Текст книги "Путешествие к далеким мирам"
Автор книги: Карл Гильзин
сообщить о нарушении
Текущая страница: 5 (всего у книги 26 страниц)
Через сколько же времени это происходит после взлета ракеты? Оказывается, через минуту. За эту одну-единственную минуту ракета уносится на высоту 40 километров, а ее двигатель одним, поистине гигантским, глотком проглатывает 9 тонн топлива.
Однако это топливо двигатель расходует не напрасно, ибо он развивает в полете действительно колоссальную мощность.
Если судить по энергии вытекающей из двигателя струи газов, то его мощность достигает почти 400 тысяч лошадиных сил. Еще больше полезная мощность, соответствующая работе продвижения ракеты в окружающей среде. Эта мощность непрерывно увеличивается с ростом скорости полета, так как она равна произведению тяги на скорость. Перед остановкой двигателя ракета летит со скоростью около 5500 километров в час, или 1,5 километра в секунду. При этом полезная мощность превышает полмиллиона лошадиных сил, приближаясь к мощности Днепрогэса.
После остановки двигателя ракета продолжает полет за счет накопленной ранее скорости, как снаряд, вылетевший из ствола артиллерийского орудия. Правда, такую пушку в данном случае надо было бы поместить на высоте 40 километров. Летя таким образом, ракета забирается еще выше и достигает максимальной высоты – примерно 100 километров.
Но и 100 километров – это совсем не предел, достигнутый современной реактивной техникой, как не предел и достигнутая скорость полета в 1,5 километра в секунду. Использование идей Циолковского позволило добиться уже значительно больших успехов в том замечательном штурме мирового пространства, который ведет реактивная техника.
Какие же это идеи?

Траектория и скорость полета ракеты.

Траектория артиллерийского снаряда.
Глава 7«ТАЮЩИЕ» СНАРЯДЫ И «ТАЮЩИЕ» ПОЕЗДА
Раз известно, какую скорость нужно сообщить межпланетному кораблю, и найден двигатель для него, то не должно быть ничего трудного в том, чтобы рассчитать межпланетный корабль – определить нужный запас топлива, общий вес корабля, траекторию полета. Однако первые же попытки Циолковского решить сначала более простые задачи – например, определить, как далеко залетит какая-нибудь ракета или как высоко она поднимется, – натолкнулись на несколько неожиданное препятствие. Оказалось, что подобных задач до Циолковского еще никто не решал. Выяснилось также, что это не такие уж простые задачи.
Известно, что законы движения различных тел изучает наука о движении – механика, созданная Ньютоном. Естественно, что в поисках нужного ему решения Циолковский обратился за помощью к механике. Однако в то время эта наука оказалась бессильной помочь Циолковскому.
До Циолковского механика имела дело всегда с телом определенной массы. И это всех устраивало, ибо на практике только такие случаи и встречались. Трудно было себе представить, например, задачу о падении какого-нибудь камня, который бы в полете «худел», теряя массу.
Но перед Циолковским стояли, увы, именно такие задачи. Масса ракеты в полете сильно изменяется, так как часть массы ей приходится отбрасывать в виде продуктов сгорания топлива. Поэтому ракета, пока работает ее двигатель, не похожа на обычные снаряды. Это какой-то особый, быстро «тающий» в полете снаряд. Вспомните, например, ракету, описанную в предыдущей главе. За одну минуту полета с работающим двигателем ее вес уменьшается с 13 до 4 тонн. Поистине катастрофическое «похудание»…
Чтобы научиться рассчитывать полет ракет, нужно было сначала разработать новую главу механики – механику тел переменной массы. Без этого нельзя было создать и науку о движении ракет – ракетодинамику.
Честь решения этих задач принадлежит Циолковскому. И в этом – одна из наибольших его заслуг перед человечеством, перед наукой. Разработанная Циолковским механика тел переменной массы позволяет решать множество важных технических задач; она лежит и в основе теории межпланетного полета.
Интересно, что практически одновременно с Циолковским и независимо от него разработкой механики тел переменной массы занимался крупный русский ученый – профессор И. В. Мещерский, которому принадлежит решение ряда важных проблем в этой области.
И в наши дни ведущая роль в разработке вопросов ракетодинамики принадлежит советским учёным, ученикам Циолковского и Мещерского.
Чтобы изучить законы движения ракет, Циолковский рассмотрел простейший случай полета ракеты – полет ее в таком пространстве, в котором нет сопротивления воздуха и отсутствует сила тяжести. Циолковский назвал это условное пространство свободным. В таких примерно условиях будет находиться межпланетный корабль при полете в межзвездном мировом пространстве – воздуха там нет, а силой тяжести в первом приближении можно пренебречь, если корабль не находится непосредственно вблизи тяжелых небесных тел.
Главная задача, которая стояла перед Циолковским, заключалась в том, чтобы научиться определять конечную скорость ракеты, то есть ту скорость, которую ракета приобретает, когда ее двигатель останавливается из-за выработки всего топлива.
Решение этой задачи было получено впервые Циолковским и опубликовано им в 1903 году. Полученная Циолковским формула, позволяющая определить конечную скорость ракеты, имеет важнейшее значение в теории ракет и, значит, в теории межпланетного полета. Во всем мире эту формулу, так называемую формулу ракеты, знают как закон Циолковского, как формулу Циолковского. [20]20
См. приложение.
[Закрыть]
Формула Циолковского позволяет ответить на очень важный вопрос – от чего, в конце концов, зависит конечная скорость ракеты. Оказывается, эта скорость не зависит ни от того, мала ракета или велика, ни от того, сколько килограммов или тонн топлива запасено на ракете, ни от того, наконец, сколько времени работает двигатель ракеты. Она зависит только от двух условий: с какой скоростью газы вытекают из сопла ракеты и каков относительный запас топлива на ракете, то есть какая часть общего веса ракеты при взлете приходится на долю топлива.
Конечная скорость ракеты будет тем больше, чем больше скорость истечения газов и чем больше относительный запас топлива.
Для современных жидкостных ракетных двигателей скорость истечения равна примерно 2500 метрам в секунду, редко превышая эту величину.
Чему же равняется величина относительного запаса топлива для современных ракет?
Для тяжелой ракеты, описанной в предыдущей главе, вес топлива при взлете составляет 9 тонн при общем весе 13 тонн. Следовательно, в этом случае относительный запас топлива равен 9:13, или примерно 0,7. Формула Циолковского показывает, что увеличение относительного запаса топлива на этой ракете с 0,7 до 0,8 увеличило бы скорость ее полета в свободном пространстве на 34 процента, а дальнейшее увеличение с 0,8 до 0,9 – на 43 процента. Если бы можно было построить ракету с относительным запасом топлива 0,9, то скорость полета ракеты, по формуле Циолковского, равнялась бы 5750 метров в секунду. Для того чтобы достичь скорости отрыва, то есть примерно 11 километров в секунду, вес запаса топлива на ракете должен составлять 99 процентов от взлетного веса ракеты. Вес самой ракеты двигателя, полезной нагрузки должен в этом случае составлять только 1 процент от взлетного веса ракеты.
Однако создать такую ракету практически невозможно. Да и вообще увеличение относительного запаса топлива на ракете наталкивается в настоящее время на все большие конструктивные трудности. Вероятно, величина относительного запаса топлива около 90 процентов является практически достижимым пределом. Очевидно, решить задачу межпланетного полета путем увеличения относительного запаса топлива вряд ли удастся. Наилучшие сорта топлива, которые могут быть созданы в будущем, даже при наибольших возможных значениях относительного запаса топлива на ракете, могут обеспечить скорость полета, не превышающую примерно 9 километров в секунду. И это даже без учета различных потерь.
И все же изобретательский гений Циолковского подсказал ему замечательное решение этой задачи. Высказанная им идея coставных ракет, или, как говорил Циолковский, «ракетных поездов», заключается в том, чтобы уже в полете освобождаться от тех частей ракеты, которые стали ненужными. Как всякая выдающаяся идея, это предложение Циолковского сочетает в себе исключительную простоту с необычайной плодотворностью результата.
По идее Циолковского, [21]21
Независимо от Циолковского эта идея была выдвинута также американцем Годдардом. По недавнему сообщению, идея составной ракеты была высказана впервые югославским ученым Казимиром Симиновичем, опубликовавшим ее в Голландии в 1650 году. Однако эта публикация оставалась до последнего времени неизвестной, и, кроме того, она не имела отношения к космическому полету. Циолковский предложил составную ракету для межпланетного полета впервые, это предложение было высказано в его работе «Вне Земли» (1895 г.).
[Закрыть]ракета в этом случае должна состоять из ряда самостоятельных, автономных отсеков, то есть, по существу, из ряда связанных друг с другом отдельных ракет. Представьте себе такую цепочку ракет, напоминающую обычный поезд, состоящий из железнодорожных вагонов, только установленный вертикально.

Схема «ракетного поезда» Циолковского.
Этот ракетный поезд должен лететь следующим образом. При взлете работает двигатель самой задней ракеты, [22]22
Циолковский предлагал начинать работу с двигателя передней ракеты, чтобы поезд в полете растягивался силой тяги, а не сжимался.
[Закрыть]который уносит весь поезд на большую высоту и сообщает ему значительную скорость. Когда все топливо на этой ракете будет израсходовано, она автоматически отделяется от поезда и падает на землю или опускается на парашюте. В то же мгновение включается двигатель следующей, второй ракеты, который продолжает увеличивать скорость всего поезда, пока и здесь не кончится топливо. После этого она также отделяется от поезда. Тогда запускается двигатель следующей ракеты и т. д.
Таким образом, этот поезд является очень своеобразным и сильно отличается от обычных поездов: он постепенно «тает» в полете. В подобном поезде все пассажиры должны находиться в самом переднем «вагоне», иначе они рискуют не добраться до цели…
Легко видеть, что скорость самой последней, передней ракеты получается значительно большей, чем была бы скорость всего поезда при выработке такого же количества топлива. Ведь в этом случае не приходится тащить с собой мертвый груз в виде отработавших и ставших бесполезными ракет.
Выгода получается тем большей, чем больше число ступеней ракеты (расчет может определить наивыгоднейшее число ступеней [23]23
Оптимальное число ступеней ракеты зависит от степени совершенства конструкции ракеты, характеристик двигателей и др. В частности, иногда взлетный вес трехступенчатой ракеты может оказаться даже меньшим, чем четырехступенчатой, не говоря уже о большем числе ступеней.
[Закрыть]). Так, например, чтобы ракета с полезной нагрузкой 5 килограммов приобрела скорость отрыва, она может быть пятиступенчатой и ее взлетный вес должен равняться тогда 375 тоннам. Если же увеличить число ступеней ракеты до 10, то общий вес поезда при взлете уменьшится в 6 с лишним раз и составит только 60 тонн.
Однако создание ракетных поездов с очень большим числом ступеней дает, как это установил еще Циолковский, малый выигрыш и вместе с тем наталкивается на серьезные конструктивные трудности. Достаточно указать, например, что поезд, составленный из 5 ракет, обеспечил бы в 5 раз большую скорость, чем одна ракета, но зато полезный груз при этом уменьшился бы в 10 тысяч раз и на каждую тонну веса исходной ступени пришлось бы всего… 10 граммов полезного веса.
Можно считать, что практически будет вряд ли целесообразно строить ракетные поезда с числом ступеней больше 5–6. В своей работе «Космические ракетные поезда», выпущенной в 1929 году, Циолковский подробно рассмотрел различные возможные типы поездов.
Идея создания составных ракет, предложенная Циолковским, нашла уже широкое применение в боевых ракетах. В частности, в минувшую войну немецко-фашистскими захватчиками широко применялись двухступенчатые ракеты. Применялись и более сложные составные ракеты, например боевая пороховая ракета, имевшая четыре ступени.

«Тающий» поезд: вверху – железнодорожный, внизу – ракетный.
Ракетный поезд был не единственным типом составной ракеты, предложенным Циолковским. Он предложил и другой тип такой ракеты, названный им «ракетой с переливкой топлива». В этом случае ракета тоже состоит из нескольких ступеней, но ступени эти делаются совершенно одинаковыми и, кроме того, выстраиваются не в затылок друг другу, как в обычном ракетном поезде, а рядом. Вся эта связка ракет взлетает одновременно, причем работают двигатели всех ракет. Но когда половина топлива, запасенного на каждой ракете, вырабатывается, то связка уменьшается ровно вдвое – топливо из одной половины ракет переливается в баки другой половины и опустошившиеся ракеты отделяются от связки. Затем все повторяется сначала до тех пор, пока изо всей связки не останется одна-единственная ракета, отправляющаяся в свой далекий полет с необходимой космической скоростью.
Идея такой составной ракеты, как видно, остается той же – опустошившиеся ракеты отделяются и тем самым уменьшается масса ракеты, получающая ускорение. Но если в случае обычного ракетного поезда последняя ракета получает как бы по эстафете скорость, накопленную всеми предшествующими ракетами, то в связке ракет последняя ракета точно так же по эстафете получает топливо из этих ракет, что позволяет ее двигателю развить необходимую большую скорость.
До настоящего времени идея переливки топлива не получила широкого применения из-за ряда трудностей. Однако это вовсе ие означает, что она не будет использована и в дальнейшем. Наоборот, она обладает кое-какими преимуществами перед «поездом» и не удивительно, что некоторыми учеными серьезно рассматривается как возможная будущая конструктивная схема межпланетного корабля.
Дальнейшее развитие идеи Циолковского о составных ракетах осуществлено советским инженером Ф. А. Цандером. Очевидно, если бы можно было использовать ненужные, отбрасываемые части конструкции ракеты в качестве топлива для жидкостного ракетного двигателя, то конечная скорость ракеты при этом увеличилась бы. Именно это и является содержанием предложения Цандера. Он разработал ряд проектов межпланетных многоступенчатых ракет, в которых металлические части конструкции, становящиеся ненужными в полете – опустошившиеся баки, крылья и проч., расплавляются и подаются в камеру сгорания жидкостного ракетного двигателя. Цандеру принадлежит, как указывалось в предыдущей главе, и сама идея использования ряда металлов – алюминия и других – в качестве топлива для жидкостных ракетных двигателей. Он же провел и опыты по сжиганию такого металлического горючего.
Разрабатывая ракетодинамику, Циолковский не ограничился простейшим случаем полета в свободном пространстве. Им были рассмотрены многие другие важнейшие задачи теории межпланетного полета и получены формулы, лежащие в основе астронавтики. Постепенно усложняя задачу, Циолковский рассмотрел полет ракеты в поле тяжести, то есть в таком пространстве, где действует сила тяготения. Им было исследовано влияние сопротивления воздуха, то есть рассмотрен полет ракеты в земной атмосфере, как это бывает при взлете и посадке межпланетного корабля. Циолковский установил наивыгоднейшие методы взлета межпланетного корабля, рассчитал запас топлива, необходимый для совершения различных межпланетных полетов. Эти и другие ценные результаты исследований теории межпланетного полета, полученные Циолковским, заложили прочную теоретическую основу астронавтики.
На какие же перспективы развития реактивной техники может рассчитывать астронавтика, строя свои планы постепенного завоевания безграничных далей мирового пространства?

«Ракетная связка» по Циолковскому (переливка топлива).
Глава 8ОТ РАКЕТНОГО САМОЛЕТА ДО КОСМИЧЕСКОГО КОРАБЛЯ
Десятилетия, прошедшие с тех пор, как Циолковский создал астронавтику, показали всю правильность разработанного им стратегического плана борьбы за покорение мирового пространства.
Циолковский считал, что путь в мировое пространство совпадает со столбовой дорогой развития авиации и реактивной техники. Сначала все более высотные полеты самолетов с обычными поршневыми двигателями. Затем создание «стратопланов полуреактивных» (так называл Циолковский самолеты с воздушно-реактивными двигателями за много лет до того, как такие самолеты появились в действительности). Все большая скорость и высота полета этих самолетов. Наконец, переход к ракетным самолетам с жидкостными ракетными двигателями, способными летать в самых верхних слоях атмосферы с недосягаемыми для других самолетов скоростями. Далее, с постепенным ростом скорости, высоты и дальности полета и уменьшением поверхности несущих крыльев – к космической ракете.
Многие ученые на Западе смотрели на дело иначе. Они писали, что астронавтика будет развиваться вне связи с авиацией, своей особой дорогой. Выходило так, что астронавтика закладывается на чистом месте, что создание космического корабля – задача, которая должна решаться с самого начала как целиком новая, что опыт авиации ничем здесь помочь не может.
Теперь уже можно говорить о том, что история опровергла эти утверждения. Нет сомнений, что весь ход развития авиации и реактивной техники подготавливает почву для решения задач астронавтики. Без опыта, накопленного за все эти годы авиацией и реактивной техникой, создание космического корабля было бы невозможным. Авиация и реактивная техника являются техническим фундаментом астронавтики. Именно поэтому с каждым годом возможность осуществления полетов в мировое пространство делается все более реальной и вековая мечта человечества – все более осуществимой.
Развитие реактивной техники вскрыло еще одну весьма интересную особенность, по существу предсказанную Циолковским. Две бывшие до сих пор самостоятельными ветви реактивной техники – авиация и артиллерия – постепенно сближаются. Конструктивные формы самолетов и ракет становятся все более сходными, и в них начинают угадываться будущие очертания космических кораблей. Самолеты постепенно теряют очертания, характерные для обычной винтовой авиации: нос фюзеляжа становится заостренным, как у снаряда; крылья уменьшаются в размерах, приобретают стреловидные очертания; дужка крыла вместо каплевидной формы получает заостренную переднюю кромку. С другой стороны, тяжелые реактивные снаряды приобретают небольшие крылышки и становятся очень похожими на некоторые новые, реактивные самолеты.
Сама механика полета самолетов может стать в будущем очень непохожей на принятую в настоящее время и приблизиться к артиллерийской. В настоящее время двигатель самолета, как известно, работает в течение всего времени полета, тогда как двигатель реактивного снаряда работает лишь в течение короткого промежутка времени – при запуске-выстреле. Установка на самолете ракетного двигателя, имеющего большую тягу, позволяет осуществить полет самолета по образцу полета снаряда. В этом случае двигатель самолета работает лишь короткое время при взлете, осуществляя разгон самолета до очень большой скорости и забрасывая его, подобно снаряду, на огромную высоту. Дальнейший полет самолета осуществляется с остановленным двигателем, так что топливо не расходуется, причем самолет совершает длительный планирующий полет с постепенным снижением. Расчет показывает, что самолет в состоянии пролететь при этом гораздо большее расстояние и совершить такой полет в значительно меньшее время, чем существующие сейчас самолеты любых типов.
Несомненно, именно так будут совершаться в будущем сверхдальние и сверхскоростные перелеты на Земле. Например, полет Владивосток – Москва можно будет совершить таким образом примерно за один час, обгоняя видимое движение Солнца. Так что, поужинав во Владивостоке, можно будет в тот же день… позавтракать в Москве! Такие полеты сближают авиацию с астронавтикой, ибо при их выполнении самолеты должны залетать, по существу, уже в преддверие мирового пространства. Техника полета межпланетного корабля будет также основана на коротком разгоне вначале и последующем длительном полете с остановленным двигателем. В главе 10 возможность таких астронавтических перелетов на Земле будет рассмотрена подробнее.
Формула Циолковского, о которой шла речь в предыдущей главе, показывает, в каком направлении должна развиваться реактивная техника, чтобы решить задачи астронавтики. Реактивные летательные аппараты должны совершенствоваться так, чтобы: а) на аппарате данного веса можно было разместить возможно большее весовое количество топлива; б) жидкостные ракетные двигатели обеспечивали максимально возможную скорость истечения газов.
Каковы же перспективы развития реактивной техники в обоих этих направлениях?
Возможности дальнейшего увеличения относительного запаса топлива на ракете в настоящее время весьма ограниченны. Вспомните дальнюю ракету, описанную в главе 6. Вес топлива на этой ракете превышал вес пустой ракеты (без полезного груза) примерно в 3 раза. В лучших образцах построенных одноступенчатых ракет это соотношение значительно больше, что является замечательным достижением. Ведь обыкновенный легкий алюминиевый бачок вместимостью 10 килограммов бензина весит примерно 1 килограмм. Значит, уже сейчас по весу ракеты на 1 килограмм запасенного на ней топлива она всего раза в полтора тяжелее такого бачка. Но ракета рассчитана на полет при огромных скоростях, она должна выдерживать большие инерционные перегрузки, возникающие в таком полете. Кроме того, на ракете установлены двигатели, сложное приборное оборудование, система управления в полете. Все это значительно увеличивает ее вес.

Современные скоростные самолеты становятся похожими на снаряды.
Конечно, ракета имеет гораздо большие размеры, что позволяет создать относительно более легкую конструкцию; в ней могут быть применены и специальные прочные и легкие материалы. Однако только при использовании предложенных Циолковским составных ракет можно добиться того, чтобы на 1 килограмм веса ракеты, который она будет иметь после выработки всего топлива, приходились многие десятки килограммов веса топлива при взлете, что необходимо для осуществления космического полета. А идея Цандера использовать части конструкции ракеты в качестве топлива может увеличить это отношение еще во много раз.
Вот почему астронавтику интересует больше всего то направление развития реактивных летательных аппаратов, которое связано с совершенствованием конструкции составных ракет, накоплением опыта их эксплуатации, осуществлением все более высотных и дальних полетов этих ракет, сначала без людей, а потом с людьми.
Одной из важнейших проблем является создание новых материалов, из которых будут строиться межпланетные корабли. Материалы должны быть прочными, легкими, жаростойкими. Вряд ли для этой цели пригодятся алюминиевые и магниевые сплавы, являющиеся в настоящее время основными конструкционными материалами в авиации. Если эти сплавы и найдут применение на межпланетном корабле, то только для различных вспомогательных целей. Основными материалами будут, по-видимому, новые сплавы, созданные металлургами, и новые пластмассы, созданные химиками. Вероятно, на межпланетном корабле найдут широкое применение специальные высокожаропрочные стали, новые керамические материальна также комбинации тех и других – для участков корабля, которые, будут подвергаться особенно сильному нагреву в полете.
Каковы возможности применения на межпланетном корабле новых, необычных еще сегодня материалов, можно видеть хотя бы на примере стекла. Не исключено, что многие части космических кораблей и даже вся его обшивка будут изготовлены именно из стекла. Конечно, это будет не обычное, всем хорошо известное стекло. В последние годы созданы замечательные сорта стекла, обладающие многими ценными качествами для астронавтики. Так, например, в США создано стекло, имеющее в отличие от обычного кристаллическую структуру. Это стекло тверже стали, легче алюминия, в 15 раз прочнее обычного стекла, причем эту свою твердость оно не теряет даже при нагреве до 700 °C; его температура плавления близка к температуре плавления железа. Из такого стекла можно изготовить даже такие детали, как лопатки турбин. Новое стекло может быть сделано как прозрачным, так и непрозрачным. Вот почему можно представить целиком стеклянный космический корабль будущего с прозрачными стенками пассажирской кабины…
Конечно, почетное место в конструкция межпланетного корабля займут металлы. Так, несомненно, будут использованы титановые сплавы, получающие все большее применение в современной авиации. Большое будущее принадлежит, вероятно, сплавам бериллия – исключительно легкого материала (почти вдвое более легкого, чем алюминий: его удельный вес равен всего 1,83) и в то же время очень прочного, выносящего высокие температуры. Большую роль может сыграть и литий – самый легкий металл, вдвое более легкий, чем вода. Будут служить астронавтике и многие редкие металлы – такие, как цирконий, гафний, ниобий и другие. Создание новых жаропрочных и легких материалов для астронавтики – сложнейшая научная и инженерная задача, требующая длительных и упорных исследований. Можно не сомневаться, что она будет решена – наука дает металлургам все большие возможности переходить от поисков на ощупь, наугад, по интуиции, которые были характерны для недалекого прошлого, к уверенному инженерному «проектированию» новых конструкционных материалов с заданными, иной раз самыми необычными, свойствами.
Не менее сложна и трудна задача увеличения скорости истечения газов из жидкостного ракетного двигателя. В настоящее время эта скорость не превышает 2500–3000 метров в секунду. Увеличение скорости истечения газов происходит очень медленно и достигается ценой больших усилий. Для того чтобы добиться увеличения скорости истечения газов, приходится решать сразу две самостоятельные задачи – искать более калорийные топлива, то есть топлива, выделяющие при сгорании больше тепла, и обеспечивать работоспособность двигателя на этих топливах. Чем больше тепла выделяет топливо при сгорании в двигателе, тем больше при прочих равных условиях скорость истечения газов из двигателя.

Строительство искусственного спутника Земли.
Наибольшие скорости истечения достигаются в настоящее время обычно при использовании в качестве окислителя жидкого кислорода, а в качестве горючих – нефтепродуктов (бензин, керосин). Наименьшие – в случаях, когда окислителем служит перекись водорода или азотная кислота.
Каковы возможности увеличения скорости истечения при использовании наилучших комбинаций окислителей и горючих, которые могут быть составлены из имеющихся химических элементов?
Исследования советских и зарубежных ученых показывают, что эти возможности, в общем, весьма ограниченны. В числе перспективных топлив можно назвать, например, предложенные Кондратюком соединения фосфора и соединения кремния; предложенные Цандером и Кондратюком металлы и соединения металлов, в частности соединения металла бора с водородом, так называемые бораны, металла лития и другие – в качестве горючих; предложенный Циолковским озон, соединения фтора и некоторые другие – в качестве окислителей.
Изучение ряда новых топлив производится и в настоящее время. Они, конечно, будут применяться в будущем во многих случаях вместо современных топлив. Однако скорость истечения газов при этих топливах не будет, вероятно, превышать 4500 метров в секунду.
Мы видим, что химия бессильна решить задачу значительного увеличения скорости истечения газов из жидкостного ракетного двигателя, ибо освобождаемая при сгорании топлив химическая энергия оказывается для этого недостаточной.
Правда, чтобы не быть несправедливым по отношению к химии, надо указать на одну возможность, хотя в настоящее время еще неизвестно, удастся ли когда-нибудь ее реализовать. Зато уж очень заманчивые перспективы сулит она астронавтике!
Эта возможность связана с так называемым атомарным топливом. Оказывается, существуют такие химические реакции, которые приводят к выделению необычайно больших количеств тепла – это реакции образования некоторых молекул из отдельных атомов. Можно представить себе, например, двигатель, в камере сгорания которого вместо обычного горения происходит реакция образования молекул водорода из его атомов. Это был бы замечательный двигатель! Во-первых, для него не нужно было бы двух различных веществ – горючего и окислителя, достаточно одного вещества – водорода. Во-вторых, скорость истечения газов из подобного двигателя могла бы превысить… 10 километров в секунду! Вот с какой огромной скоростью молекулы водорода, образовавшиеся в двигателе из атомов, вытекали бы из сопла двигателя в атмосферу. Не нужно было бы и никакой системы зажигания для такого двигателя – атомы водорода обладают, как говорят, огромной химической активностью, они стремятся слиться по два, то есть образовать молекулы.
Именно эта необычная химическая активность атомов водорода и других атомов, выделяющих при соединении в молекулы много тепла, мешает создать двигатели, работающие на атомарном топливе. Свободные атомы водорода могут существовать ничтожные доли секунды – они практически мгновенно соединяются друг с другом, образуя молекулы.
Обычно атомарный водород получают путем пропускания струи водорода через мощный электрический разряд. При этом электрическая энергия затрачивается на расщепление молекул водорода на атомы. Но как только атомы водорода покидают электрическую дугу, они немедленно образуют снова молекулы, выделяя полученную ими ранее электрическую энергию уже в виде тепла. Вот если бы можно было найти способ предотвратить это обратное воссоединение атомов в молекулы, если бы можно было научиться хранить водород в атомарном состоянии! Тогда достаточно было впустить струю атомарного водорода в камеру двигателя, чтобы в ней произошла, как говорят, рекомбинация молекул водорода и раскаленная струя вытекающего газа создала бы огромную силу тяги. С таким двигателем можно было бы добиться немалых побед в борьбе за покорение мирового пространства.
Но, увы, пока это только мечта. До последнего времени даже теоретически не было известно ни одного метода, с помощью которого можно было бы научиться хранить атомарные газы. Лишь в 1956 году появились какие-то проблески надежды: исследователи научились сохранять активные химические частицы в течение нескольких часов. [24]24
Об этом сообщал, например, журнал «Сайенс» (август, 1956 г.).
[Закрыть]Для этого полученные атомарные газы сразу же подвергаются очень сильному, или, как говорят, глубокому, охлаждению. Температура их резко снижается до нескольких градусов выше абсолютного нуля. Удастся ли использовать этот принцип для хранения атомарного топлива ракетных двигателей, покажет будущее.
Но и, помимо атомарного топлива, далеко не все еще ресурсы химии, не все возможности химических топлив уже использованы. Дальнейшие исследования по подбору новых, более эффективных топлив способны увеличить скорость истечения, достигнутую в настоящее время, примерно на 50 процентов. Это значительно увеличило бы скорость и дальность полета ракет, было бы крупнейшим шагом вперед в развитии реактивной техники, а значит, и важной победой в борьбе за покорение мирового пространства.
Однако, чтобы сделать такой шаг, одержать такую победу, мало найти новые, более эффективные топлива. Нужно обеспечить надежную работу двигателя на этих топливах.








