за астероидами и доставка их на Землю с целью использования содержащихся в астероиде металлов. Конечно, для этого надо будет обеспечить безопасное приземление космических рудных «месторождений», иначе столкновение тысячетонной массы с Землей может стоить слишком дорого.

Можно было бы предложить и другие варианты целесообразного вмешательства людей в размеренную жизнь солнечной системы. Но об этих возможностях еще будет достаточно времени подумать грядущим поколениям.

Глава 20
НА МЕЖПЛАНЕТНОМ КОРАБЛЕ

Какие трудности и опасности ждут будущих межпланетных путешественников, оказавшихся с глазу на глаз с мировым пространством? Сможет ли человек выдержать все испытания межпланетного полета?

Ответ на эти вопросы может оказаться решающим для будущего астронавтики.

В настоящее время еще нельзя со всей определенностью дать такой ответ – для этого потребуются многочисленные и разнообразные исследования в лабораториях ученых и при экспериментальных полетах высотных ракет. Как и при решении других физиологических проблем, вначале эти исследования будут произведены на животных.

Уже сейчас ведутся такие исследования. Животные не раз помещались на высотных исследовательских ракетах; у нас в стране собачки совершали полеты на высоту до 450 километров. Совершенно исключительное значение имеет исторический полет первого космического путешественника – Лайки на советском искусственном спутнике Земли. Эти опыты подготовляют проникновение человека в Космос.

Мы можем пока лишь предварительно оценить опасности межпланетного путешествия, основываясь на имеющихся знаниях в различных областях науки. К счастью, предварительная оценка, как мы увидим ниже, не дает пока оснований считать, что осуществление межпланетного полета окажется невозможным из-за того, что человек не сможет его перенести. Хотя различные опасности, которые ждут человека в межпланетном пространстве, и являются серьезными, вероятно, их можно избежать. К такому выводу пришел и Циолковский, впервые рассматривая различные опасности межпланетного путешествия. Новейшие исследования подтверждают этот вывод основоположника астронавтики.


Межпланетный корабль идет на посадку.

Мировое пространство будет во всем враждебно человеку, осмелившемуся проникнуть в него. Какие только опасности и трудности не ждут путешественника в этом безграничном «океане»! Полное отсутствие воздуха, жесточайший холод и палящие лучи Солнца, вредные, а то и смертоносные лучи, бескрайные пространства и многомесячный полет, столкновение с небесными камнями, полное исчезновение тяжести и временами, наоборот, чрезмерное ее увеличение, да и кто знает, что еще… И все должно быть, конечно, тщательно изучено и взвешено до того момента, как межпланетный корабль отправится в свой далекий рейс, ибо любая, даже самая ничтожная ошибка, малейший просчет могут оказаться роковыми для человека в его единоборстве с силами стихии.

Единственное, что может спасти человека, решившего вторгнуться в полные опасностей просторы мирового пространства, – это всесторонняя защита от всех возможных воздействий этого пространства. Астронавты, пустившиеся в межпланетное путешествие, должны будут подвергнуть себя добровольному длительному, часто на много месяцев, заключению в межпланетном корабле. Они смогут рассчитывать только на свои силы, свое мужество, свое умение, на запасы, которые у них есть с собой.

О многом придется подумать командиру межпланетного корабля, когда он будет снаряжать его, готовя в далекий и нелегкий путь.

Прежде всего, конечно, воздух. Пассажиры корабля должны все время дышать свежим, чистым воздухом. Значит, нужно непрерывно отводить из кабины ядовитую углекислоту, выделяющуюся при дыхании, и, наоборот, добавлять кислород, который при этом поглощается. Как это сделать? Какие запасы кислорода необходимы? Какое давление воздуха целесообразно поддерживать в корабле? Вот вопросы, на которые прежде всего надо дать ответ. [127]127
  Проблема создания искусственного климата в кабине корабля или на спутнике Земли является принципиально новой для техники. Наиболее близко к этой проблеме подходит аналогичная задача для подводных лодок; в какой-то мере может быть использован также опыт кондиционирования воздуха на некоторых новейших самолетах. Проблема эта чрезвычайно сложна. Представление об этой сложности дает, например, одно из выполненных недавно исследований, по которому в воздухе кабины может находиться примерно 30 (!) различных летучих ядовитых веществ, являющихся результатом химического обмена человеческого организма с окружающей средой, а также выделяющихся при работе установок и приборов на корабле. И все эти вещества должны, конечно, удаляться из воздуха. Это только один из примерев, иллюстрирующих необычную сложность проблемы.


[Закрыть]


Малышка после благополучного возвращения из очередного рейса за стратосферу.

Давление в пассажирской кабине межпланетного корабля будет целесообразно, вероятно, поддерживать несколько меньшим, чем обычное атмосферное давление у поверхности Земли, например, таким, как на каком-нибудь высокогорном курорте. Это уменьшит нагрузку на стенки кабины, упростит работу всей воздушной системы. Впрочем, большого значения этот вопрос иметь не будет: окончательный ответ на него исследователи получат на основании опыта первых полетов.

Отсасываемый из кабины воздух будет подаваться вентилятором в очиститель, освобождающий его от углекислоты. Методы очистки могут быть химическими, но возможно также применение холодильника, в котором находящаяся в воздухе углекислота будет вымораживаться, превращаясь в «сухой лед». Однако нужно учесть, что в холодильнике будут превращаться в лед и находящиеся в воздухе водяные пары. Если не принять меры для использования (регенерации) этой замерзшей воды, то взамен ее для восстановления необходимой влажности воздуха придется расходовать воду из запасов на корабле. Этот расход может составить около 60 процентов всей воды, потребляемой пассажирами корабля.

Добавка кислорода в воздух, освобожденный от углекислоты, будет происходить в газификаторе, в котором жидкий кислород, хранящийся на корабле в баллонах, превращается в газ. Затем воздух поступит в увлажнитель, где будет доведено до нормы содержание влаги в воздухе; в обогатитель, в котором к воздуху будут добавлены все необходимые ароматические и прочие вещества, и подогреватель, обеспечивающий нужную температуру. После этого вентилятор подаст свежеприготовленный воздух в кабину.

Необходимый запас кислорода на корабле будет определяться числом пассажиров и длительностью полета. Расчет этого запаса – не простое дело. Главным образом это связано с тем, что потребление кислорода человеком зависит от многих условий: интенсивности и характера труда, продолжительности сна и проч. В среднем можно принять для предварительных расчетов, что каждый пассажир корабля будет потреблять не более 1 килограмма кислорода в сутки, учитывая его относительную малоподвижность на корабле. Как видим, при полетах на сравнительно короткие расстояния проблема снабжения кислородом не представляет особых трудностей. Так, например, для путешествия трех пассажиров на Луну и обратно запас кислорода должен составлять 30–35 килограммов. В особенности упрощается эта проблема, если двигатель корабля использует жидкий кислород в качестве окислителя.

Однако при дальних полетах положение меняется. Так, при полете на Марс, длящемся около 9 месяцев, на каждого пассажира корабля должно быть запасено примерно 300 килограммов кислорода, да и то при условии, что кислород, необходимый для жизни на Марсе и обратного полета, будет заимствован из атмосферы Марса. Очевидно, в случае таких дальних полетов для снабжения пассажиров межпланетного корабля кислородом придется организовать на корабле лабораторию по добыванию кислорода. Можно, например, построить установку, в которой углекислота, выделяемая экипажем корабля при дыхании, будет снова расщепляться на углерод и кислород, для чего, конечно, придется израсходовать соответствующую энергию. Эта установка будет «дышать» так, как дышат растения: вдыхая углекислоту и выдыхая кислород. Правда, эта аналогия с растениями только внешняя: советскими учеными выяснено, что кислород, выделяемый растениями, получается не из углекислоты, а из воды, которую растения всасывают корнями.

Не менее важным, чем обеспечение пассажиров межпланетного корабля кислородом, будет удовлетворение их голода и жажды. Большое поле деятельности в этом отношении ждет специалистов и в области питания, которые должны будут изготовить разнообразный ассортимент необходимых для астронавтов продуктов питания. Определенную службу здесь может сослужить опыт, накопленный при организации полярных экспедиций, а также при проведении дальних авиационных перелетов. Однако все это только робкое начало – подобные задачи при организации межпланетных путешествий будут неизмеримо более сложными.

Трудно точно определить запасы пищи и воды, которые должны быть на межпланетном корабле. Для ориентировки можно принять, что минимальный запас воды должен составлять примерно килограмм в сутки на человека, учитывая, что вся вода, заключенная в воздухе (выделяемая при дыхании и испаряющаяся через кожу), будет извлекаться из него и использоваться – ведь общая потребность человека в воде составляет примерно 2–2,5 килограмма в сутки. Запас пищи может быть определен, исходя из нормы 0,5–1 килограмма в сутки на человека. Следовательно, суммарный суточный расход кислорода, пищи и воды каждым пассажиром межпланетного корабля составит примерно 2,5–3 килограмма, причем для надежности следовало бы взять верхний предел. Это, конечно, должно быть учтено при проектировании корабля, определении потребного расхода топлива и проч.

Очень точно должен быть рассчитан тепловой режим корабля, причем, как это ни кажется странным на первый взгляд (ведь столько писалось о «холоде» мирового пространства!), главные трудности здесь могут быть связаны с задачами не обогрева, а охлаждения корабля в полете. Это объясняется тем, что охлаждать вообще значительно труднее, чем обогревать. Конечно, в случае полета на окраины солнечной системы или даже за ее пределы надо будет думать не об охлаждении, а о нагреве, но в околосолнечном пространстве мощные потоки тепла, излучаемые нашим дневным светилом, заставят скорее позаботиться о том, как уменьшить их действие. Кроме того, надо помнить и о тех источниках тепла, которые находятся на самом корабле, вроде пассажиров корабля и его оборудования.

Как нагрев корабля извне, так и отдача тепла наружу в Космосе могут происходить только путем излучения. Вот почему огромное значение имеет характер поверхности обшивки корабля. При одних и тех же условиях на корабле может воцариться адская жара или столь же нестерпимый холод – в зависимости от того, каковы свойства обшивки.

Так, например, полированный металл, а еще лучше никелированный, может нагреться под прямыми лучами палящего Солнца до 300–400°. При тех же условиях поверхность из другого материала может иметь температуру ниже нуля. Это зависит от того, как поверхность поглощает солнечное тепло и отдает его в виде инфракрасного излучения. Варьированием этих свойств обшивки можно добиться, что ее температура будет сохраняться в допустимых пределах.

Ценный опыт в отношении регулирования температурного режима космического корабля был получен при запуске первых советских искусственных спутников Земли.

Как и указывалось выше, основные трудности были связаны с перегревом спутников в полете. Вот почему на третьем искусственном спутнике был применен более эффективный метод регулирования температурного режима с помощью автоматических поворотных створок жалюзи.

Конечно, на корабле придется иметь и свою систему отопления, которая при необходимости (при взлете и посадке, а также при полетах к Солнцу) должна превращаться в систему охлаждения – такое преобразование применяется в настоящее время и на Земле для некоторых зданий. Вместе с тем надо будет обеспечить и тщательную изоляцию кабины корабля, что создаст более стабильные температурные условия в ней.

Источником тепла практически во всех случаях может быть Солнце. Для этого на поверхности корабля будут расположены солнечные котлы, подогревающие жидкость, которая будет циркулировать в системе отопления кабины. В качестве такой жидкости, очевидно, удастся использовать один из компонентов топлива для двигателя – окислитель или горючее. Поверхность котлов будет выкрашена в черный цвет, чтобы лучше поглощать тепло солнечных лучей. Котлы можно будет прикрывать створками при взлете корабля, а также в случае их выключения. Эти створки, как и вся остальная поверхность корабля, будут, возможно, покрашены специальной краской, чтобы создать нужные условия теплообмена излучением. При длительных полетах к внешним планетам обогрев котлов можно улучшить с помощью раскрывающихся отражательных зеркал.

Если на корабле установлен атомный двигатель, то проблема отопления решается, конечно, просто, и в этом случае надобности в использовании энергии Солнца не будет.

Изоляция межпланетных путешественников на корабле не закончится, когда корабль совершит посадку на планету. Выбраться за спасительные стенки корабля можно будет только после тщательного изучения условий, существующих на планете. Конечно, во всех случаях выйти из корабля можно будет только в скафандрах, которые должны быть, вообще говоря, различными для разных планет.

Например, не исключено, что особенно сложными будут скафандры путешественников на Луну, Меркурий и другие небесные тела, лишенные атмосферы. Поверхность таких небесных тел может оказаться радиоактивной в результате многовековой непрерывной интенсивной бомбардировки первичными частицами космического излучения, от которых нас на Земле защищает атмосфера. Известно ведь, что в результате взрыва атомной бомбы поверхность почвы вблизи места взрыва становится радиоактивной вследствие облучения ее радиоактивными лучами. Вслед за тем почва начинает испускать вторичные радиоактивные лучи, очень вредные для живых организмов. Ходить по ней становится опасным в течение иной раз весьма длительного времени. Если то же происходит и с поверхностью лишенных атмосферы небесных тел, то прогуливаться по ним астронавты смогут лишь в скафандрах, ткань которых будет включать специальный защитный слой, например, свинца, кадмия и других веществ. Иначе такая прогулка может стать роковой.

Одной из серьезных опасностей, которые могут поджидать человека на небесных телах, являются неизвестные у нас на Земле бактерии, вполне возможно смертоносные для людей в связи с тем, что наш организм не приспособлен для борьбы с ними. Еще более опасными могут оказаться такие бактерии, занесенные на Землю межпланетным кораблем из какого-нибудь далекого мира. Несомненно, что после возвращения на Землю межпланетный корабль с его пассажирами надо будет подвергнуть строжайшему карантину. Обидно, конечно, лишать межпланетных путешественников людского общества после многих месяцев, а может быть, и лет пребывания вне Земли, но слишком уж велика в этом случае возможная опасность для всего человечества, чтобы допускать легкомысленную неосторожность.

Впрочем, не только после полета межпланетные путешественники должны будут провести некоторое время в полной изоляции внутри кабины корабля, но, вероятно, и до полета. В этом случае кабина превратится в своеобразный тренажер, подобный тем, которые широко применяются в авиации для тренировки летчиков. Не дни, а может быть, недели должны будут провести астронавты на корабле в условиях, максимально напоминающих действительный межпланетный полет. Только это поможет им по-настоящему освоить все оборудование корабля, научиться пользоваться всеми многочисленными приборами и вообще «акклиматизироваться» на корабле. Конечно, такая тренировка начнется еще до того, как корабль будет построен, с помощью специально созданного тренажера, но она не сможет заменить «генеральной репетиции» на самом корабле. Важно будет и предварительное «срабатывание» экипажа корабля на Земле, еще до взлета. Ведь заменить кого-нибудь из членов экипажа в полете будет потруднее, чем на какой-либо полярной зимовке…

Глава 21
НУЖЕН ЛИ НАМ НАШ ВЕС?

Мы так привыкли к нашему весу, что обычно его вовсе и не замечаем, разве только врачи иногда советуют нам поправиться или похудеть. Поэтому вопрос о том, нужен ли нам наш вес, на первый взгляд может показаться странным.

Действительно, всякий человек на Земле имеет вес, причем вес, в общем, весьма постоянный, устойчивый. Увы, иначе обстоит дело в астронавтике. Находясь в межпланетном полете, вы можете сначала прибавить в весе к своим 50 или 60 килограммам еще трижды столько же и побить таким образом все существующие «рекорды», а потом мгновенно потерять не только благоприобретенные, но и свои собственные килограммы, став легче пушинки. Такие стремительные манипуляции с весом заставляют нас повнимательнее задуматься над тем, какую роль, в конце концов, играет вес в нашей жизни. Не приведут ли эти изменения веса к нарушению жизненно важных функций человеческого организма?

Наш вес – это сила, с которой нас притягивает Земля. Когда мы стоим, эта сила прижимает ступни наших ног к Земле, все тело давит на ноги, внутренние органы – один на другой, голова – на шею и т. д. Все эти силы давления и создают физиологическое ощущение веса.

Значительное увеличение веса связано с процессами разгона корабля – при взлете и торможения – при посадке. Инерционные перегрузки, возникающие при этом, могут сильно увеличить вес. Из-за вредного физиологического действия увеличенного веса инерционные перегрузки не должны быть больше четырех, то есть вес при наличии этих перегрузок не должен превышать учетверенного нормального веса. Но почему именно учетверенного? Так как увеличение инерционных перегрузок могло бы привести к существенной экономии топлива, то выбор величины допустимых перегрузок должен быть обоснованным.


Инерционные перегрузки, действующие на летчика в полете.

В чем проявляется вредное действие увеличенного веса? Представьте себе, что веки ваших глаз стали во много раз тяжелее, «налились свинцом», как говорят в тех случаях, когда сильно хочется спать. Сила глазных мышц может в этом случае уже оказаться недостаточной, чтобы удержать веки открытыми и они будут непроизвольно закрываться. Вы ослепнете, не сможете ничего видеть. Это и случается с летчиками самолетов, выполняющих фигуры высшего пилотажа, – на мгновение, например при выходе из крутого пикирования, у них полностью или почти полностью теряется зрение, что иной раз может оказаться роковым. [128]128
  Потеря зрения под действием перегрузки может быть связана не только с этим, но и с кровяным голоданием светочувствительных клеток глазного дна – без обильного снабжения кислородом эти клетки работать не могут.


[Закрыть]
Это только один из примеров проявления увеличенного веса.

Гораздо серьезнее влияние перемещений внутренних органов под действием увеличенного веса, так как такие перемещения могут сильно отразиться на важнейших функциях организма. Обычно увеличение веса выше допустимых пределов приводит не к механическому повреждению внутренних органов, а к нарушению деятельности сердца и мозга. Кровь становится во много раз тяжелее, сердце и кровеносные сосуды не справляются с многократно увеличенной нагрузкой, кровь скапливается в одном месте, например, в нижней половине тела, отливая от мозга, причем иногда и сердце опустошается и работает вхолостую. Человек может потерять сознание из-за кровяного голодания мозга, что иной раз случается с летчиками, вынужденными, например в боевых условиях, идти на превышение допустимых инерционных перегрузок. Не зря от летчиков требуется идеальное здоровье и физическая тренированность: одни и те же перегрузки совершенно различно сказываются на разных людях.

Интересно, что выяснить проблемы, связанные со столь важными для авиации и астронавтики инерционными перегрузками, ученым помогают… жирафы! Если у летчиков под действием перегрузки кровь отливает от мозга и из-за кровяного голодания клеток мозга наступает потеря сознания, то почему такое кровяное голодание мозга не происходит у жирафов, у которых сердцу так трудно подавать кровь в очень высоко расположенную голову? По всем теориям жирафы должны страдать из-за своей необычной «конституции» – большого расстояния от сердца до мозга. Мало того, когда жирафы после питья поднимают голову, то при этой «инерционной перегрузке», в соответствии с существующими представлениями, они должны были бы терять сознание. Что же помогает им так легко справляться с трудными условиями работы их кровеносной системы? Группа ученых проводит в настоящее время в Африке опыты, которые должны дать ответ на этот вопрос, интригующий медицину, авиацию и астронавтику.

Большое значение имеет продолжительность действия перегрузки. В течение коротких промежутков времени человек может выдержать очень большие перегрузки. Имеющимся в этом отношении опытом мы обязаны главным образом авиации. Так, можно считать, что перегрузке, не превышающей двух, то есть когда вес человека увеличивается вдвое, человек может подвергаться без заметного ущерба для своего здоровья в течение весьма продолжительного времени. Принятая в качестве допустимой при взлете межпланетного корабля перегрузка, равная четырем, может переноситься человеком (вес его увеличится в этом случае до 200–250 килограммов) в течение нескольких минут, вероятно, без серьезных нарушений функций организма. [129]129
  Перегрузка этого порядка действует, в частности, на мотоциклиста, участвующего в известном аттракционе «Мотоциклетные гонки по вертикальной стене». При этом мотоцикл мчится по вертикальной стене цилиндрической шахты в горизонтальном положении. Обычно аттракцион длится несколько минут.


[Закрыть]
В течение долей секунды могут быть перенесены перегрузки до 15 и даже 20, в этом случае человек может «весить» более тонны! Подобные перегрузки возникают, например, при прыжках в воду в самый момент погружения в нее.


Карусель-центрифуга для тренировки летчиков: вверху – перед испытанием, внизу – во время испытания.

Для исследования влияния больших инерционных перегрузок на человеческий организм, как и для тренировки летчиков, еще Циолковским были предложены и теперь используются специальные установки. Применяется, например, длинная рельсовая дорожка, по которой с помощью ракетного двигателя разгоняется тележка с сидящим на ней человеком; эта тележка потом резко тормозится для создания перегрузки. При некоторых испытаниях на такой установке человек выдерживал 35-кратную перегрузку в течение  1/ 5 секунды. Для этой же цели служит своеобразная карусель-центрифуга, представляющая собой длинный, в 15–20 метров, рычаг с укрепленным на его конце сиденьем для человека или испытательной кабиной. Центрифуга вращается вокруг своей оси с помощью электродвигателя. Такая установка позволяет создавать практически любые перегрузки в течение неограниченного времени: перегрузка создается при вращении центробежной силой. При испытании с различными животными перегрузка достигала многих десятков. Несомненно, что подобные установки будут использованы в будущем и для тренировки астронавтов. [130]130
  В одной из осуществленных за рубежом уста новок этого рода через 7 секунд после старта дости гается перегрузка, равная 40 («Экспрессинформация» ВИНТИ, октябрь, 1959 г.). В этой установке враще ние центрифуги осуществляется электродвигателем весом 180 тонн и мощностью 4000 лошадиных сил. В герметической гондоле, подвешенной к рычагу на шарнире, могут создаваться условия, соответствую щие различным скоростям и высотам полета.


[Закрыть]

Легко понять, почему в различных положениях человек по-разному переносит перегрузку. Отток крови от мозга или, наоборот, прилив к нему крови, а также нагрузка на сердце при инерционных перегрузках зависит от веса действующего на эти органы «столба» крови, который, в свою очередь, определяется высотой этого «столба». Хуже всего поэтому действуют перегрузки на стоящего человека. Когда человек сидит, то он может выдержать гораздо большие перегрузки, особенно если эти перегрузки действуют от головы. Наибольшие перегрузки он может выдержать, когда лежит. Вот почему с появлением первых реактивных самолетов, при полете которых могут возникать из-за большей скорости и большие перегрузки, конструкторы стали пытаться укладывать летчика на живот или на спину. Это позволяло им также уменьшать поперечное сечение фюзеляжа самолета, что приводило к уменьшению лобового сопротивления и увеличивало скорость полета. Однако надо сказать, что такое лежачее положение не слишком понравилось летчикам, хоть им было и легче переносить инерционные перегрузки при выполнении фигур высшего пилотажа. В настоящее время обычно поступают иначе. Летчика усаживают в так называемое противоперегрузочное кресло. Когда самолет неподвижен или перегрузка мала, например в горизонтальном полете или при взлете, летчик сидит в этом кресле, как в обычном. Если же перегрузка увеличивается, задняя спинка кресла автоматически откидывается назад, тем сильнее, чем больше перегрузка. При больших перегрузках летчик почти лежит на спине.

Вероятно, пассажиры межпланетного корабля будут сидеть в подобных креслах или же им с самого начала придется лечь на спину. Кресла для пассажиров должны быть достаточно упругими, чтобы принимать форму лежащего на них человека – это облегчит пассажирам перенесение нагрузки.

Циолковский рассматривал возможность помещения пассажиров при взлете межпланетного корабля в гидроамортизатор – сосуд, заполненный жидкостью со специально подобранным удельным весом, равным удельному весу человеческого тела. Поскольку любое тело, погруженное в жидкость, теряет в весе столько же, сколько весит вытесненная им жидкость, то пассажир, сидящий в ванне, предложенной Циолковским, не будет весить ничего, и в этом случае никакая перегрузка ему страшна уже не будет. [131]131
  Конечно, внутренние органы человеческого тела могут при этом все же перемещаться один относительно другого.


[Закрыть]


График, показывающий, как допустимые инерционные перегрузки зависят от времени их действия и от положения человека. Заштрихованы области, характерные для авиации и астронавтики.

Весьма вероятно использование в астронавтике специальных противоперегрузочных костюмов, которые уже применяются в авиации. Между двумя слоями ткачи такого костюма вдувается под давлением воздух, вследствие чего внутренний слой плотно облегает тело летчика и препятствует нарушению кровообращения.

Положение с перегрузкой могло бы оказаться критическим, если бы оно заставило совершать весьма длительный, постепенный взлет и такую же посадку. Однако, как было показано выше, при перегрузке, равной четырем, взлет будет продолжаться не более 6–7 минут, в течение которых эта перегрузка будет, вероятно, перенесена пассажирами корабля без чрезмерных неприятностей. Даже уменьшение перегрузки до трех увеличит продолжительность взлета только до 8 минут. Таким образом, опасения, связанные с действием перегрузки при взлете, которые так часто высказывались в прошлом, по всей вероятности являются преувеличенными.

Иначе обстоит дело с влиянием на человека полной потери веса, которая следует сразу же за исчезновением перегрузки при взлете. Как только двигатель корабля перестает работать и корабль оказывается в свободном полете, тяжесть на корабле исчезает и пассажиры перестают весить. Конечно, несколько обидно «похудеть» сразу на четверть тонны, но это совершенно неизбежно. «Невесомыми» пассажиры корабля будут во время почти всего полета – значит, в течение нескольких суток при полете на Луну или многих месяцев – при более дальних полетах. Как они будут себя при этом чувствовать? Это одна из важнейших проблем астронавтики.

Обычно в многочисленных фантастических романах и рассказах отсутствие веса у пассажиров межпланетного корабля преподносится как ощущение необыкновенной легкости, как чувство необычайно приятное и возбуждающее. Однако вряд ли это будет так на самом деле. Вероятно, первое впечатление от исчезновения веса будет связано с мгновенным ощущением потери опоры. Опора как бы внезапно уйдет из-под ног, и это вызовет инстинктивную попытку схватиться за что-нибудь, чтобы удержаться. Затем установится ощущение падения в бездонный колодец – надо думать, ощущение не для слабых душ. В течение всего времени невесомости вместо приятного ощущения легкости пассажиры межпланетного корабля будут находиться в состоянии постоянного напряжения. Однако можно надеяться, что человек в конце концов, в результате длительной и упорной тренировки, сможет приспособиться к этому состоянию.

Мы не знаем ни одной жизненно важной функции человеческого организма, выполнение которой зависит от веса. Дыхание, кровообращение, пищеварение, движение – все эти функции выполняются в результате действия нервной системы и мускулатуры (мышц) человеческого тела и от веса не зависят. [132]132
  Некоторые ученые, правда, высказывают мнение, что при длительном пребывании в условиях невесомости тонус кровеносных сосудов, обычно воспринимающих также нагрузку и от веса крови, будет постепенно понижаться, что может вызвать со временем серьезные нарушения кровообращения.


[Закрыть]
Точно так же не зависит от веса и действие органов чувств: зрение, слух, обоняние, вкус.

Вместе с тем отсутствие веса вызовет все же, как можно предполагать, ряд расстройств в человеческом организме. Опыт, накопленный в этом отношении наукой, еще чрезвычайно мал, и поэтому пока приходится ограничиваться, к сожалению, лишь предположениями, основанными на наших знаниях функций отдельных частей человеческого организма.

В человеческом организме имеется сложная система так называемых механорецепторов, которые дают мозгу, центральной нервной системе детальную информацию о всех видах механических возбуждений, испытываемых человеком. Среди таких механорецепторов различаются: вестибулярный аппарат внутреннего уха, который реагирует на перемещение человеческого тела; чувствительные клетки кожи, реагирующие на давление; мускульные веретёнца, заключенные во всех тех мускулах, которые передвигают и фиксируют части организма, и другие.

Механорецепторы играют большую роль в чрезвычайно важной психофизиологической функции – ориентировке человека. При обычных условиях ориентировка человека в пространстве достигается тем, что механорецепторы фиксируют направление силы тяжести по отношению к положению человека, а зрение устанавливает положение человека по отношению к окружающим предметам. Оба ощущения при этом вполне согласовываются, сливаясь в одно чувство ориентировки.

Но как только вес исчезает, механорецепторы отказывают в выполнении своих функций ориентировки. Если человек неподвижен, то они вообще будут «молчать», и ориентироваться можно будет только с помощью зрения. При движении человека механорецепторы будут возбуждаться, но только под действием сил инерции, которые будут сообщать вес, переменный по величине и направлению, отчего будут меняться и сигналы рецепторов. В этом случае картины, регистрируемые механорецепторами и глазами, будут расходиться. Исчезнет привычная автоматичность движений, та обычно даже не замечаемая нами согласованность всех перемещений органов человеческого тела, которая позволяет осуществлять целенаправленные действия, например при письме и т. д. Это может сильно ограничить работоспособность межпланетных путешественников.

Мало того, рассогласованность сигналов различных механорецепторов может вызвать потрясения психики человека; вспомните, как мы обычно пугаемся, когда встречаемся в повседневной жизни с проявлениями такой рассогласованности, например, когда шагаем «в пустоту», просчитавшись в числе ступенек лестницы, и др.


    Ваша оценка произведения:

Популярные книги за неделю