355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Карл Гильзин » Путешествие к далеким мирам » Текст книги (страница 22)
Путешествие к далеким мирам
  • Текст добавлен: 10 октября 2016, 01:46

Текст книги "Путешествие к далеким мирам"


Автор книги: Карл Гильзин



сообщить о нарушении

Текущая страница: 22 (всего у книги 26 страниц)

Впервые ученые и врачи встретились с вредным биологическим воздействием ионизирующего излучения в связи с применением рентгеновых лучей в медицине. С тех пор дозу этого излучения, воспринимаемого организмом, стали измерять в условных единицах – рентгенах (за 1 рентген взята доза ионизации, при которой в 1 миллиграмме живой ткани образуется немногим больше 1,5 миллиарда пар ионов; в 1 куб. сантиметре воздуха это количество излучения вызовет образование примерно 2 миллиардов пар ионов).

К сожалению, установление предельно допустимых доз ионизации, которые могут быть восприняты человеком без какого-либо вреда, пока еще производится недостаточно строго. Приняты различные значения этих доз, недостаточно учитываются специфические особенности отдельных видов ионизирующего излучения и т. д. Особая сложность проблемы заключается в том, что вредное действие ионизации проявляется не сразу, а через некоторое время, по мере того как организм накапливает в себе его результаты. Когда человек подвергается действию опасного излучения, то он об этом даже не догадывается – природа не снабдила нас особым «чувством», регистрирующим облучение. Неудивительно, ведь до сих пор человек в природе нигде не встречался с подобным облучением. Эта опасность возникла вместе с развитием науки и техники, ее создал сам человек. Вредные последствия облучения проявляются только тогда, когда болезнь зашла уже далеко и даже не всегда оказывается возможным помочь заболевшему.

Сейчас еще нельзя с полной уверенностью сказать, каковы предельно допустимые дозы ионизации при космическом излучении. Называются разные цифры. Но одно является несомненным – короткое пребывание в Космосе не опасно. Только длительный межпланетный полет может представить в этом отношении серьезную опасность. Какова предельно допустимая длительность воздействия космического излучения на межпланетных путешественников, пока еще не известно. Одни ученые считают, что она очень велика, другие – что очень мала.

Вот почему так важны исследования этого вопроса, который может оказаться роковым для астронавтики. Ведь осуществить защиту от космического излучения, если выяснится, что доза ионизации, получаемая астронавтами, недопустимо велика, современными техническими средствами вряд ли возможно. Чтобы космические лучи заведомо не представляли опасности для межпланетных путешественников, корабль должен иметь защитную оболочку из свинца толщиной не менее 10 сантиметров, а из других металлов – еще более массивную. Конечно, такой корабль будет накрепко прикован к Земле.

Для исследования биологического воздействия космических лучей в настоящее время используются воздушные шары-зонды и высотные ракеты. С их помощью на большие высоты поднимаются кусочки живой ткани и животные – мыши, собаки, обезьяны и др. После приземления производится тщательное исследование тех изменений, которые произошли в живых тканях и организмах. В разных странах уже проведено много подобных полетов и получены некоторые интересные данные. Так, например, после суточного пребывания на высоте около 27 километров у некоторых мышей наблюдалось появившееся через несколько месяцев поседение волос, характерное для лучевой болезни. В других случаях, однако, никаких изменений обнаружено не было.

Конечно, все эти испытания относительно кратковременны, а большинство ученых приходит к выводу, что при кратковременном действии космическое облучение не опасно. Другое дело – длительное воздействие космических лучей, которое может привести к недопустимым для здоровья дозам ионизации. Однако опыты с длительным облучением космическими лучами можно будет провести, видимо, только с помощью искусственных спутников Земли. Вот почему запуска все новых спутников с таким нетерпением ждут и биологи. До выяснения же этого вопроса полеты людей на спутниках и межпланетных кораблях будут, очевидно, недопустимы.

Следует подчеркнуть, что мы еще далеко не до конца знаем все опасности, связанные с наличием в мировом пространстве различных не известных на Земле вредных излучений. Лучше всего об этом свидетельствуют данные об ореоле излучения, полученные с помощью первых искусственных спутников Земли (о них говорилось выше, в главе 11) и, в особенности, с помощью первой советской лунной космической ракеты. В этих исследованиях установлено, что Земля окружена своеобразным ореолом интенсивного излучения, о котором раньше даже не подозревали. Этот ореол, с двумя зонами наиболее интенсивного излучения, простирается на расстояние до 50 000 километров от Земли в экваториальном направлении. Чем ближе к полюсам, тем меньше протяженность указанного ореола. Так как интенсивность ионизации, вызываемой излучением в этом ореоле, в сотни раз больше, чем вне его в мировом пространстве, то длительный полет человека в опасной зоне может оказаться невозможным. Не исключено, что по этой причине придется даже располагать взлетные площадки для запуска космических кораблей в высоких широтах или же сразу после взлета направлять космический корабль в околополярные районы, свободные от указанного выше опасного излучения. Природа этого излучения еще не совсем ясна. Вполне возможно, как это указывалось выше, что оно является продуктом вторичных процессов, происходящих на Земле под действием космического излучения.

Так или иначе, это, как его назвали, земное корпускулярное излучение является установленным фактом. Кто знает, какие еще новые, не известные в настоящее время излучения существуют в Космосе? В частности, совершенно не исключено наличие такого же по характеру ореола излучения, только несравненно более мощного и протяженного, и вокруг Солнца. Многое здесь еще предстоит выяснить…

Сейчас еще трудно сказать, является ли космическое излучение невидимым барьером, воздвигнутым природой на пути любого живого существа, пытающегося проникнуть в тайны Космоса. Во всяком случае, это не остановит мужественных астронавтов – может только задержать, но не помешать покорению человеком мирового пространства.

Глава 23
БЛУЖДАЮЩИЕ СНАРЯДЫ

Межпланетный корабль, мчащийся с большой скоростью в мировом пространстве, будет встречать на своем пути не только лучи и потоки невидимых элементарных частиц вещества. Мировое пространство будет расстреливать наш корабль в упор, прямой наводкой, артиллерией самых различных калибров. И каждый снаряд, поразивший корабль, может оказаться для него роковым.

Что же это за снаряды, грозящие гибелью межпланетному кораблю? Это метеорные тела, небесные камни, во всех направлениях бороздящие околосолнечное пространство. Эти «блуждающие снаряды» представляют собой одну из наибольших опасностей межпланетного полета.

Среди метеорных тел есть и ничтожные пылинки и громадные обломки крупных небесных тел – целые горы, несущиеся в мировом пространстве обычно в окружении свиты из более мелких тел. Есть изолированные метеорные тела, которые, возможно, сродни астероидам (о них шла речь выше), а есть и целые потоки, рои этих тел, мчащиеся по эллиптическим орбитам вокруг Солнца и являющиеся, очевидно, остатками комет. Родиной абсолютного большинства метеорных тел является солнечная система, но некоторые из них рождены где-то в других звездных мирах.

Есть метеорные тела, движущиеся относительно Земли со сравнительно небольшими скоростями, а есть и такие, относительная скорость которых достигает 200 километров в секунду. Большая часть метеоритов – каменные, состоящие в основном из силикатов, то есть соединений кислорода с кремнием, и на четверть – из железа. Остальная часть – около одной десятой – железные метеориты, состоящие примерно на 90 процентов из железа и на 9 процентов из никеля (содержание никеля доходит иногда до 40 процентов).

В последнее время получены новые, весьма интересные сведения о строении метеоров, не достигающих земной поверхности и сгорающих в атмосфере. Эти сведения получены на основе исследований с помощью ракет. Конечно, ракеты не занимались ловлей таких метеоров в полете, но зато они позволили гораздо точнее, чем раньше, измерить плотность атмосферы на больших высотах. Сравнение этих измерений с данными, полученными ранее по результатам наблюдений за метеорами, со всей несомненностью установили, что метеоры должны иметь гораздо меньшую плотность, чем считалось ранее. Эта плотность в несколько десятков раз меньше, чем у воды. По одним предположениям, такая малая плотность объясняется тем, что метеоры состоят из замерзших газов, по другим, более вероятным, тем, что они являются не сплошными каменными и металлическими частицами, а рыхлыми телами, напоминающими скорее всего хлопья снега или копоти.

В свое время мир был потрясен катастрофой, последовавшей в результате происшедшего в тумане столкновения океанского парохода «Титаник» с плавающей ледяной горой – айсбергом. Но каким игрушечным кажется это столкновение по сравнению с возможной встречей межпланетного корабля с горой, мчащейся с ужасающей скоростью во тьме мирового пространства! После такой встречи от корабля не останется ни малейших следов.

Понятно, почему проблема столкновения корабля с метеорными телами привлекает к себе внимание астронавтики, – ведь она может оказаться роковой для самой возможности осуществления межпланетного полета. По существу, эта проблема сводится к двум самостоятельным вопросам. Во-первых, важно знать, какова вероятность столкновения межпланетного корабля с метеорными телами различного рода, то есть имеющими различные размеры, состав и скорость полета; во-вторых, нужно знать и то, к каким результатам может привести столкновение корабля с метеорным телом данного вида.

Насколько же реальна угроза столкновения межпланетного корабля с метеорным телом?

Судя по тому поистине колоссальному количеству метеорных тел, которые непрерывно врываются в земную атмосферу, создавая замечательную картину метеора – «падающей звезды», мировое пространство кишмя кишит метеорными телами.

Действительно, в земную атмосферу ежедневно врывается, как показали наблюдения, не менее нескольких десятков миллионов различного рода метеорных тел, а по некоторым данным, даже миллиарды этих космических снарядов, общей массой в несколько тысяч тонн. Поэтому часто высказывалось предположение, что пробиться через эту «огневую завесу» практически невозможно.

Однако такое пессимистическое заключение было бы по меньшей мере слишком поспешным.

Прежде всего, конечно, существует огромная разница между Землей, имеющей диаметр около 13 тысяч километров и мощное поле тяготения, и межпланетным кораблем длиной всего в несколько десятков метров и не имеющим собственного поля тяготения.

Кроме того, подавляющая часть всех метеорных тел, врывающихся в земную атмосферу, имеет столь ничтожные размеры, что столкновение с ними не представит для межпланетного корабля никакой опасности, и им можно поэтому пренебречь.

Чтобы попытаться определить путем теоретического расчета вероятность столкновения межпланетного корабля с метеорным телом, нужно знать плотность этих тел в околосолнечном пространстве, то есть общее их число, проходящее через пространство данного объема в единицу времени, и направления их полета. Единственным способом получить ответ на эти вопросы в настоящее время являются наблюдения за метеорными телами, падающими на Землю. Земной поверхности достигают лишь очень редкие, самые крупные метеорные тела. К числу наиболее крупных принадлежит, например, знаменитый Сихотэ-Алиньский метеорит [136]136
  Несмотря на то что скорость, с которой этот метеорит ворвался в земную атмосферу, была сравнительно малой, примерно 14 километров в секунду, большая часть его рассеялась в воздухе. Поверхности Земли достигла лишь небольшая часть (около 10 процентов), массы метеорита, вес которого составлял примерно 150 тонн. Наиболее крупные осколки образовали в скалистых отрогах Сихотэ-Алиня примерно 110 воронок различных размеров.


[Закрыть]
 (1947 год) или не менее знаменитый Тунгусский метеорит, упавший в 1908 году на реке Подкаменной Тунгуске в Якутии и заставивший воспламениться фантазию писателей, не замедливших принять это небесное тело за взорвавшийся атомный корабль каких-нибудь марсиан или жителей Венеры. [137]137
  Можно думать, что оба эти гигантские метеориты были небольшими астероидами, которые, вообще говоря, имеют одну общую природу с метеоритами.


[Закрыть]

Подобные метеориты так редки, что о них не стоит и говорить.

Большинство метеорных тел земной поверхности не достигает, они сгорают в атмосфере, образуя яркий светящийся след метеора – «падающей звезды». [138]138
  Обычно возгорание метеоров происходит на высотах от 160 до 100 километров, а затухание – на высотах 60–40 километров.


[Закрыть]
Этот след позволяет установить примерное число метеоров, падающих на Землю по ночам, и таким образом хотя бы очень приблизительно определить общее число метеоров, падающих за сутки.

В последнее время наряду с таким методом наблюдений появился еще один чрезвычайно ценный метод, позволяющий регистрировать падение гораздо более мелких метеорных тел, не улавливаемых при наблюдении в телескоп, и, кроме того, с равным успехом пригодный для наблюдений как ночью, так и днем. Этот метод основан на использовании радиолокационных станций.

Кинетическая энергия метеорного тела, с огромной скоростью врывающегося в земную атмосферу и сгорающего в ней, преобразуется в тепловую энергию, которая раскаляет «воздушную подушку», движущуюся перед метеором. Она также преобразуется в световую энергию, что и позволяет видеть метеор, и в энергию ионизации молекул воздуха, расположенных вблизи падающего метеора.

Распределение этих видов энергии примерно таково, что тепловая энергия в 100 раз превышает световую, а эта последняя в 100 раз превышает энергию ионизации, то есть только 1 процент всей кинетической энергии переходит в световую и 0,01 процента – в энергию ионизации, вся же остальная энергия переходит в тепло.

Тем не менее столб ионизированного воздуха, который образуется в атмосфере после пролета метеора, имеет в длину несколько километров и является тем несомненным признаком, по которому радиолокационная станция не только устанавливает сам факт пролета метеора, но и определяет его примерную величину. Радиолуч, посылаемый в небо, наталкивается на этот столб наэлектризованного воздуха и отражается от него, как от препятствия. Отраженный луч улавливается в качестве радиоэха приемной частью установки, что позволяет судить о высоте пролета метеора и его величине.

По имеющимся данным наблюдений, общее число метеорных частиц, с которыми грозит столкновение межпланетному кораблю, может быть оценено исходя из того, что на Землю в сутки падает примерно 100 миллионов таких частиц. При этом во внимание принимаются лишь частицы с массой не меньше 1 миллиграмма. Даже и такая ничтожно малая частица, по размерам не превышающая пылинки, если она имеет скорость в десятки километров в секунду, представляет собой смертельную опасность для человека, так как она произведет на него такое же действие, как и выстрел в упор из пистолета крупного калибра. [139]139
  Характерный случай, показывающий, насколько опасно столкновение при большой скорости, произошел с одним реактивным бомбардировщиком. Он столкнулся в полете с чайкой. В результате такого столкновения в крыле бомбардировщика образовалась дыра размером 150x200 миллиметров. Птица пробила толстый слой металла!


[Закрыть]

Зная общую плотность метеорных тел и допуская, что во все стороны мчится одно и то же их количество, можно определить время, которое пройдет между двумя последовательными столкновениями межпланетного корабля с метеорным телом.

Такой расчет показывает, что столкновение межпланетного корабля с метеорным телом, которое может пробить его оболочку, будет происходить не чаще одного раза в десятки лет. Попадание молнии в человека является гораздо более вероятным событием у нас на Земле.

Правда, в каждом полете корабль будет обязательно сталкиваться, и по многу раз, с микроскопическими метеорными телами, имеющими диаметр меньше 0,01 миллиметра. Подобной метеорной пылью «кишмя кишит» наша солнечная система, в особенности в плоскости эклиптики. О ее существовании ученые судят по так называемому зодиакальному свету – яркому конусу, простирающемуся в вечернем небе с места, где зашло Солнце; он образуется метеорной пылью, рассеивающей солнечный свет, когда самого Солнца уже не видно. Некоторое время назад наука получила еще одно, несколько неожиданное, подтверждение существования межпланетного пылевого облака. Это подтверждение было найдено на дне… океана! Глубоководные экспедиции обнаружили на океанском дне отложения с очень большим, необычным для земной коры, но характерным для железных метеоритов содержанием никеля. Как попал никель на дно океана? Считается, что единственной возможностью является метеорная пыль. Оказывается, достигать земной поверхности, не успевая сгореть в атмосфере, способны не только самые большие метеорные тела, но и самые малые. На этот раз спасительной является именно малая масса пылинок. Поверхность пылинок настолько велика по сравнению с массой и энергией, что пылинка при падении в атмосфере не нагревается до большой температуры и благополучно достигает земной поверхности. На дне глубоких океанских впадин метеорная пыль накапливалась веками и там-то она и была обнаружена.

Конечно, метеорная пыль попадает и на сушу. Отмечены многократные подобные случаи, в частности в Сибири. Иногда пыль выпадает с дождем, отчего он приобретает красноватый цвет, что случилось, например, 2 июля 1941 года в районе Омска. А иногда пыль просто оседает на почве, например 3 сентября 1956 года тоже в Омске; хрупкие пылинки диаметром от пяти сотых до одной тысячной миллиметра содержали в себе железо, никель и другие металлы.

Кстати сказать, имеется предположение, что частицы метеорной пыли, медленно падающие на Землю (они дрейфуют в атмосфере 30–40 дней), могут оказаться центрами кристаллизации льда в переохлажденных облаках и поэтому вызывать осадки. Если это предположение верно, то искусственные спутники, регистрирующие появление метеорных дождей, могут тем самым сигнализировать о приближающемся периоде дождей настоящих.

Все имеющиеся данные показывают, что ежедневно на Землю падают тонны метеорной пыли. Космическому кораблю придется буквально пробиваться через толщу пыли; хотя, по расчетам, одна метеорная пылинка отстоит от другой на расстоянии 25–30 метров, из-за большой скорости корабля он будет встречаться с огромным числом пылинок.

Действительно, значительное число попаданий микрометеоритов было зафиксировано в полетах высотных ракет. Однако подобные столкновения способны лишь сделать матовой, испещрить ничтожными крапинками первоначально блестящую поверхность металла. Обычно для регистрации попаданий микрометеоритов на обшивке ракет укрепляют пластинки полированного металла, чтобы по изменению их поверхности судить о количестве и характере столкновений. Иногда заподлицо с обшивкой устанавливают небольшие микрофоны, в которых возникает характерный щелчок при каждом столкновении с метеоритом. Щелчок регистрируется на магнитной ленте или передается на Землю по радио. На третьем советском искусственном спутнике Земли для этой же цели были использованы пьезометрические датчики, в которых механическая энергия соударения метеорита со спутником преобразуется в электрический импульс. Таким образом удавалось судить как о количестве соударяющихся метеоритов, так и об их энергии. Эти данные передавались земным наблюдательным станциям.


Метеорный рой.

Итак, микрометеоритов множество, но они не страшны кораблю, опасных же столкновений можно ждать лишь раз в десятки лет. Правда, когда корабль попадет в метеорный рой, вероятность столкновения резко увеличится, и вместо одного опасного столкновения в десятки лет оно может происходить примерно один раз в несколько месяцев.

Поэтому метеорных потоков, конечно, придется избегать, хотя и они не будут очень опасными для кораблей, совершающих полет на Луну, если учесть, что его длительность не превышает 100 часов. Ведь даже для советских искусственных спутников метеорные потоки не оказались опасными.

Второй важнейший вопрос в проблеме столкновения межпланетного корабля с метеорным телом связан с тем, какое разрушение будет причинено кораблю. Ведь как ни редки возможные столкновения корабля с достаточно крупным метеорным телом, в соответствии с приведенными выше расчетами, основанными на теории вероятности, но они все-таки возможны. Экипаж корабля, столкнувшегося с метеорным телом, вряд ли в последнюю секунду своей жизни найдет утешение в том, что это исключительно редкий случай.

Конечно, надо предусмотреть и редкую возможность столкновения, чтобы сделать межпланетный полет максимально безопасным и в этом отношении.

К сожалению, достоверными данными о разрушениях, причиняемых снарядами, мчащимися со скоростями до 100 и более километров в секунду, наука в настоящее время не располагает. Артиллерия имеет дело со снарядами, скорость которых не превышает обычно 1,5 километра в секунду.

Можно лишь предполагать, что основные разрушения, вызываемые столкновением корабля с метеорным телом, будут связаны со взрывным испарением самого метеорного тела и некоторой части оболочки корабля. Ведь уже при скорости 4–5 километров в секунду твердое тело становится подобным сильно сжатому газу – при столкновении оно взрывается. Именно этим объясняется, очевидно, то обстоятельство, что на месте падения Тунгусского метеорита не удалось обнаружить ни малейшего его кусочка – он испарился!

Большую опасность представляет также ударная волна, возникающая в оболочке корабля при столкновении с метеоритом. В особенности опасна эта волна для приборов и оборудования, связанного с оболочкой, – они почти наверняка выйдут из строя, не выдержав огромных, хотя и мгновенных, нагрузок. Это должно быть тщательно учтено при проектировании корабля.

Некоторые проведенные расчеты показали, что глубина проникновения метеорного тела в оболочку межпланетного корабля будет примерно пропорциональна диаметру этого тела. В самом легком случае, когда оболочка корабля изготовлена из стали, а метеорит каменный, он проникает в оболочку на глубину, примерно в 3 раза превышающую его диаметр. В самом тяжелом случае, когда оболочка сделана из дюраля, а метеорит железный, глубина проникновения составит примерно 16 диаметров. Это позволяет подсчитать, зная материал, из которого изготовлена оболочка, ее толщину, а также вероятность столкновения корабля с метеорным телом, как часто можно ожидать пробоя оболочки корабля при столкновении.

Оказывается, судя по этим приближенным расчетам, пробой стальной оболочки корабля толщиной в 1 миллиметр будет происходить примерно 1 раз в несколько месяцев полета (если считать, что метеоры имеют рыхлую структуру, о чем упоминалось выше, то вероятность пробоя гораздо меньше). Конечно, не всякое такое столкновение приведет к катастрофе – образовавшуюся пробоину можно закрыть пластырем; можно также сделать стенки пассажирской кабины протестированными, как это делается с топливными баками самолетов и, в последнее время, даже с самолетными и автомобильными шинами. В этом случае слой специального вещества, нанесенного на внутреннюю поверхность стенки, сам затянет пробоину.

Опасность пробоя оболочки корабля можно значительно уменьшить, если снабдить его специальным противометеорным защитным экраном. Изготовленный из листового дюраля толщиной в 1 миллиметр, в виде оболочки, облегающей корабль с зазором 20–30 миллиметров, экран уменьшит вероятность пробоя оболочки корабля с 1 раза за несколько месяцев до 1 раза за десятки лет, так как большая часть всех метеорных тел будет испаряться при столкновении с экраном. Экран защитит оболочку корабля и от опасного действия ударной волны.

Таким образом, угроза столкновения с метеорным телом не может оказаться препятствием для совершения межпланетного полета. И все же межпланетный корабль должен быть полностью избавлен от риска даже случайного столкновения, грозящего ему гибелью. Этого можно добиться с помощью радиолокационной установки на корабле. Радиолуч, посылаемый установкой, будет непрерывно «прощупывать» все пространство вокруг корабля на сотни тысяч километров. Если луч обнаружит метеорит, [140]140
  При современном уровне развития радиолокационной техники так можно обнаружить только очень крупный метеорит – целую «межпланетную гору». Обычные, даже довольно крупные метеориты будут обнаружены радиолокатором всего на расстоянии нескольких километров, что уже не имеет, конечно, никакого смысла. Лучших результатов можно добиться с помощью радиоволн чрезвычайно малой длины, в настоящее время не применяющихся.


[Закрыть]
то на экране у командира корабля вспыхнет предупреждающий сигнал. Включенные командиром или автоматом устройства определят скорость и направление полета опасного соседа корабля в мировом пространстве, произведут необходимые вычисления и, если имеется угроза столкновения, укажут необходимое изменение курса корабля. Двигатель корабля будет включен на мгновение, и этого будет достаточно, чтобы избежать трагического столкновения. Возможно, что вместо включения двигателя корабля можно будет воспользоваться лучистой «пушкой», посылающей с корабля навстречу метеориту мощный пучок электрически заряженных молекул [141]141
  Ф. А. Цандер предлагал воспользоваться для этой цели катодными лучами – потоком излучаемых кораблем электронов.


[Закрыть]
 – ионов какого-либо вещества – или же коротковолновых радиолучей. Сила реакции этих лучей немного отклонит корабль, немного – метеорит, и в результате их ранее пересекавшиеся траектории разойдутся. Пассажиры межпланетного корабля смогут при удаче лишь на мгновение увидеть метеорит, когда он, освещенный мощным прожектором корабля, молнией промелькнет мимо иллюминаторов пассажирской кабины, как бы беззвучно напоминая о только что миновавшей страшной опасности.

Но, может быть, еще лучше воспользоваться, как это иногда предлагают, не лучистой, а обычной пушкой, с помощью которой в упор «расстрелять» разрывными снарядами приближающийся метеорит? Его осколки, даже если они и столкнутся с кораблем, не будут уже представлять для него большой опасности.

Во всяком случае метеорная опасность не остановит человека на его пути к далеким мирам.




    Ваша оценка произведения:

Популярные книги за неделю