Текст книги "Внутренняя среда организма"
Автор книги: Григорий Кассиль
Жанр:
Медицина
сообщить о нарушении
Текущая страница: 6 (всего у книги 16 страниц)
У больных нарколепсией, внезапно засыпающих днем при самых неожиданных, казалось бы, обстоятельствах, перед засыпанием уровень гистамина в крови значительно повышается, в то время как во время сна он, как правило, несколько снижен. Гистамин нарастает при длительной гипокинезии (обездвижении) и достигает поистине критически высоких цифр после тяжелой черепно-мозговой травмы.
Фармакологическая промышленность наших дней синтезировала несколько десятков препаратов противогистаминного действия (антигистамины). При введении в организм они препятствуют проявлению его токсических свойств. Это легко показать в лабораторном опыте. Если морской свинке ввести димедрол и после него четырехкратную смертельную дозу гистамина, свинка остается в живых. Механизм действия сложен и не всегда ясен. Они действуют на разные функции организма. Одни из них подавляют центральную нервную систему, другие не оказывают на нее сколько-нибудь заметного влияния. Антигистамины блокируют гистаминорецепторы, они как бы закрывают цель, в которую бьет пуля гистамина. Многие из них выключают также холино– и адренорецепторы. Некоторые препараты препятствуют синтезу гистамина в клетках, другие активируют ферменты, разрушающие гистамин, третьи способствуют его связыванию. Физиологическая классификация антигистаминов отсутствует и, быть может, этим объясняется неэффективность их при некоторых аллергических заболеваниях.
Появление антигистаминных препаратов на фармакологическом рынке сыграло огромную роль в лечении многих заболеваний. Но в начале шестидесятых годов было сделано неожиданное открытие. Оказалось, организм вырабатывает собственные, естественные антигистамины. Тонкими лабораторными исследованиями удалось показать, что кровь здорового человека способна нейтрализовать, обезвредить добавленный к ней гистамин. Открытие это принадлежит французскому ученому Ж. Л. Парро, который назвал описанное им явление гистаминопексией, а самый эффект связывания гистамина – гистаминопексическим.
Феномен гистаминопексии зависит от наличия в нормальной сыворотке крови особого белка – плазмапексина I, который по своему химическому строению относится к псевдо-гамма-глобулинам. Содержание его в крови равно 0,4—0,7% всех белков сыворотки. Плазмапексин связывает не только гистамин, но также и другие биологически активные вещества (ацетилхолин, серотонин, окситоцин). Установлено, что избыток ионов калия тормозит, а ионов кальция усиливает связывание гистамина плазмапексином. Работы в этой области интенсивно продолжаются. По-видимому, способностью связывать гистамин, превращая его в неактивную форму, обладает не только белок крови, но и гликопротеиды, липиды, нуклеиновые кислоты, а также некоторые другие составные части крови.
Низкий гистаминопексический эффект в сыворотке больных с различными аллергическими заболеваниями зависит не только от отсутствия плазмапексина I, но и от появления в крови плазмапексина II, неспособного связать гистамин в крови, и антипексина, подавляющего связывание гистамина плазмапексином I.
В нашей лаборатории подробно изучен гистаминопексический эффект при различных заболеваниях. Полученные данные совпадают с результатами исследований Парро. При некоторых заболеваниях сыворотка крови теряет способность связывать в пробирке добавленный к ней гистамин. Это наблюдается у больных бронхиальной астмой, вазомоторным ринитом, крапивницей. Сыворотка крови не в состоянии нейтрализовать гистамин. И хотя содержание в крови свободного гистамина нередко в норме или даже ниже нормы, из-за отсутствия гистаминопексического эффекта он отличается особой активностью и даже в низких концентрациях способен вызвать аллергические явления.
В известной степени это явление сходно с описанным нами феноменом связывания ацетилхолина. Это зависит во многих случаях от недостаточности механизмов, инактивирующих гистамин во внутренней среде и, по-видимому, в тканях. Можно считать доказанным, что отсутствие гистаминопексического эффекта или снижение активности диаминоксидазы приводит к значительному усилению действия гистамина на физиологические процессы, протекающие в организме. Организм становится как бы беззащитным к действию гистамина. По мере образования и поступления в кровь ничем не инактивируемый гистамин вызывает серию специфических реакций, нередко находящихся на грани между физиологией и патологией. Так, например, в ночные часы активность диаминоксидазы резко снижается, в то время как содержание гистамина в крови практически не меняется. Это ведет к относительной гистаминемии и, быть может, способствует засыпанию. Но при некоторых аллергических состояниях, например, при крапивнице, бронхиальной астме, эксудативном диатезе гистаминопексический эффект равен нулю, в то время как содержание гистамина в крови может оставаться в пределах физиологической нормы.
На рис. 6 представлены различные варианты, характеризующие состояние системы гистамина. Они условно определяют физиологические и патологические особенности процессов и явлений, известных под названием гистаминемии. Первый ряд рисунка (а) соответствует нормальным физиологическим взаимоотношениям в организме. Факторы образования и освобождения из связанной, неактивной формы уравновешиваются факторами расщепления и связывания (1). Повышение уровня гистамина во внутренней среде, вызванное усиленным образованием или повышенным освобождением из связанной формы, компенсируется активацией расщепляющего фермента – диаминоксидазы (2), либо увеличением связывания (4), либо одновременным нарастанием активности расщепляющих и связывающих механизмов (3).
Второй ряд рисунка (б) характеризует взаимоотношения внутри системы при абсолютной гистаминемии. Высокий уровень гистамина не компенсируется инактивирующими механизмами. Усиление синтеза или повышенное освобождение из связанной неактивной формы не сопровождается повышением гистаминопексии или активацией диаминоксидазы, ведет к их ослаблению – раздельному (2, 3) или одновременному (4). Третий ряд (в) характеризует взаимоотношения внутри системы при относительной гистаминемии. Уровень гистамина не изменен или даже снижен. Факторы синтеза и освобождения из связанной формы находятся в пределах нормы. Ослаблены только инактивирующие механизмы. Гистаминопексический эффект ниже нормальных величин (1) пли полностью отсутствует, активность диаминоксидазы уменьшена (2). Особенно отчетливо проявляются признаки относительной гистаминемии при ослаблении всех инактивирующих механизмов (3). В этих случаях даже невысокий уровень гистамина может вызвать явления, характерные для выраженной гистаминемии (4).
Рис. 7. Суточный ритм экскреции гистамина и 5-оксииндолуксусной кислоты у здоровых людей.
1 – гистамин; 2 – 5-оксииндолуксусная кислота. График рассчитан путем приравнивания среднего арифметического суточного выделения за 1 мин. к единице.
Система серотонин (5-окситриптамин) – 5-оксииндолуксусная кислота. В середине нашего столетия трое американских ученых – М. Рапорт, А. Грин и У. Пейдж выделили из бычьей сыворотки вещество, способное повышать кровяное давление. Оно и было названо ими серотонином, т. е. веществом, выделенным из сыворотки (по латыни serum) и повышающим кровяное давление. Несмотря на большую литературу, посвященную роли серотонина в регуляции функций, значение его в системе регуляторных механизмов изучено недостаточно. Серотонин обладает отчетливым влиянием на гомеостатические механизмы не только здорового, но и больного организма. Он энергично вмешивается в физиологические и биохимические процессы, протекающие в сердечно-сосудистой, дыхательной, выделительной системах. В известной степени содержание серотонина в мозгу определяет состояние возбуждения, торможения и, как теперь установлено, имеет важное значение для цикла: сон – бодрствование. Серотонинергические механизмы мозга принимают участие в реализации медленного сна. Можно считать установленным, что серотонин истинный медиатор. Он отвечает всем требованиям, предъявляемым к этому типу биологически активных веществ, подобно норадреналину, ацетилхолину, гистамину. Серотонин осуществляет передачу импульсов с одной нервной клетки на другую. Принято считать, что серотонин является медиатором трофотропных систем ствола мозга и лимбико-ретикулярного комплекса.
В организме серотонин образуется из аминокислоты – триптофана. Под влиянием фермента моноаминоксидазы он окисляется и превращается в 5-оксииндолуксусную кислоту (5-ОИУК), которая выделяется с мочой.
Систему серотонина при оценке нейрогуморальных взаимоотношений в организме несколько условно составляют серотонин крови и его основной метаболит – 5-оксииндолуксусная кислота в моче. По экскреции 5-ОИУК можно судить об интенсивности обмена серотонина. Однако при некоторых патологических нарушениях нормальные соотношения перестраиваются. Несмотря на то что содержание серотонина в крови повышено, выделение 5-ОИУК с мочой может оказаться сниженным, и наоборот.
В течение многих лет ученые разных стран пытаются разгадать роль серотонина в осуществлении процессов жизнедеятельности отдельных органов или всего организма. Ведутся эти исследования и в нашей лаборатории. Несомненно, серотонин принимает участие в регуляции деятельности головного и спинного мозга, двигательной, сердечно-сосудистой, пищеварительной, выделительной и многих других физиологических систем. Обычно он находится в тканях в виде связанной, неактивной формы. Под влиянием различных воздействий и особенно при введении некоторых лекарственных препаратов, например раувольфии, серотонин освобождается из связанной формы. Но существование его, как правило, непродолжительно. Почти во всех тканях содержится фермент моноаминоксидаза (типа А и Б), довольно быстро инактивирующая серотонин[19]19
Горкин В. З. Аминоксидазы и их значение в медицине. М.: Медицина, 1981.
[Закрыть].
Вероятно, правильнее было бы систему серотонина представить себе в виде соотношения уровня его в крови и активности моноаминоксидазы. Проблема эта мало разработана. Известно, что активность моноаминоксидазы в крови увеличивается при одних патологических состояниях (например, при хронической сердечной недостаточности) и резко падает при других (ожоги). В какой мере это отражается на уровне серотонина, неизвестно. Вопрос требует дальнейшего изучения.
С недавних пор пристальное внимание исследователей привлекает значение серотонина в возникновении и развитии инфаркта миокарда. И хотя в этом вопросе еще далеко нет полной ясности, при сердечных болях нередко назначают препараты, способные повысить уровень серотонина в крови. Имеются указания, что накопление серотонина в миокарде предотвращает развитие инфаркта. Впрочем, это требует проверки.
Недостаточно изучено также влияние серотонина на вегетативную нервную систему. В одних случаях при введении его препаратов в организм усиливаются симпатические реакции, в других – парасимпатические. Не исключено, что это зависит от дозы препарата, а быть может, от исходного состояния, вернее настройки центральных и периферических отделов комплексной вегетативно-гуморально-гормональной системы. Несомненно, важную роль играет серотонин при физических нагрузках. Об этом более подробно в соответствующей главе.
Количество серотонина в крови составляет 0,03—0,15 мкг/мл (в среднем 0,076±0,06 мкг/мл), причем основная масса его находится в тромбоцитах. Интересно отметить, что тромбоциты содержат также наиболее активную моноаминоксидазу. Экскреция с мочой – в среднем – 4,9 мг/24 ч. При различных физиологических и патологических состояниях эти цифры могут колебаться как в сторону уменьшения, так и увеличения. Некоторые формы вегетативной неустойчивости, то, что принято называть вегетативной дистонией, сопровождаются нарушением нормального соотношения во внутренней среде гистамина и серотонина либо содержанием серотонина в крови и 5-ОИУК в моче. По-видимому, существуют какие-то антагонистические отношения между уровнем в крови гистамина и серотонина. У здоровых людей коэффициент соотношения гистамина и серотонина в крови равен, по данным И. Л. Вайсфельд, 1,42. При различных физиологических и патологических состояниях этот коэффициент может повышаться или снижаться. Так, например, у мастеров спорта – велосипедистов он равен 5,0, у лыжников 3,0, у борцов 2,0, у бегунов 1,4. Повышение соотношения гистамин/серотонин выявлено у больных паркинсонизмом.
Содержание серотонина меняется не только в крови. Опыты на животных показывают, что в различных органах и, следовательно, в их непосредственной питательной среде уровень серотонина может колебаться в широких пределах. Так, например, у подопытных крыс после 8-часового изнурительного плавания и особенно при вибрации мышца сердца почти полностью свободна от серотонина и соотношение гистамин/серотонин увеличивается с 1,4 до 4 и выше.
В литературе имеются указания, что серотонин обладает противосудорожными и успокаивающими свойствами. Накопляясь в центральной нервной системе, он подавляет ее активность. Не случайно так много внимания уделяет медицинская наука изучению обмена серотонина у больных с различными психическими заболеваниями.
Несомненно также участие серотонина в возникновении ряда заболеваний внутренних органов. Видимо, избыточное содержание его во внутренней среде способствует развитию язвенной болезни желудка и 12-перстной кишки. Установлено, что некоторые злокачественные опухоли, например, феохромоцитома, содержат целые «залежи» серотонина. Нередко в моче больных, страдающих злокачественными опухолями, обнаруживается в большом количестве 5-оксииндолуксусная кислота.
И, наконец, весьма важную роль играет серотонин в возникновении и развитии болевого синдрома.
В заключение несколько слов о многочисленных и разнообразных гормонах коры надпочечников – кортикостероидах. Содержание их в жидких средах и выделениях организма характеризует состояние одной из наиболее важных нейрогуморально-гормональных систем – гипоталамо-гипофизарно-надпочечниковой. О ней написано так много, особенно в связи с исследованиями Г. Селье в области физиологии, патофизиологии и биохимии стресса, что в этой книге можно ограничиться лишь кратким изложением современных представлений, непосредственно связанных с проблемой внутренней среды.
Важнейшие гормоны коры надпочечников делят на три основные группы: минералокортикоиды, глюкокортикоиды и половые гормоны. В нашей лаборатории разработан метод тонкослойной хроматографии, позволяющий определить в одной порции мочи целую гамму стероидных гормонов, их предшественников и продуктов превращения. Уже давно стало очевидным, что гормоны коры надпочечников принимают непосредственное участие почти во всех физиологических процессах, протекающих в организме. Сфера их влияния охватывает обмен белков, углеводов и жиров, образование фонда аминокислот – строительных материалов, из которых формируются белки, пептиды, ферменты. Кортикостероиды влияют на деятельность сердечно-сосудистой системы, поддерживают тонус сосудов, усиливают сократительную функцию миокарда. Они обеспечивают выход энергии, способствуют более экономному расходованию ресурсов организма при повышенной потребности в них. Помимо этого они обладают так называемым пермиссивным действием, т. е. создают необходимые условия для осуществления реакций, вызываемых катехоламинами. Если катехоламины можно считать пусковой системой организмов, то для стероидов характерны длительные, долгосрочные реакции.
Минералокортикоиды (альдостерон и дезоксикортикостерон) оказывают влияние на обмен электролитов (натрия и калия). Глюкокортикоиды (кортизон, гидрокортизон, он же кортизол, кортикостерон) регулируют углеводный обмен, участвуют в обмене белков и жиров, влияют на ряд других физиологических функций организма. Роль и значение их в реакциях стресса подробно освещены в литературе. К группе половых гормонов, вырабатываемых корой надпочечников, относятся андрогены, эстрогены и прогестерон.
Особый интерес для проблемы нейрогуморально-гормональной регуляции функций представляют многоступенчатые механизмы, осуществляющие образование и поступление во внутреннюю среду кортикостероидных гормонов. Нервные импульсы, поступающие в гипоталамус и ретикулярную формацию мозга, активируют в нем холино– и серотонинореактивные элементы. Под их влиянием происходит образование в гипоталамусе кортиколиберинов, о которых более подробно написано в гл. 7. Поступая из мозга в гипофиз, кортиколиберин стимулирует образование адренокортикотропного гормона, который, вступая в сложные биохимические процессы, протекающие в коре надпочечников, способствует биосинтезу кортикостероидов различного строения и действия.
Глава V. Гуморально-гормональные резервы и возможности организма
Функциональные пробы
Не каждое однократное физиологическое или биохимическое исследование, выполненное в лаборатории или клинике, позволяет судить о состоянии регуляторных механизмов и определить границы гомеостаза. Необходимы повторные обследования организма человека и животных с применением целенаправленных физических или химических нагрузок. Как известно, и в эксперименте, и в клинической практике широко применяются функциональные пробы для оценки возможностей сердечно-сосудистой системы, способности организма разрушать или усваивать введенную в избытке глюкозу, барьерной функции печени, деятельности желудочно-кишечного тракта и т. д. Нами предложены и разработаны функциональные пробы для оценки системы нейрогуморально-гормональных механизмов регуляции функций. С этой целью применяются различные методы строго дозированных воздействий на центральные и периферические отделы нервной системы.
В основе каждой гуморальной пробы лежит слабое, иногда даже подпороговое воздействие на какой-либо отдел вегетативной нервной системы – симпатический или парасимпатический. Возникающее при этом возбуждение одной системы почти сразу компенсируется возбуждением противосистемы. Ответная реакция может быть сильной, умеренной, слабой, может вовсе отсутствовать в зависимости от тонуса и реактивности (готовности к действию) антагонистических, компенсирующих механизмов. Так, например, при введении под кожу или в вену незначительных количеств адреналина возникает первичная симпатическая реакция. Но почти мгновенно начинается мобилизация противоборствующих сил. В крови постепенно нарастает уровень ацетилхолина, показатель возбуждения парасимпатических механизмов. Но на этом реакция не кончается. Накопление ацетилхолина, в свою очередь, возбуждает активность мозгового слоя надпочечников и вот уже в крови снова повысилось содержание катехоламинов, вслед за которым идет накопление ацетилхолина и т. д. и т. д. Как от камня, брошенного в пруд, бегут затухающие и вновь возникающие круги, так же под влиянием самого, казалось бы, незначительного воздействия на организм возникают фазовые колебания во внутренней среде организма. Подъемы и падения, вслед за ними подъемы, уже менее выраженные, снова спады и снова подъемы. Симпатическая активность сменяется парасимпатической, и наоборот (рис. 8). Величина и длительность этих фазовых колебаний зависит от состояния и реактивности нервного аппарата, от интенсивности и скорости образования и распада биологически активных веществ, своевременно вступающих в действие регуляторных механизмов.
Рис. 8. Колебания биологической активности крови при различных состояниях вегетативной нервной системы.
Границы гомеостаза условно очерчены параллельными линиями; Э – границы эрготропной активности; Т – границы трофотропной активности; волнообразная линия – колебания биологической активности крови; сплошные стрелки – направление противорегулирующих процессов; пунктирные – возмущающее воздействие; 1 – при относительном равновесии между тонусом симпатической и парасимпатической системы; 2 – при преобладании тонуса парасимпатической системы; 3 – при преобладании тонуса симпатической системы; 4—6 – при возмущающих воздействиях на фоне относительного равновесия и при преобладании одного из отделов вегетативной нервной системы.
Применяются холодовая, тепловая, адреналиновая, инсулиновая, карбаминохолиновая, падутиновая, мезатоновая и другие функциональные пробы. Выбор наиболее пригодной пробы зависит в первую очередь от цели исследования. Основная задача – выявить резервные, потенциальные возможности вегетативной нервной системы, определить границы гомеостаза, характер и длительность приспособительных и компенсаторных реакций. Функциональные пробы позволяют судить о достаточной или недостаточной активности, реактивности или эффективности регуляторных (корригирующих) механизмов.
Этой цели может служить любое воздействие на организм, способное вызвать колебательный (фазовый) сдвиг в составе и свойствах внутренней среды. Здесь необходимо подчеркнуть, что воздействие должно быть слабым, во многих случаях пороговым. Организм должен дать слабую, едва заметную первичную реакцию на воздействие. Исследователь заинтересован во вторичной, ответной реакции. Она-то и характеризует состояние, нейрогуморально-гормональных механизмов регуляции функций. Этим предложенные нами функциональные пробы принципиально отличаются от широко распространенных проб в физиологическом эксперименте или клинической практике. Если мы хотим проверить реактивность симпатоадреналовой системы, целесообразно ввести в организм небольшое количество вещества, вызывающего слабое возбуждение системы вагоинсулярной, например, инсулина или карбаминохолина[20]20
Введение ацетилхолина, как уже указывалось, нецелесообразно. Он сразу разрушается холинэстеразами.
[Закрыть]. Первичное возбуждение этой системы влечет за собой мобилизацию компенсирующих, резервных механизмов и поступление в кровь и мочу катехоламинов, их предшественников и продуктов превращения. По содержанию их в жидких средах и выделениях организма можно судить о возбудимости и резервных возможностях симпатоадреналовой системы.
Аналогичные взаимоотношения, но лишь с обратным знаком, возникают при исследовании реактивности вагоинсулярной системы.
Таким образом, любой возмущающий фактор вызывает фазовую, периодическую смену симпатической и парасимпатической активности крови, а также фазовые колебания в экскреции соответствующих биологически активных веществ с мочой. Проследить фазовые колебания в составе мочи очень трудно. Моча поступает из почек в мочевой пузырь непрерывным потоком и судить о содержании в ней биологически активных веществ (особенно у человека) можно, только собирая отдельные порции в течение строго ограниченного времени. Возникновение и смена фаз могут быть различными при разных воздействиях. В зависимости от исходного состояния организма фоновые колебания, совершенно неизбежные в условиях гомеостаза, протекают в определенном закономерном ритме и закономерным же образом изменяются под влиянием дозированных раздражителей (рис. 8).
Разберем этот рисунок, имеющий особо важное значение для дальнейших рассуждений. Схема 1 характеризует фоновую активность (нарастание и снижение уровня симпатомиметических и парасимпатомиметических веществ) при достаточных и приблизительно равных резервных возможностях обоих отделов вегетативной нервной системы. Границы гомеостаза условно ограничены линиями, характеризующими эрго– и трофотропные системы (Э—Т). Колебания биологической активности протекают в определенных физиологических пределах, периодически повышающихся или снижающихся.
Схема 2 характеризует те же взаимоотношения при недостаточных резервных возможностях симпатоадреналовой системы и относительном преобладании тонуса и реактивности вагоинсулярной (вегетативно-инсулярный тип). Аналогичные взаимоотношения при недостаточных резервных возможностях вагоинсулярной нервной системы и преобладании симпатоадреналовой представлены на схеме 3 (симпатоадреналовый тип). Как в 1-м, так и во 2-м случаях колебания биологической активности крови протекают на фоне более высокого содержания биологически активных веществ трофотропного (схема 2) или эрготропного (схема 3) ряда. При этом изменяется также длительность фаз (удлинение в зонах преобладающих резервных возможностей и укорочение их в зоне недостаточных резервов).
На схеме 4 представлены фазовые колебания, вызванные различными воздействиями на организм с уравновешенным вегетативным статусом. Первичная закономерная реакция (симпатическая при введении адренергических веществ и парасимпатическая при введении холинергических) сменяется компенсаторной реакцией противоположного знака – отчетливой симпатической при введении холинергического вещества или выраженной парасимпатической – при введении адренергического. Вслед за этим возникают сменяющие друг друга колебания активности, не выходящие за границы гомеостаза. В зависимости от состояния организма и компенсаторных возможностей его волнообразные изменения биологической активности постепенно приходят в норму.
Все эти взаимоотношения складываются иначе, если организм неспособен в силу тех или других причин компенсировать возникшие отклонения или если механизмы регуляции недостаточны (схемы 5 и 6). Любой раздражитель, подчас даже незначительный, может привести к срыву компенсаторных гомеостатических реакций, возникновению выраженных симпатоадреналовых и вагоинсулярных кризов различной интенсивности и длительности.
При высокой реактивности парасимпатической нервной системы и слабости компенсирующих реакций со стороны симпатической возникают вагоинсулярные кризы (схема 5), с преобладающим содержанием трофотропных метаболитов в крови. Обратные соотношения имеют место при высокой реактивности симпатической нервной системы (схема 6).
Выяснение нейрогуморально-гормональных взаимоотношений, выявление сущности, возможностей и резервов регулирующих и регулируемых механизмов может иметь в каждом случае решающее значение не только для оценки состояния физиологических и биохимических систем организма, но и для медицинской практики, направляя мысль врача в сторону правильных диагностических решений и рациональных терапевтических мероприятий.
Наибольшая трудность при изучении механизма нарушения функций заключается в сложности процессов, определяющих состояние вегетативного равновесия в норме и патологии, всегда представляющего сочетанное проявление факторов, способствующих поддержанию и сохранению гомеостаза и возмущающих воздействий, направленных на его нарушение, отклоняющие, компенсирующие и восстанавливающие нормальный уровень колебания, фазово сменяют друг друга и поэтому требуют в каждом отдельном случае специального анализа оценки и понимания наблюдаемых изменений и колебаний.
Как уже указывалось, в зависимости от условий и задач исследования (лабораторного или клинического) применяются различные функциональные пробы, первично действующие на те или иные механизмы комплексной вегетативно-гуморально-гормональной системы.
Опыт показывает, что для оценки реактивности симпато-адреналового (эрготропного) отдела этой системы целесообразно пользоваться тепловой или инсулиновой пробами. Адекватной пробой для оценки реактивности вагоинсулярного (трофотропного) отдела являются в основном холодовая и адреналиновая пробы. Проба с введением мезатона позволяет выявить реактивность обоих отделов вегетативной нервной системы.
Получившие наибольшее распространение в клинической практике адреналиновая и инсулиновая пробы вызывают в организме первичные гуморально-гормональные сдвиги, сопровождающиеся вторично развивающимися физиологическими реакциями. В основе Холодовой, тепловой и мезатоновой проб лежат первичные нервно-рефлекторные реакции, обусловленные раздражением рецепторов и возбуждением нервного аппарата, вслед за которым возникают вторичные гуморально-гормональные сдвиги. В этом принципиальное различие между этими группами функциональных проб.
Схема исследования. Применяются различные варианты функциональных проб. В нашей лаборатории разработана следующая схема, которая может быть использована частично или полностью с учетом возможностей и условий клинического и лабораторного обследования.
1-й день контрольный (фон). У испытуемых собирают отдельными порциями мочу. 1-я порция с 8 до 12 ч, 2-я – с 12 до 16 ч, 3-я – с 16 до 20 ч, 4-я – с 20 до 8 ч следующего дня. В 12 ч 30 мин берут кровь для определения исследуемых биологически активных веществ эрго– и трофотропного ряда.
2-й день (проба). Мочу собирают в те же часы, что и в 1-й день. Клиническое обследование испытуемого (самочувствие, состояние вегетативной нервной системы, определение систолического и диастолического артериального давления, пульс). Дозированная нагрузка проводится в 12 ч. Каждые 10—15 мин в течение 2 ч проводится повторное клиническое обследование. В 12 ч. 30 мин берут кровь для определения исследуемых биологически активных веществ эрго– и трофотропного ряда.
При определении катехоламинов и гистамина в отдельных порциях мочи результаты выражаются в нг/мин. Изменения, вызванные пробой, подсчитываются в процентах к 1-й порции мочи (до пробы). Для исключения суточных колебаний экскреции катехоламинов и других биогенных аминов проценты изменений соотносятся к соответствующим показателям контрольного дня.
Холодовая проба. Погружение кисти руки в холодную воду (4°) на 2—3 мин. Были предложены разные модификации пробы (более теплая вода, меньшая длительность погружения в воду одной или двух рук и т. д.). В нашей лаборатории используется проба, описанная выше. У здоровых людей с устойчивой вегетативной нервной системой первичной реакцией организма является активация симпатоадреналовой системы (гормонального и медиаторного звеньев), выражающаяся в увеличении уровня катехоламинов в крови и моче (и, или) снижении холинергической активности крови. В зависимости от состояния и реактивности различных отделов вегетативной системы качественные и количественные сдвиги могут быть различными, но направление их обычно подчинено одним и тем же закономерностям.
По результатам, полученным при применении Холодовой пробы у здоровых людей и больных с различными формами вегетативной неустойчивости, испытуемые могут быть отнесены к одной из следующих групп.
1. Проба сопровождается нарастанием катехоламинов в крови и моче и снижением холинергической активности крови. Имеет место при умеренной или высокой реактивности симпатоадреналовой системы. В последнем случае нередко наблюдаются значительные, превышающие физиологические колебания сдвиги в обмене исследуемых веществ.
2. Проба сопровождается повышением уровня катехоламинов в крови и моче и одновременным повышением холинергической активности крови. Первичная симпатоадреналовая реакция компенсируется возбуждением парасимпатического (холинергического, вагоинсулярного) отдела вегетативной нервной системы. Процесс этот характеризуется иногда явлением избыточной (гипер) компенсации, граничащей с патологией. В этих случаях уровень свободного ацетилхолина в крови повышается в два, иногда в три раза. Этот тип реакции наблюдается при высокой реактивности вагоинсулярного отдела вегетативной нервной системы.