Текст книги "Внутренняя среда организма"
Автор книги: Григорий Кассиль
Жанр:
Медицина
сообщить о нарушении
Текущая страница: 4 (всего у книги 16 страниц)
Бывает и наоборот. Явные признаки высокого тонуса парасимпатической системы (низкое кровяное давление, замедленный пульс, спазмы кишечника, тошноты) вызваны слабостью симпатической системы. Опять-таки не парасимпатотония, а симпатоатония.
Изменения, возникающие в организме и связанные с деятельностью различных отделов вегетативной нервной системы, находят свое отражение в колебаниях биологической активности крови, в перестройке нейрогуморально-гормональных взаимоотношений. При этом повышение симпатической активности крови может быть обусловлено не только нарастанием симпатомиметических веществ, но и снижением уровня парасимпатомиметических. Снижение симпатической активности крови связано как со снижением уровня симпатомиметических веществ, так и с повышением парасимпатомиметических и т. д.
В нормальных условиях жизнедеятельности организма повышение симпатической активности постоянно компенсируется увеличением активности парасимпатической. Нарастание количества биологически активных веществ одного ряда по закону обратной связи уравновешивается сдвигами в содержании веществ противоположного ряда. Таким образом, биологическая активность крови все время пребывает в состоянии подвижного, колебательного равновесия. Фаза повышенной симпатической активности сменяется фазой повышенной активности парасимпатической. Подъемы сменяются падениями, а падения подъемами.
Биологическая эрго– и трофотропная активность жидких сред организма, т. е. их влияние на рецепторы, клетки, ткани, органы, физиологические системы и целостный организм, обусловлена наличием свободных и связанных форм катехоламинов, их предшественников и продуктов метаболизма, ацетилхолина, гистамина, серотонина, других биогенных аминов, состоянием ферментных систем (синтезирующих и расщепляющих), наличием активаторов и ингибиторов, образованием, связыванием и распадом метаболитов и антиметаболитов, соотношением электролитов, количеством микроэлементов и т. д. Механизмы, определяющие биологическую активность жидких сред организма, более подробно изложены в следующей главе.
Существует четкий индивидуальный, околосуточный, сезонный и т. д. ритм фазовых колебаний биологической активности. Ф. Хальберг указывает, что «околосуточная временная структура» функций организма, выработанная в процессе приспособления живых существ к условиям жизни на Земле, отличается выраженной пластичностью. Она отличается от строго периодических явлений. Сходные события повторяются не точно, а лишь через примерно равные промежутки времени. Ритмы биологической активности жидких сред организма не относятся к числу «свободных», «независимых» ритмов, а должны быть причислены к ритмам околосуточным.
Соотношение гормонов, медиаторов, метаболитов, ферментных систем, ионов, активирующих и подавляющих биологическую активность крови, непрерывно меняется и не укладывается в жесткие биохимические границы. Оно зависит от потребностей организма, различных при тех или других условиях внешней или внутренней среды, от разнообразных раздражений, поступающих извне и изнутри состоящих наподобие цепи из множества отдельных звеньев регуляторных механизмов (последовательно включившихся по мере необходимости), основная задача которых сводится к сохранению динамического постоянства внутренней среды. Это не значит, конечно, что при тех или иных состояниях организма, врожденных или возникающих в процессе его жизнедеятельности, во внутренней среде не могут преобладать метаболиты в одних случаях эрго-, в других трофотропного ряда.
Одно время людей делили на симпатотоников и парасимпатотоников. Несмотря на все возражения, вопреки жесткой критике этого представления в подобном делении имеется какое-то зерно истины. У одних людей более выражены реакции симпатические, у других – парасимпатические, у одних в крови и тканевой жидкости легче образуются вещества симпатомиметические, у других – парасимпатомиметические. Работы нашей лаборатории показывают, что жизнедеятельность организма, его активность, утомляемость, а может быть и длительность существования, старение, подверженность тем или другим видам патологии и т. д. в значительной степени зависят от преобладающего типа его вегетативно-гуморальной реактивности. Схематически люди относятся либо к симпатоадреналовому, либо к вагоинсулярному типу, т. е. у одних преобладают эрготропные, у других трофотропные механизмы регуляции и координации функций. Вопрос этот сложный, трудный и требует дальнейшего экспериментального изучения.
На основании многолетних наблюдений мы приходим к выводу, что характерные гуморально-гормональные сдвиги предшествуют изменению функций. Физиологические и тем более патологические процессы являются следствием перестройки биохимических взаимоотношений во внутренней среде, а не наоборот. Так, например, за несколько часов до резко выраженного состояния перевозбуждения симпатической системы (клинических симпатоадреналовых кризов с характерными явлениями нарушения гомеостаза) в крови резко нарастает уровень катехоламинов. Повышение холинергической активности крови является во многих случаях первым признаком надвигающегося вагоинсулярного криза.
В то же время на высоте вегетативного криза, в момент наиболее выраженных явлений выхода организма за пределы гомеостаза, гуморально-гормональные взаимоотношения, как правило, перестраиваются. В тот момент, когда разыгрываются клинические явления выраженного симпатоадреналового криза, парасимпатическая активность крови повышена, а симпатическая снижена, а во время вагоинсулярного криза повышена симпатическая и снижена парасимпатическая активность крови (рис. 3).
Сопоставление биохимических и физиологических, а тем более биохимических и патофизиологических параметров в один и тот же временной период не всегда возможно. Мгновенно возникающие, быстро сглаживающие, переходящие в свою противоположность колебания биологической активности крови при различных функциональных состояниях вегетативной нервной системы могут не совпадать в данный конкретный период с более медленно развивающимися, более инертными, во многих случаях более длительными и устойчивыми физиологическими и особенно патологическими реакциями. В еще большей степени это обнаруживается при сопоставлении вегетативных проявлений с результатами, полученными при определении гормонов и метаболитов в суточной или взятой отдельными порциями моче. Хотя содержание гормонов, медиаторов и метаболитов в моче отражает общее направление сдвигов в состоянии вегетативной нервной системы, при оценке полученных данных необходимо учитывать величину мочеотделения, концентрацию изучаемого вещества в единице объема, задержку экскреции, интенсивность процессов обмена и т. д. Несовпадение биохимических, физиологических и патофизиологических параметров, выявляемое в некоторых случаях, может быть сведено к минимуму при повторных, динамических исследованиях и применении соответствующих функциональных проб.
Глава IV. Механизмы гуморально-гормональной регуляции функций
Швейцарский физиолог В. Гесс еще в 1925 г. предложил разделить физиологические функции, или, точнее, физиологические реакции организма, на две большие группы: эрготропные и трофотропные. Теория Гесса получила широкое распространение в биологической науке. Ей посвящено немалое число теоретических и экспериментальных исследований. Впоследствии ее развил, углубил и уточнил один из учеников Гесса – М. Моннье. Однако в своих работах Моннье говорит не столько о функциях, сколько об эрго– и трофотропных функциональных состояниях организма. И, возможно, это не терминологическая поправка, а более углубленное представление о процессах регуляции и координации в организме. Состояния эти смешанные, многоплановые. В них участвуют вегетативные, двигательные, чувствительные и психические элементы. В настоящее время более широкое распространение получило представление об эрго– и трофотропных системах, имеющих довольно строгую анатомическую и биохимическую локализацию. К эрготропным относят обычно адренергические (адренореактивные) механизмы, к трофотропным – холипергические (холинореактивные). Это не всегда одно и то же и нередко и эрго– и трофотропные реакции могут быть вызваны возбуждением других гуморальных систем (например, кортикостероидами, серотонином, гистамином и др.).
Схема, предложенная Моннье (рис. 4), не охватывает всей проблемы, но все же дает определенное представление о взаимоотношении эрго– и трофотропных функций в организме. Эрготропные состояния характеризуются активацией деятельности большинства внутренних органов и физиологических систем под влиянием симпатоадреналовых импульсов. При этом повышается реактивность (готовность к действию) всей соматической, «анимальной» системы (чувствительных, двигательных и психических ее компонентов). Так, например, эрготропные функции резко усиливаются при различных стрессовых состояниях, при физической деятельности (спорт, труд), при эмоциях, боли, охлаждении. Они способствуют приспособлению организма к меняющимся условиям внешней среды, повышают расход энергетических запасов, усиливают катаболические, диссимиляторные процессы в организме.
Рис. 3. Зависимость между биохимическими и физиологическими сдвигами во внутренней среде организма при развитии симпатоадреналового криза.
Параллельными линиями отражены границы гомеостаза (Э – эрготропные; Т – трофотропные); сплошная линия – биохимические (гуморальногормональные) сдвиги, прерывистая – физиологические сдвиги при развитии и затухании явлений криза; 2 – фаза снижения симпатомиметической и нарастания парасимпатомиметической активности крови; 3 – фаза постепенного нарастания физиологических проявлений симпато-адреналового криза; 4 – фаза выраженного симпатоадреналового криза с выходом за пределы гомеостаза.
Рис. 4. Схема эрготропных (стрелки направлены от центра) и трофотропных (стрелки направлены к центру) реакции (по М. Моннье).
Вследствие избирательной активации определенных внутренних органов под влиянием симпатической нервной системы происходит повышение реактивности (готовности к действию) соматической нервной системы (эрготропные реакции). Активация определенных внутренних органов под влиянием парасимпатической нервной системы создает оптимальные условия во внутренней среде (ассимиляция, удаление использованных продуктов, трофотропные реакции).
Для трофотропных состояний характерно накопление энергетических запасов, усиление процессов анаболических, ассимиляторных. При этих состояниях активность внутренних органов направлена на поддержание гомеостаза и находится под влиянием вагоинсулярной системы.
Медиаторы. Мысль о том, что передача возбуждения с нервного окончания на клетки органов осуществляется при помощи химических веществ, возникла уже давно. Но доказано это было только в двадцатых годах нашего столетия. Вещества, образующиеся при нервном возбуждении, получили название медиаторов (трансмиттеров) или передатчиков процесса возбуждения. Место их образования (или накопления) – окончания нервных волокон, где они вовлекаются в действие, когда нервный импульс приходит в рабочий орган, например, в мышцу или железистую клетку. Медиаторы образуются также в синапсах, связывающих между собой нервные клетки центральной нервной системы и периферических нервных узлов, а также в нервных стволах.
При электронно-микроскопическом исследовании обнаруживается, что синапс состоит из двух соприкасающихся поверхностей, одна из которых принадлежит аксону, другая – дендриту или телу клетки. При увеличении в несколько десятков тысяч раз синапс представляется в виде щели шириной примерно в 200 ангстремов (ангстрем – одна стомиллионная доля сантиметра). Поверхность аксона, обращенная к синапсу, получила название пресинаптической мембраны (оболочки), а дендрита – постсинаптической.
В окончании аксона электронный микроскоп обнаруживает целое скопление крошечных пузырьков (везикулов), наполненных химическим веществом специального назначения. Вещество это – передатчик, медиатор, посредник нервного возбуждения, осуществляющий переход импульса через синапс.
Чаще всего это ацетилхолин или норадреналин, иногда серотонин, гамма-аминомасляная кислота, гистамин и т. д. (с. 75).
Наряду с другими биологически активными веществами медиаторы, поступая в кровь, принимают участие в регуляции и координации физиологических процессов. Из этого следует, что необходимо различать их роль в медиации и регуляции. Без преувеличения можно сказать, что открытие химической медиации явилось одним из наиболее блестящих, как принято называть, «делающих эпоху» открытий биологии двадцатого века.
Различные нейроны – в зависимости от их расположения, физико-химических свойств, обмена веществ, физиологических функций – возбуждаются или, наоборот, прекращают свою деятельность (затормаживаются) под влиянием тех или других медиаторов.
Отсюда и возникло представление, что существуют возбуждающие и тормозящие медиаторы. Этому вопросу посвящено немалое количество экспериментальных работ и теоретических споров. Одни авторы признают существование тормозящих медиаторов, другие его опровергают.
Нервный импульс представляет сложнейший физикохимический процесс, связанный с перемещением некоторых минеральных веществ, в частности ионов калия и натрия. В состоянии покоя ионы калия находятся преимущественно внутри нервной клетки, ионы натрия – на ее наружной поверхности. В протоплазме нервных клеток ионов калия примерно в 30—40 раз больше, чем в окружающей клетку тканевой жидкости, ионов же натрия в 8—10 раз меньше. В соответствии с этим внутри клетки преобладают отрицательные электрические заряды, вне ее – положительные. В тот момент, когда нервный импульс приходит в окончание аксона (так называемую синаптическую бляшку), пузырьки, содержащие медиатор, лопаются. Химический передатчик изливается в синаптическую щель и изменяет проницаемость постсинаптической мембраны. Это ведет к тому, что ионы калия устремляются из клетки и располагаются на ее поверхности, обращенной к щели, а ионы натрия входят в клетку. Электрический заряд мембраны мгновенно изменяется, возникает разница потенциалов, и импульс переходит с аксона одной клетки на дендрит другой. Как только импульс прошел синапс, медиатор разрушается, ионы калия снова поступают в клетку, а ионы натрия выходят из нее.
Биологически-активные вещества эрготропного ряда
Катехоламины. К веществам, вызывающим и регулирующим эрготропные (адренергические) реакции в организме, в первую очередь относятся катехоламины, составляющие систему гормонов и медиаторов симпатоадреналовой системы. Они создают возможность быстрого, адекватного и устойчивого перехода организма из состояния покоя в состояние длительного возбуждения, регулируя и направляя течение физиологических процессов.
Основной ведущий представитель катехоламинов, наиболее известный и подробно изученный, – адреналин. Он образуется в мозговом слое надпочечников и содержание его во внутренней среде организма характеризует состояние этой важнейшей эндокринной железы нашего организма. Его непосредственный предшественник, отличающийся отсутствием одной метильной группы (СН3), норадреналин, обладает одновременно функциями гормона мозгового слоя надпочечников и медиатора центральных и периферических отделов симпатической нервной системы.
Длившийся несколько десятилетий спор о химической природе симпатического медиатора можно считать законченным. Еще не так давно говорили и писали о каких-то особых химических веществах, симпатинах, отличающихся от адреналина. В 1933 г. бельгийский ученый Бакк высказал предположение, что симпатины в одних случаях являются адреналином, в других его предшественником – норадреналином. Советский биохимик А. М. Утевский предположил, что симпатины – сложная система адреналина, норадреналина и промежуточных продуктов их обмена. Но в настоящее время установлено, что симпатическая медиация осуществляется с помощью норадреналина. Его предшественник – дофамин, один из медиаторов симпатических образований в центральной нервной системе, отсутствие или недостаточное образование которого в некоторых участках головного мозга приводит к тяжелому заболеванию, известному под названием дрожательного паралича, или паркинсонизма. Катехоламины образуются в организме из аминокислот путем последовательного превращения фенилаланина в тирозин и дигидрооксифенилаланин (ДОФА). Помимо прямого медиаторного действия норадреналин, поступая в кровь и тканевую жидкость, принимает самое активное участие в гуморальной регуляции функций.
Катехоламины оказывают необычайно сильное влияние на возникновение, течение и исход буквально всех процессов, совершающихся в организме, действуя и на нервные и гуморальные рецепторы. При этом они вызывают эффект такого же характера, какой возникает при возбуждении симпатической нервной системы, т. е. обладают симпатомиметическими (сходными с симпатическим) свойствами. Содержание их в крови ничтожно, но активность чрезвычайно высока.
Итак, норадреналин – гормон и медиатор центральных и периферических отделов симпатической нервной системы, дофамин – медиатор центральной нервной системы, а фенилаланин, тирозин и ДОФА последовательно участвуют в биосинтезе катехоламинов. Цепь их превращений, начиная с фенилаланина, совершается при участии ряда ферментов, активность которых может иметь особо важное значение для формирования тонуса и реактивности симпатоадреналовой системы, усиливая или ослабляя превращение одних форм катехоламинов и их предшественников в другие.
Однако медиаторная роль адренергических нервных волокон не сводится к одному лишь выделению норадреналина в синаптическую щель. Недавно было открыто явление, прямо противоположное процессу освобождения норадреналина. Оказалось, что симпатические нервные окончания способны обратно захватывать неиспользованный медиатор и этим как бы пополнить запасы катехоламинов. Какая поразительно тонкая феерия разыгрывается в адренергическом синапсе в ту минуту, когда к нему приходит нервный импульс! Содержащийся в везикулах норадреналин изливается в синаптическую щель и вступает в реакцию с постсинаптическими адренореактивными системами. Однако он используется не полностью, часть его остается ненужной, избыточной. И сразу в действие вступают механизмы, инактивирующие излишки медиатора. Этих механизмов несколько и надежность их достаточно велика. Прежде всего это цикл разнообразных биохимических превращений, сложных и многозвеньевых, а кроме того, обратный захват, поглощение (uptake), детали которого подробно описаны в литературе[13]13
Авакян О. М. Фармакологическая регуляция высвобождения и захвата норадреналина. Ереван: Изд-во АН АрмССР, 1973.
[Закрыть]. Однако какое-то количество медиатора ускользает от цепких механизмов инактивации и уносится током крови. Это именно тот норадреналин, который мы определяем в жидких средах и выделениях организма, по уровню которого судим о тонусе и реактивности симпатического (нервного) отдела симпатоадреналового аппарата.
Унесенные кровью, проникшие через гистогематические барьеры в непосредственную среду органов катехоламины вызывают длинную цепь физиологических и биохимических эффектов. Но их действие на клетку осуществляется не непосредственно, а через несколько промежуточных инстанций. Наиболее важной из них является образование циклического 3'5' – аденозинмонофосфата (3'5' – цАМФ), который в настоящее время рассматривается как универсальный «второй передатчик» регуляторных воздействий гормонов и медиаторов, превращающих межклеточные сигналы, поступающие из внутренней среды, во внутриклеточные. Можно считать доказанным, что это соединение выполняет функцию посредника между действием гормонов и ответной реакцией клетки.
В образовании цАМФ важную роль играет группа биологически активных веществ – простагландинов. Вступая в соединение с рецептором клеточной мембраны, гормон (в данном случае адреналин или норадреналин) стимулирует переход в активную форму простагландинов различного действия. Активным началом этих соединений являются ненасыщенные жирные кислоты с 20 атомами углерода. Хотя простагландины делятся на 4 группы, число их, как и спектр физиологического действия, значительно выше. В оболочке клетки простагландины находятся в связанной форме и освобождаются под влиянием норадреналина. В свою очередь, простагландины активируют фермент аденилциклазу, который при участии ионов кальция усиливает образование цАМФ. Другим ферментом, который принимает участие в обмене цАМФ, является фосфодиэстераза. Ее роль заключается в разрушении и тем самым инактивации цАМФ. Интересно отметить, что инсулин – представитель вагоинсулярной системы, тормозит освобождение простагландинов из связанного состояния и тем самым снижает образование цАМФ. Аденилциклаза активируется не только при участии катехоламинов, по и некоторых других биологически активных веществ (гистамина, серотонина, ангиотензина, некоторых гормонов гипофиза и др.). Образование и разрушение цАМФ – сложный и полностью еще не расшифрованный процесс[14]14
Кометиани П. А. О механизмах действия циклической аденозинмонофосфатной кислоты. Тбилиси, 1974.
[Закрыть].
Таким образом, если катехоламины, попадая из крови в тканевую жидкость, являются внеклеточным химическим посредником между мозговым слоем надпочечников (или адренергическими нервными элементами) и клеткой-мишенью, т. е. объектом действия гормонов, то цАМФ, проникая через клеточную мембрану, вступает во взаимодействие с содержащимися в ней рецептивными образованиями и ферментами, что приводит к возникновению многочисленных биохимических и физиологических реакций в организме.
Роль катехоламинов в реализации гомеостатических механизмов подробно изучена не только в экспериментах на животных, но и на человеке. Катехоламины, их предшественники и продукты превращения определяются в крови и моче при различных физиологических и патологических состояниях организма. Обычно в клинической практике или при исследовании состояния симпатоадреналовой системы у человека в лабораторных условиях определяют катехоламины, их предшественники и продукты превращения в моче, собранной в течение суток (суточная доза) или нескольких часов (порционная моча). Опыт показывает, что содержание катехоламинов в моче, подобно зеркалу, позволяет судить о состоянии симпатоадреналовой системы, хотя в мочу попадает лишь 4—5% их общего количества в организме. В пашей лаборатории принята следующая схема: мочу собирают с 8 до 12 ч, с 12 до 16 ч, с 16 до 20 ч, с 20 до 8 ч. Ночные пробы мочи можно брать в 2 и 5 ч. Эта схема необязательная, существует ряд ее вариантов.
По уровню адреналина в моче можно судить в основном о состоянии гормонального звена симпатоадреналовой системы, т. е. о деятельности мозгового слоя надпочечников, а по уровню норадреналина – медиаторного, т. е. нервного. Количество дофамина и ДОФА характеризует резервные возможности симпатоадреналовой системы. Определение их в крови и моче позволяет оценить возможности симпатоадреналовой системы, наличие в организме строительных материалов, из которых образуются катехоламины. Большое значение уделяется физиологами и клиницистами исследованию продуктов обмена дофамина (гомованилиновой кислоты) адреналина и норадреналина (метанефрина и норметанефрина), а также ванилилминдальной кислоты – основного метаболита адреналина и норадреналина по пути О-метилирования и окислительного дезаминирования. Сопоставление результатов, полученных при изучении экскреции с мочой катехоламинов, их предшественников и продуктов превращения позволяет охватить всю совокупность процессов, протекающих в организме при различных состояниях симпатоадреналовой системы. Так, например, увеличение экскреции ванилилминдальной кислоты указывает на усиление обменных процессов, повышенное использование катехоламинов, а уменьшение экскреции является показателем сниженного обмена адреналина и норадреналина.
Важнейшую, если не главную роль играют катехоламины в осуществлении адаптационно-трофической роли симпатической нервной системы. Этот термин введен советским физиологом Л. А. Орбели. Значение катехоламинов как регуляторов приспособительных механизмов вытекает из способности их быстро и интенсивно оказывать влияние на процессы метаболизма, стимулировать распад гликогена и жиров, повышать уровень глюкозы в крови, способствовать окислению жирных кислот, повышать потребление кислорода тканями, увеличивать работоспособность сердца и скелетной мускулатуры, обеспечивать перераспределение крови для оптимального снабжения тканей энергетическими ресурсами, усиливать возбуждение центральной нервной системы, участвовать в развитии эмоциональных реакций и т. д. и т. д.
Состав и свойства внутренней среды и в еще большей степени состояние организма зависят во многих отношениях от сдвигов в системе катехоламинов, их соотношении и использовании. Возбуждение симпатоадреналовой системы сопровождается, как правило, нарастанием уровня катехоламинов во внутренней среде. В то же время высокое содержание катехоламинов в организме поддерживает напряженный тонус симпатоадреналовой системы. Все эрготропные функции организма усилены. Он приготовился к действию, к бою, достижению цели. Состояние это прекрасно описано Шекспиром в драме «Генрих V» (перевод Е. Бируковой).
Когда ж нагрянет ураган войны,
Должны вы подражать повадке тигра.
Кровь разожгите, напрягите мышцы.
Свой нрав прикройте бешенства личиной!
Глазам придайте разъяренный блеск —
Пускай как пушки смотрят из глазниц;
Пускай над ними нависают брови,
Как выщербленный бурями утес
Над основанием своим, что гложет
Свирепый и нещадный океан.
Сцепите зубы и раздуйте ноздри;
Дыханье придержите; словно лук,
Дух напрягите[15]15
Шекспир У. Генрих V, Полн. собр. соч., М.: Искусство, 1959, т. 4, с. 409.
[Закрыть].
Физиолог не ошибется. Перед ним сразу встает знакомая картина возбужденной до предела симпатоадреналовой системы. Если бы каким-то чудом Генриху V удалось заглянуть во внутреннюю среду организма его воинов, он увидел бы истинное «катехоламиновое наводнение».
Существует несколько предположений о значении отдельных катехоламинов для жизнедеятельности организма. Вопрос этот широко обсуждается в литературе, но единого мнения до сих пор нет. Слишком быстро меняется уровень катехоламинов в крови. Они быстро образуются, поступают во внутреннюю среду, выводятся, разрушаются, захватываются клетками, вступают в реакцию и исчезают. Просматривая работы отечественных и зарубежных авторов, подытоживая исследования свои и своих учеников, мы приходим к выводу, что психологические стрессы, выражающиеся в задержке внешних проявлений (ожидание боли, опасности, предчувствие неприятностей, возможного поражения, страх, тревога, сознание собственной беззащитности, депрессия, боязнь смерти), связаны в значительной мере с поступлением в кровь адреналина и в меньшей степени норадреналина, а стрессы, выражающиеся во внешних проявлениях (например, аффект, агрессия, гнев, ярость) состояния, требующие выдержки, выносливости, длительного умственного и физического напряжения, преодоления препятствий, уверенности в победе, сопровождаются накоплением во внутренней среде норадреналина.
В развитие этих представлений можно с известной условностью говорить о норадреналине как «гормоне льва» и адреналине как «гормоне кролика». Автор этой книги считает, что такое деление, предложенное шведским ученым М. Франкенхойзер, следует понимать не в прямом, а в переносном смысле, как противопоставление силы – слабости или храбрости – трусости. Правильнее назвать адреналин, как это сделал Кеннон, гормоном тревоги, а норадреналин – гормоном гомеостаза. Советский ученый С. А. Разумов исследовал содержание адреналина и норадреналина в крови петухов после петушиных боев. По характеру поведения петухи были разделены на агрессивных и пассивных. Оказалось, что у агрессивных петухов содержание норадреналина было в 13 раз выше, чем у птиц пассивных или боящихся драки. В нашей лаборатории определяли катехоламины в крови рысистых лошадей. Оказалось, что победителями в скачках выходили лошади, у которых в крови преобладало содержание норадреналина.
В литературе имеются указания, что поступление во внутреннюю среду норадреналина избирательно повышается в тех случаях, когда требуется сосредоточенное внимание. Английский ученый У. Фридман утверждает, что у темпераментных, честолюбивых людей выделение норадреналина при работе выше, чем у лиц, не обладающих этими чертами характера. По нашим данным, эмоциональное напряжение при полетах на сверхзвуковых самолетах сопровождается резким (в 7—10 раз) увеличением выделения норадреналина мочой. Наиболее высокие показатели летного искусства были отмечены у лиц, экскретировавших большие количества норадреналина, В совместных работах с Н. Н. Артамоновым и Р. С. Веледой мы показали, что испытуемые «норадреналинового типа», т. е. выделяющие преимущественно норадреналин, легко переносят пребывание в барокамере на высоте 5—6 тыс. м, в то время, как испытуемые, у которых экскреция норадреналина снижена или замедлена, не выдерживают даже кратковременного подъема на высоту. Такую же закономерность нам пришлось наблюдать и при спортивной деятельности. Но об этом в специальной главе.
Однако наивно думать, что адреналин и норадреналин во внутренней среде организма как бы противопоставлены друг другу. Можно говорить только о преобладании того или другого представителя этих гормонов-медиаторов комплексной симпатоадреналовой системы. Принято считать, что эмоциональные состояния, особенно возникшие при стрессовых ситуациях, сопровождаются резким нарастанием уровня адреналина в крови. Но вот В. В. Ушаков и Т. И. Лукичева установили, что при сильнейшем эмоциональном стрессе (смерть от утопления) содержание адреналина в трупной крови по сравнению с кровью живых людей было увеличено в 27 раз, а норадреналина – в 31,3 раза, Видимо, при объяснении недоучитывался тот факт, что утопающий мобилизует все свои силы для того, чтобы спастись. В действие вступает вся симпатоадреналовая система, реализующая все защитные механизмы, все жизненные ресурсы погибающего, но не сдающегося организма. В то же время у лиц, погибших без значительного эмоционального стресса (скоропостижная сердечнососудистая смерть), содержание адреналина увеличивалось в 12 раз (вероятно, все же был испуг!), а норадреналина всего в 4,6 раза (мобилизация только началась!).
Оказалось, что сдвиги в обмене катехоламинов, от которых зависит в значительной степени состояние симпатоадреналовой системы, далеко неодинаковы при одних и тех же воздействиях на организм. Они зависят от многих факторов: исходного состояния и реактивности симпатоадреналовой системы, интенсивности и длительности воздействия, времени дня и ночи, наличия или отсутствия предшественников, из которых образуются катехоламины, ответной, компенсаторной реакции со стороны вагоинсулярной системы и т. д.