355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Фридрих Гернек » Пионеры атомного века (Великие исследователи от Максвелла до Гейзенберга) » Текст книги (страница 21)
Пионеры атомного века (Великие исследователи от Максвелла до Гейзенберга)
  • Текст добавлен: 6 сентября 2016, 23:21

Текст книги "Пионеры атомного века (Великие исследователи от Максвелла до Гейзенберга)"


Автор книги: Фридрих Гернек



сообщить о нарушении

Текущая страница: 21 (всего у книги 29 страниц)

Бальмер, имевший значительные заслуги в разработке основанного Бунзеном и Кирхгофом спектрального анализа, был первым, кто в эмпирически найденной формуле математически описал расположение спектральных линий, которые испускаются атомом водорода при электрическом разряде или при тепловом движении. Под непосредственным влиянием исследований Штарка по динамике атома Бору удалось убедительно, с точки зрения физики объяснить "серию Бальмера" и с помощью своей атомной модели вывести предложенную Бальмером формулу.

Из факта четких эмиссионных и абсорбционных линий Бор сделал в духе эйнштейновского учения о квантах света вывод о том, что атом водорода может существовать только при совершенно определенных энергетических состояниях: при энергетических уровнях, которые соответствуют этим состояниям. Если атом при добавлении энергии поднимается на более высокий энергетический уровень, что соответствует переходу его электрона на более далекую от ядра орбиту, то при возвращении в прежнее состояние, то есть обратном переходе электрона на близкую к ядру орбиту, полученная энергия отдается обратно. При этом атом излучает квант света, энергетическое содержание которого определяется из разницы между энергией возбужденного состояния и основного состояния. Под "возбуждением" понимается добавление энергии.

Посредством применения понятия кванта в атомном учении стало возможным решить загадку спектральных линий и по крайней мере в общих чертах объяснить поразительную устойчивость атомов, строение их электронных оболочек и периодическую систему элементов. Теория спектральных линий Бора открыла новую область исследований.

"Большое количество экспериментального материала, полученное спектроскопией в течение нескольких десятилетий, – писал Гейзенберг, теперь, при изучении квантовых законов движения электронов, стало источником информации. Для той же самой цели могли быть использованы многие эксперименты химиков. Имея дело с этим экспериментальным материалом, физики постепенно научились ставить правильные вопросы. А ведь часто правильно поставленный вопрос означает больше чем наполовину решение проблемы".

Научное достижение 27-летнего датчанина было преобразующим, революционным. Он смог совершить его только потому, что ему не мешала идти вперед консервативная направленность ума, излишнее благоговение перед классическими преданиями. Поэтому Бор, а не Планк стал творцом атомной механики и истинным вождем "квантовых теоретиков".

При этом нельзя, конечно, забывать, что основополагающая идея квантования энергии принадлежит не Бору, а Планку. Бор воспринял ее у Планка: в форме эйнштейновского квантового учения, которое уже в основном выходило за рамки гипотезы Планка. Итак, путь идеи проходил от Планка через Эйнштейна к Бору.

"Полвека спустя введение дискретных квантовых состояний электронной системы атома может показаться чем-то само собой разумеющимся, – говорил Джеймс Франк. – Казалось, если бы Бор не ввел эту идею, то вскоре кто-нибудь другой пришел бы к тому же выводу. Такое мнение в корне ошибочно. Сколько мужества, независимости и сосредоточенности на существенном было необходимо, показывает та медлительность, с которой эта идея находила признание у огромной массы физиков".

Так как планковская квантовая гипотеза в то время еще считалась спорной, не удивительно, что попытка Бора основать модель атома на понятии квантов не имела сначала у физиков большого успеха. Некоторым теория Бора казалась "поразительным гибридом, полученным с помощью прививки некоторых черт квантовой теории, исходящей из представлений о прерывности материи, к теории планетных орбит – типичной классической теории, рассматривающей мир как нечто непрерывное", как писал в автобиографии Норберт Винер, основатель кибернетики.

Резерфорд, несмотря на некоторые сомнения, воспринял модель атома Бора с одобрением; но другие известные физики-атомщики решительно отклонили ее. К их числу относился и английский лауреат Нобелевской премии Дж.Дж. Томсон, который приобрел мировую славу благодаря открытию электрона, а также благодаря другим основополагающим достижениям в области исследования атома и который выдвигал свою модель атома.

Арнольд Зоммерфельд, посвятивший впоследствии все свои силы разработке теории атома Бора, вначале также не хотел ничего знать о применении объяснения "серии Бальмера" к модели атома. В дальнейшем фундаментальные исследования Зоммерфельдом тонкой структуры линий водорода и его расчет возможных орбит электронов с учетом моментов теории относительности способствовали тому грандиозному подъему атомизма, который в значительной степени привел к стиранию границы между физикой и химией. Его труд "Строение атома и спектральные линии" считается классической монографией раннего периода современной теории атома.

С точки зрения история науки следует также отметить, что даже Джеймс Франк и Густав Герц, два немецких исследователя, которые в 1913 году внесли важный вклад в атомную физику, вначале не признавали ценности работы своего датского коллеги.

"Работа Бора в первые годы после ее появления была мало известна в Германии, – писал Джеймс Франк в статье о Нильсе Боре в "Натурвиссеншафтен" в 1963 году. – Литературу лишь бегло просматривали, и так как в то время среди физиков господствовало откровенное недоверие к успешности попыток сконструировать модель атома при тогдашнем уровне знаний, то мало кто давал себе труд внимательно прочитать работу. Особо следует отметить, что Густав Герц и пишущий эти строки вначале были неспособны понять огромное значение работы Бора". Работы Франка и Герца по возбуждению спектральных линий путем облучения атомов электронами решительным образом поддерживали воровское понимание строения атома и подтверждали это понимание в его основе. Оба физика работали в Физическом институте Берлинского университета.

Джеймс Франк, родившийся в Гамбурге 26 августа 1882 года в семье состоятельного коммерсанта, с 1903 года, после двух семестров в Гейдельберге, во время которых он занимался преимущественно физикой и химией, а также геологией, учился в Берлине у Эмиля Фишера, Макса Планка и Эмиля Варбурга. В 1906 году он получил степень доктора, защитив диссертацию по проблеме разрежения газа. Затем он стал ассистентом Генриха Рубенса. Весной 1911 года Франк получил право преподавания физики. В своей первой лекции он говорил о тепловом излучении.

В это же время получил докторскую степень Густав Герц, сын гамбургского адвоката и племянник первооткрывателя электромагнитных волн. Проведя несколько семестров в Гёттингене, где он слушал Давида Гильберта и Макса Абрахама, и в Мюнхене у Рентгена и Зоммерфельда, Герц продолжал свое образование с 1908 года в Берлине у Планка и Рубенса. После получения степени доктора "молодой физик, одаренный в теоретическом отношении, полный идей и при этом чрезвычайно добросовестный", по отзыву Планка, стал ассистентом Рубенса в Физическом институте университета. Здесь началась его совместная работа с Джеймсом Франком, блестящий результат которой был опубликован в 1913 году.

Опыт по столкновению электронов, который Франк и Герц ставили сначала с парами ртути, в определенном отношении кажется противоположностью фотоэлектрического эффекта. В последнем случае взаимодействие между светом и электронами состоит в том, что из поверхности металла движущимися квантами света выбиваются и рассеиваются электроны; при столкновении же электронов, наоборот, свободные электроны вызывают "возбуждение" атомов, увеличение энергии, что ведет к испусканию квантов света. При упругом столкновении с атомами ударяющиеся электроны отдают свою энергию.

При этом выяснилось, что к атому ртути при помощи удара электрона может быть подведено не любое количество энергии, а такое, которое соответствует переходу атома из его основного состояния в другое состояние, свободное от излучения. Напряжение, требующееся для этого, называется "напряжением возбуждения". При этом в первый раз могла быть экспериментально подтверждена планковская константа h, событие, которое имело огромное значение для признания квантового учения.

Опыт Франка – Герца, который привлек большое внимание специалистов, принадлежит к числу самых известных экспериментов в новейшей истории физики. Оба исследователя получили за него Нобелевскую премию 1925 года. В своей работе, правда, они пользовались определенными экспериментальными методами, которые использовал еще Ленард, но они существенно усовершенствовали их и намного превзошли Ленарда, опираясь при этом также на результаты экспериментов английских исследователей атома. Прежде всего Франк и Герц распространили свои опыты на инертные газы и пары металлов, которые оказались подходящим материалом для изучения взаимодействия между электронами и отдельными атомами.

Предложенный Франком и Герцем метод сталкивания электронов открыл большие возможности для выяснения строения атома. Как говорил Густав Герц в своем нобелевском докладе И декабря 1926 года, их результаты "дали непосредственное экспериментальное подтверждение основных предположений теории атома Бора" Существование "дискретных энергетических уровней" теперь уже не могло серьезно подвергаться сомнению.

Вначале оба молодых физика-экспериментатора не заметили тесной связи своих исследований и их результатов с новым боровским пониманием атомной механики "Мы читали работу Бора, – писал Франк, – до того, как отправили наши рукописи в печать, однако решили послать их, не упоминая в них этой работы, так как мы столкнулись бы с мнимой трудностью объяснения сильной ионизации ртутной дуги, если, как делал вывод Бор, энергия, используемая для ионизации атомов, значительно превышает ту, которая вызывает напряжение возбуждения" Это кажущееся разногласие позднее получило объяснение.

Франк считал, что современные физики быстро научились, вслед за Бором, правильно толковать все атомы периодической системы элементов в согласии с новой точкой зрения Этому, естественно, способствовало и то, что в работах многих известных исследователей теория Бора была положена в основание атомной механики.

В год опубликования своей работы о модели атома (1913) Нильс Бор стал доцентом Копенгагенского университета, где он читал лекции по физике для медиков Через год он отправился читать лекции в Манчестер. Но уже в 1916 году он принял профессуру в Копенгагене В 1920 году для него была создана кафедра теоретической физики В 1921 году на Блегдамсвей был открыт институт. Бор руководил им до конца своей жизни, с небольшим перерывом, обусловленным событиями второй мировой войны.

С начала 20-х годов создатель квантовой модели атома стал одним из самых известных физиков мира. На своих коллег он производил очень глубокое и незабываемое впечатление Эйнштейн, с которым Бор познакомился в 1920 году в Берлине, писал о нем физику Эренфесту: "Это необычайно чуткий ребенок, который расхаживает по этому миру как под гипнозом"

В Копенгагене у Бора вначале было немного сотрудников. Одним из первых среди них был Х.А. Крамерс, который стал читать лекции вместо Бора, когда тот после присуждения ему Нобелевской премии (1922) был освобожден от обязанностей чтения лекций с тем, чтобы он смог полностью посвятить себя научному исследованию.

Освобождение от обязанности читать лекции, конечно, было ученому по душе еще и по другим причинам. Как говорил Франк, у Бора "не было никакого природного дарования" к чтению курса лекций в соответствии с принятыми в университете требованиями Он говорил заикаясь, тихо и невнятно и, как свидетельствуют, в самые ответственные моменты закрывал к тому же ладонью рот. Трудности доставляло ему и распределение учебного материала по часам.

Но как и Лауэ, который тоже не относился к числу хороших лекторов, Бор блистал на коллоквиумах, где часто выступления участников принимали форму научного диалога. Здесь он, по словам Франка, чувствовал себя "легко и совершенно как дома" Всегда было удовольствием, говорил Франк, наблюдать его во время дискуссий по его работам или слушать его замечания относительно выступлений других физиков Быстрота и глубина мышления Бора и его способность тотчас же схватывать сущность каждый раз заново поражали тех, кто с ним сталкивался. Некоторые сверстники Бора на заре теории атома испытали это на докладах Бора в Берлине и Гёттингене, которые он читал в стиле коллоквиумов.

Значительным явлением в истории науки был гёттингенский "Фестиваль Бора", состоявшийся летом 1922 года. Физик Фридрих Гунт писал: "Бор в течение трех недель по понедельникам, вторникам и средам во время семинаров (а чаще значительно дольше) делал доклады по квантовой теории атома и периодической системе элементов. Говорил Бор невнятно, а мы как младшие не могли сидеть на передних скамьях среди именитых гостей, так что мы напряженно вслушивались, раскрыв рты и забывая об ужине и о требованиях наших голодных желудков. Мы, конечно, кое-что читали у Зоммерфельда о строении атома и спектральных линиях, в 1920 году и Дебай прочитал нам (в довольно прохладной неотапливаемой аудитории) лекцию о квантовой теории; но то, о чем говорил Бор, звучало совершенно по-иному, и мы чувствовали, что это было что-то очень существенное. Сегодня уже не передашь, каким ореолом было окружено это мероприятие; для нас оно было таким же выдающимся событием, как и Гёттингенские фестивали Генделя, проводившиеся в те годы".

Нильс Бор обладал необычайной способностью генерировать научные идеи и оказался настолько умелым руководителем коллектива исследователей, что благодаря ему Копенгаген стал "столицей атомной физики" и Меккой для исследователей атома из всех стран. Многие молодые физики по собственной инициативе или по специальному приглашению Бора приезжали работать в Копенгаген под его непосредственным руководством. Некоторые из них находились там несколько недель или месяцев, как молодой советский физик Л.Д. Ландау, ставший впоследствии лауреатом Нобелевской премил, но многие оставались на долгие годы.

Как и у Марии Кюри, в распоряжении Нильса Бора были денежные средства одного американского фонда, которые он использовал для поощрения научной "поросли". "Его учениками становились одаренные молодые теоретики, – писал Франк, – получившие подготовку по теоретической физике и особенно по применению математики при разработке теоретических проблем в других крупных центрах этой области науки. То, чему учил их Бор на собственном примере и путем дискуссий, было искусством, в котором он для всех оставался образцом: продумывание проблемы до конца, неотступное преодоление самообмана, мужество перед, казалось бы, непреодолимыми препятствиями".

В кругу его учеников педагогические способности Бора проявились блистательным образом, насколько при этом, как говорил Франк, вообще можно говорить об "учении", так как "свойствам характера нельзя научить, но можно вскрыть их значение и тем самым пробудить их к жизни у тех, у кого они, так сказать, находятся в скрытом виде". Под его руководством происходили непринужденные, свободные от какого-либо давления с его стороны теоретические споры. Вопросы, которые интересовали учеников Бора и всех участников дискуссии, обсуждались откровенно и безбоязненно.

Многие известные физики-теоретики нашего времени с гордостью и благодарностью называют себя учениками Бора. Одним из самых значительных среди них является Гейзенберг, который впервые услышал Бора в 1922 году и два года спустя приехал по его приглашению в Копенгаген.

Вернер Гейзенберг родился в 1901 году в Вюрцбурге в семье учителя гимназии, позднее работавшего в качестве профессора средне и новогреческого языка в Мюнхенском университете. Он учился у Зоммерфельда и Вилли Вина в Мюнхене, некоторое время был также учеником Борна в Гёттингене и завершил свое образование в 1923 году в Мюнхене, написав докторскую диссертацию в области теории переноса энергии. После этого он работал в качестве ассистента Борна в Гёттингене, где получил право на преподавание теоретической физики, отправившись незадолго до этого на полгода в Копенгаген как стипендиат-исследователь.

Год спустя Гейзенберг опубликовал свое первое фундаментальное исследование по квантовой теории – статью "О квантовомеханическом толковании кинематических и механических связей". В ней он попытался выработать необходимые основы атомной механики, которая строилась бы исключительно на связях между принципиально наблюдаемыми величинами без применения моделей.

Эта статья Гейзенберга заложила фундамент так называемой "матричной механики", детальная разработка математического аппарата которой принадлежит прежде всего Борну. При этом было вновь подтверждено эмпирическое требование, обнаружившее свою эвристическую плодотворность еще при создании теории относительности: научно реализованы в физических теориях могут быть только действительно наблюдаемые и измеримые факты.

По словам Борна, Гейзенберг отказался от "представлений об электронных орбитах с определенными радиусами и периодами обращения, потому что эти величины не могли быть наблюдаемы". Таким образом, он рассек "гордиев узел при помощи философского принципа и заменил догадки математическим правилом". Это достижение Гейзенберга можно сравнить с подвигом Эйнштейна, упразднившего в 1905 году понятие абсолютной одновременности.

Выяснилось, что атомную модель Бора не следует понимать буквально, как это было вначале. Она была применима только для одноэлектронной системы атома водорода и не могла быть безоговорочно перенесена на атомную систему со многими электронами. Процессы в атоме не могли быть наглядно представлены в виде механических моделей по аналогии с событиями в макромире. Нельзя было схематически применять законы небесной механики для объяснения внутриатомных связей. Даже понятия пространства и времени в существующей форме оказались неподходящими для описания микрофизических явлений. Атом физиков-теоретиков все больше и больше становился абстрактно-ненаблюдаемой суммой уравнений.

Бесстрашие мышления, необходимое для разрешения новых физических проблем, метко охарактеризовал сам Гейзенберг: "На каждом существенно новом этапе познания нам всегда следует подражать Колумбу, который отважился оставить известный ему мир в почти безумной надежде найти землю за морем".

Когда Крамере, первый сотрудник Бора, принял приглашение занять должность профессора в Утрехтском университете, Гейзенберг изъявил готовность возвратиться в Копенгаген и стать в качестве преемника Крамерса доцентом теоретической физики Его лекции хорошо воспринимались студентами также и потому, что он в совершенстве владел датским языком. Во время этого второго пребывания в Копенгагене, в 1926...1927 годах, молодой немецкий физик неоднократно вел с Бором страстные споры о толковании квантовых явлений.

"Я вспоминаю, – писал позднее Гейзенберг, – о многочисленных дискуссиях с Бором, которые длились до поздней ночи и которые мы заканчивали почти в полном отчаянии. И если я после таких дискуссий один отправлялся на короткую прогулку в соседний парк, то повторял снова и снова вопрос о том, может ли природа действительно быть такой абсурдной, какой она кажется нам в этих атомных экспериментах".

Результаты этой работы мысли были сформулированы в 1927 году как "соотношение неопределенностей" Гейзенберга и "принцип дополнительности" Бора.

Нильс Бор был физиком до мозга костей. Он обладал, о чем говорил в одном из писем и Эйнштейн, гениальной интуицией в области физики, необычайной силы внутренним видением. Его почти сомнамбулическая уверенность при выявлении ключевых вопросов не имела себе равных. Вместе с тем во владении математическим аппаратом Бор во многом уступал своим коллегам. В разговоре с Паули он сделал однажды характерное признание, что его интерес к физике это интерес не математика, а, скорее, ремесленника и философа.

Действительно, математическое одеяние квантовой механики, основы которой, по сути, опираются на работы Бора, создано не им самим, а другими: Борном, Гейзенбергом, Иорданом, Паули, Дираком, Шрёдингером. Здесь сказалась известная ограниченность его огромного дарования. "Выдающиеся математические способности или даже виртуозность в той мере, в какой ими обладают многие из его учеников, ему не даны. Он мыслит наглядно и с помощью понятий, но не собственно математически". Так отозвался Карл Фридрих фон Вайцзеккер о творце современной теории атома. Он сообщал также, что среди учеников и сотрудников Бора ходила шутка о том, что учитель знает будто бы только два математических знака: "меньше, чем..." и "приблизительно равно".

Теоретико-познавательный вклад Бора в развитие атомной физики заключается в установлении двух принципов: соответствия и дополнительности. Их вызвала к жизни потребность ученого изобразить ясно, насколько это возможно, основы всех теоретико-познавательных выводов из атомной механики.

"Вначале он мог быть доволен, – писал Франк, – когда пришел к однозначному и непротиворечивому объяснению перехода от континуума к дискретному квантованию и, более того, принципиально связал индетерминизм элементарных процессов с методами, предполагающими возможность наблюдения. Иными словами, он должен был исследовать с теоретико-познавательных позиций сущность всякого наблюдения. Много лет посвятил Бор разработке этих проблем, пока, наконец, не пришел к удовлетворительным результатам. Они были изложены в написанной вместе с Розенфельдом работе, которая, насколько я могу ее оценить, представляет собой одну из самых прекрасных и самых глубоких работ по теории познания".

Принцип соответствия, который Бор выдвинул еще в 1916 году, означал, что квантовая теория может быть определенным образом согласована с классической теорией, то есть "соответствовать" ей. Классическая механика блестяще подтвердилась не только во всех макрофизических процессах, но также и во всех микрофизических процессах, вплоть до движения атомов как целого, что показала кинетическая теория материи. Итак, новая атомная механика должна была привести в конце концов к тем же результатам, что и классическая. Она должна была асимптотически перейти в классическую механику для крайних случаев больших масс или больших размеров орбит. Если значение элементарного кванта действия h рассматривать как бесконечно малую величину или пренебречь им, то практически будут действовать законы классической физики.

Если, например, электрон в атоме водорода переходит на орбиты, все дальше отстоящие от ядра, и наконец полностью отрывается от него, то законы излучения квантовой механики с большим приближением принимают форму законов классической электродинамики. Принцип соответствия передает, таким образом, связь между двумя противоречащими друг другу теоретическими построениями: микрофизикой и макрофизикой, границы между которыми определяются константой Планка.

Принцип соответствия, в котором старое было смело соединено с новым, оказался очень полезным для приблизительных расчетов интенсивности спектральных линий. Он сыграл большую роль в дальнейшем развитии квантовой физики. "Теоретическая физика жила этой идеей последующие десять лет, говорил Макс Борн. – ...Искусство угадывания правильных формул, которые отклоняются от классических, но переходят в них, в смысле принципа соответствия было значительно усовершенствовано".

Примерно десятилетие спустя, на съезде физиков, который был устроен летом 1927 года в Комо по случаю столетия со дня смерти великого итальянского физика Алессандро Вольта, Бор изложил свой второй принцип, принцип дополнительности, сделавший возможным непротиворечивое толкование явлений квантовой механики. Основные выводы появились под названием "Квантовый постулат и новое развитие атомистики" в журнале "Натурвиссеншафтен", а в первоначальном варианте на английском языке в журнале "Нейче".

Эта статья Бора, в которой впервые излагалось так называемое копенгагенское толкование квантовой механики, принадлежит к тем классическим документам физической науки, которые непосредственно послужили теоретической подготовке атомного века. Прошло более двух десятилетий, прежде чем выдвинутая Планком идея о квантах была настолько развита, что сделала возможным действительное понимание внутриатомных закономерностей.

С понятием корпускулы было связано представление о каком-то предмете, имеющем строго определенную величину движения и в данный момент находящемся в строго определенном месте, как это наблюдается в макромире, например у брошенного мяча, положение которого и скорость движения в любой момент могут быть точно измерены и определены.

Однако выяснилось, что невозможно не только практически, но и в принципе с одинаковой точностью одновременно установить место и величину движения атомной частицы. Только одно из этих двух свойств может быть определено точно. Чем точнее и определеннее измеряют одну из двух величин, тем менее точной и определенной оказывается другая. Существование элементарного кванта действия служит препятствием для установления одновременно и с одинаковой точностью величин, которые "канонически связаны", то есть положения и величины движения микрочастицы.

Это естественное состояние "обоюдной неопределенности", как говорил Бор, которое сопутствует каждому квантовомеханическому измерению, было математически отображено Гейзенбергом как "соотношение неточностей" или "соотношение неопределенностей". Это открытие принадлежат к величайшим достижениям теоретической физики.

В своей книге "Физика атомного ядра" Гейзенберг так охарактеризовал открытый им закон природы: "Никогда нельзя одновременно точно знать оба параметра, решающим образом определяющие движение такой мельчайшей частицы: ее место и ее скорость. Никогда нельзя одновременно знать, где она находится, как быстро и в каком направлении движется. Если ставят эксперимент, который точно показывает, где она находится в данный момент, то движение нарушается в такой степени, что частицу после этого даже нельзя снова найти. И наоборот, при точном измерении скорости картина места полностью смазывается".

Гейзенберговское соотношение неопределенностей есть выражение невозможности наблюдать мир атома, не разрушая его. Любая попытка дать четкую картину микрофизических состояний должна поэтому опираться или на корпускулярное, или на волновое толкование. При корпускулярном описании измерение проводится для того, чтобы получить точное значение энергии и величины движения атомной частицы, как это бывает, например, при рассеивании электронов. При экспериментах, направленных на точное определение места и времени, напротив, используется волновое объяснение, как это бывает, например, при прохождении электронов через тонкие пластинки или при наблюдении отклоненных лучей.

Бор в своем принципе дополнительности придал гейзенберговскому соотношению неопределенностей законченную теоретико-познавательную форму. Основное содержание этого принципа он сформулировал так: "Понятие частицы и волны дополняют друг друга и в то же время противоречат друг другу; они являются дополняющими картинами происходящего".

Атомные системы, для которых существенным является квант действия Планка, не могут рассматриваться так же, как частицы макромира, для которых планковская константа h ввиду ее малой величины не имеет значения. В мире атома корпускулярная и волновая картины сами по себе не являются достаточными, как в мире больших тел. Обе "картины" законны, и противоречие между ними нельзя снять. Поэтому корпускулярная и волновая картины должны дополнять одна другую, то есть быть "комплементарными". Только при учете обоих аспектов получают общую картину микрофизики, прежде всего, электронной механики, о которой, в первую очередь, идет речь в теориях Бора и Гейзенберга.

Результаты квантовой механики, обобщенно изложенные в 1927 году в гейзенберговском соотношении неопределенностей и в принципе дополнительности Бора, принудили гносеологов критически пересмотреть существовавшее ранее классическое представление о действительности. Стало ясно, что "описание физической реальности, совершенно не зависимой от средств, при помощи которых мы ее наблюдаем, строго говоря, невозможно", как писал известный французский физик и лауреат Нобелевской премии Луи де Бройль. Природу можно описывать только как нечто подчиняющееся естественнонаучным методам исследования.

Принципиально новой чертой в теоретико-познавательном анализе квантовых явлений, согласно Бору, является введение основополагающего различия между измерительным прибором и исследуемым объектом. Взаимодействие между измерительными приборами и атомными объектами образует неотделимую составную часть явлений атомного мира. Квантовомеханическое описание атомных объектов должно быть связано с классическим описанием применяемых измерительных инструментов.

Все вышесказанное, вновь подтверждая мысль В.И. Ленина о "неисчерпаемости материи вглубь", никоим образом не ставит под сомнение объективность природы, объективную реальность внешнего мира, существующего независимо от человеческого сознания. Объекты атомного мира в неменьшей степени относятся, как подчеркивал советский физик В.А. Фок, к реальному внешнему миру, и их свойства не менее реальны, чем вещи и свойства, исследуемые в классической физике. Но наивное представление о реальности, которое позволяло рассматривать частицы в атомной физике как очень маленькие песчинки, после 1927 года не могло уже оставаться в силе.

Доказанный квантовой механикой факт, что между деятельностью субъекта и противодействием объекта нет никакой четкой границы, не мешает нам, как подчеркивал Макс Борн, "разумным образом использовать эти понятия". Он пояснял сказанное наглядным примером: "Граница между жидкостью и ее паром также нечетка, потому что атомы постоянно улетучиваются и конденсируются, и, несмотря на это, мы можем говорить о жидкости и паре".

Диалектическое усложнение понимания реальности в квантовой механике оказало воздействие на решение вопроса о причинной обусловленности и о строгой предсказуемости всех природных процессов.

Вместе с другими ведущими представителями квантовой теории Нильс Бор придерживался мнения, что исследование субатомных явлений в мельчайших подробностях невозможно, потому что любая попытка изучения этих процессов сопровождается нежелательным вмешательством измерительных инструментов в ход событий. Поэтому при прогнозировании квантовомеханических процессов можно говорить только о вероятности их наступления, но не о естественно необходимой достоверности. Все положения теории атома имеют вероятностный характер. Все законы атомной физики являются вероятностными законами.


    Ваша оценка произведения:

Популярные книги за неделю