Текст книги "Пионеры атомного века (Великие исследователи от Максвелла до Гейзенберга)"
Автор книги: Фридрих Гернек
сообщить о нарушении
Текущая страница: 23 (всего у книги 29 страниц)
В своих работах "Изменения основ естествознания", "Картина природы в современной физике" и "Физика и философия" Гейзенберг высказал свое мнение по спорным натурфилософским и теоретико-познавательным вопросам. Если ранее он склонялся к субъективно-идеалистическим воззрениям, то в последнее время он придавал большое значение тому утверждению, что копенгагенское толкование квантовой теории ни в коем случае не является позитивистским.
"В то время как позитивизм исходит из чувственных восприятий как элементов бытия, – говорил он в 1957 году, – копенгагенская интерпретация рассматривает описываемые в классических понятиях объекты и процессы, то есть фактическое, в качестве основы всякого физического объяснения. Вместе с тем признается также, что статистичность природы законов микрофизики устранена быть не может, так как всякое знание "фактического" в силу квантовомеханических законов природы является знанием неполным" (см. факсимиле).
С отказом от субъективного идеализма в мышлении Гейзенберга наметился поворот к объективному идеализму: процесс, подобный тому, который произошел в мышлении Эйнштейна. Все более частые ссылки на Платона служат новым подтверждением того, что взгляды философов-идеалистов также могут стимулировать мышление естествоиспытателей. В этом случае важную роль играет то, каким образом перерабатываются в сознании исследователя эти стимулы. Впрочем, к некоторым гносеологическим положениям Гейзенберга с полным правом можно отнести замечание, сделанное В.И. Лениным в "Философских тетрадях" относительно некоторых идей объективного идеалиста Гегеля: "Рукой подать к материализму".
Борьба физика-мыслителя против старой механистически-догматической "онтологии" и против порой бессознательных попыток поставить ее во взаимосвязь с некоторыми новыми достижениями атомной физики заслуживает поддержки всех прогрессивно настроенных естествоиспытателей и философов. Однако при этом не следует забывать слова Поля Ланжевена о том, что невозможно во всей глубине охватить и объяснить проблемы атомной физики, не руководствуясь диалектическим материализмом.
Вернер Гейзенберг входил в группу ученых, подписавших весной 1957 года Гёттингенское обращение, он поддерживал также и другие заявления, направленные на уменьшение напряженности и на сохранение мира. Он неоднократно подчеркивал высокую ответственность именно физиков-атомщиков в деле предотвращения мировой войны.
"Изобретение атомного оружия, – говорится, например, в его книге "Физика и философия", – поставило и перед наукой и перед учеными совершенно новые проблемы. Влияние науки на политику стало много больше, чем оно было перед второй мировой войной; и это обстоятельство налагает двойную ответственность на ученых, особенно на физиков-атомщиков". Долг физиков, подчеркивал Гейзенберг, указать своим правительствам на невообразимые масштабы разрушений, которые, несомненно, будут последствием войны с применением ядерного оружия.
Большой вклад в становление физики атомного века внесли Джеймс Франк и Густав Герц, выступившие как исследователи в том же году, что и Нильс Бор. Их опыты с электронной бомбардировкой и их последующая исследовательская и педагогическая деятельность имели большое значение для развития атомной физики.
После доцентуры в Берлинском университете, которая была прервана первой мировой войной, Джеймс Франк с 1922 по 1933 год был профессором экспериментальной физики в Гёттингене. Вместе с Максом Борном, выдающимся представителем теоретической физики, он стал центром той блестящей школы исследований атома, которая создала Гёттингену мировую славу в этой области. Студенты удивлялись прежде всего необычайной способности Франка к чисто наглядному методу рассмотрения, позволявшему ему понимать и объяснять труднейшие физические проблемы, при решении которых другие не могли обойтись без "костылей математики".
Враждебная науке политика гитлеровского фашизма и преследование евреев побудили знаменитого ученого из солидарности с уволенными коллегами отказаться от своего поста весной 1933 года. От "льготы", которая полагалась ему как участнику мировой войны, он также наотрез отказался. Вначале исследователь оставался в Гёттингене, где на своей квартире проводил научные коллоквиумы с учениками и друзьями. В конце 1933 года он был вынужден, однако, покинуть родину.
После короткого пребывания в Балтиморе и Копенгагене Франк долгие годы работал в Соединенных Штатах Америки, с 1938 года – в исследовательском институте в Чикаго. Его научные интересы были обращены в основном к исследованиям в области молекулярной спектроскопии и фотосинтеза. Однако самым главным его делом в США была по словам одного из его учеников, общественная деятельность, которая нашла свое отражение в 1945 году в докладе Франка.
Доклад Франка, документ человечности и свидетельство понимания научно-политической ответственности ученого, составленный в несколько необычной форме, сделал имя физика известным далеко за пределами круга ученых. К сожалению, это предостережение, которое служило образцом для всех последующих выступлений исследователей-ядерщиков против злоупотребления достижениями атомной физики, так же не достигло задуманной цели, как и памятная записка, которую Нильс Бор за год до этого передал президенту США. Сторонников империалистической политики силы не интересовали тревоги ученых-гуманистов.
Джеймс Франк, которому по случаю 150-летия Университета им. Гумбольдта было присвоено в 1960 году звание почетного доктора, четыре года спустя в последний раз посетил столицу Германской Демократической Республики. Вместе с Лизой Мейтнер и Густавом Герцем он участвовал в Галилеевском коллоквиуме, который проводился во время "Дней Берлинского университета" в апреле 1964 года в Магнусхаузе на Купферграбене. Через несколько недель после этого, 21 мая 1964 года, исследователь внезапно скончался в Гёттингене. Он закончил свой жизненный путь в том городе, где 12 лет был учителем многих, ставших позднее знаменитыми физиков-атомщиков.
Его друг и сотрудник Густав Герц, также принимавший участие в первой мировой войне, восстановив силы после тяжелого фронтового ранения весной 1917 года, участвовал в конкурсе на получение доцентуры в Берлинском университете. Он представил работу "Об энергетическом обмене при столкновении между медленными электронами и молекулами газа" и четырнадцать статей по физике Его публичная испытательная лекция была посвящена принципу Доплера. В первой половине 20-х годов Герц работал "физиком от промышленности" в Голландии. В 1925 году он был приглашен в университет Галле. С 1928 года исследователь (награжденный совместно с Джеймсом Франком Нобелевской премией) преподавал в течение семи лет в Высшей технической школе в Берлине. Его учениками были известные физики, в их числе Эрвин Мюллер, создатель электронного микроскопа.
Будучи вынужденным в 1935 году оставить кафедру, он стал руководителем исследовательской лаборатории на одном из крупных промышленных предприятий Берлина. После 1945 года Густав Герц вместе с другими известными немецкими учеными и изобретателями, Петером Адольфом Тиссеном, Максом Штейнбеком и Манфредом фон Арденне, работал в течение 10 лет в Советском Союзе. За свои выдающиеся научные достижения он получил в 1951 году Государственную премию СССР.
После возвращения в Германскую Демократическую Республику Густав Герц руководил в Лейпциге Физическим институтом при Университете им. Карла Маркса. Вышедший под его редакцией многотомный "Учебник ядерной физики" принадлежит к числу лучших работ такого рода по ядерной физике. Его работы по разделению изотопов, исследование квантообразного возбуждения атомов электронами и его значительный вклад в область физики разреженного газа и физики твердого тела Немецкая Академия наук в 1950 году отметила присуждением ему своей высшей награды – медали Гельмгольца.
Нильс Бор, его ученики и соратники во всем мире строили свои исследования на таких физических представлениях, которые были заложены еще Максом Планком на пороге XX века. Бор неоднократно высказывал свое глубокое восхищение творцом идеи о квантах. В своей статье в планковском юбилейном сборнике в 1958 году он писал: "Развитие квантовой физики, которое в результате плодотворного сотрудничества целого поколения физиков столь углубило и расширило наши знания об атомных процессах и о строении материи, представляет собой один из интереснейших периодов в истории физики. Каждый, кто был свидетелем этого развития, все снова и снова вынужден был удивляться тому вдохновению и той проницательности, которые привели Макса Планка к его основополагающему открытию. Я всегда буду хранить благодарные воспоминания об этом благородном и добром человеке".
Гениальная гипотеза Планка спустя четверть века благодаря трудам Нильса Бора и других выдающихся исследователей была развита в стройную теорию.
От этой "классической" квантовой теории через волновую и матричную механику долгий и нелегкий путь ведет к релятивистской "квантовой теории полей". На этом пути не только перед физиками, но и перед гносеологами вновь и вновь вставали трудные задачи. Это развитие, далеко еще не завершенное, может служить подтверждением предсказания В.И. Ленина о том, что современная физика поднимется до диалектического материализма, даже если она будет приближаться к этой цели только "ощупью, шатаясь, иногда даже задом".
Заслуживает внимания еще один момент. В своей статье в планковском юбилейном сборнике 1958 года и в сборнике, изданном в 1961 году в связи с 60-летием Вернера Гейзенберга, Нильс Бор подчеркивал значение, которое приобретает международное сотрудничество физиков для прогресса науки. "Перебирая мои воспоминания прежних лет, – писал он, – я от всего сердца хочу подчеркнуть, что шаг за шагом благодаря тесному сотрудничеству целого поколения физиков многих стран удалось наконец навести порядок в новой обширной сфере опыта". Бор добавляет: "В этот период развития физической науки, который можно сравнить с чудесным приключением, Вернеру Гейзенбергу принадлежит выдающаяся роль".
Нильс Бор и его школа положили начало новому стилю исследовательской работы в теоретической физике. Время великих мыслителей-одиночек, которое в лице Альберта Эйнштейна имело своего последнего выдающегося представителя, сегодня уже принадлежит прошлому и никогда не возвратится.
Эрвин Шрёдингер и Макс Борн
Волновая механика и матричная механика
Представления Эйнштейна о квантах света, в 1913 году послужившие отправным пунктом теории атома Бора, через десять лет снова оказали плодотворное воздействие на развитие атомной физики. Они привели к идее о "волнах материи" и тем самым заложили основу новой стадии развития квантовой теории.
В своей докторской диссертации молодой французский физик Луи де Бройль писал о необходимости использовать волновые и корпускулярные представления не только в соответствии с учением Эйнштейна в теории света, но также и в теории материи. "При этом следует полагать, – объяснял он позднее в своей прекрасной и сегодня заслуживающей внимания книге "Свет и материя", – что каждая корпускула сопровождается определенной волной и каждая волна связана с движением одной или многих корпускул".
Вследствие этого понятие "корпускула" и понятие "волна" должны применяться одновременно: к излучению так же, как и к веществу, к материи. "Электрон, – считал де Бройль, – не может более рассматриваться как простая крупинка электричества; с ним следует связать волну". Отношение между энергией движущихся частиц и частотой колебания волнового движения передается константой Планка. Она вместе с величиной движения определяет и длину волны. Как одному кванту света соответствует одна световая волна, так и частице материи должна, по мнению Луи де Бройля, соответствовать волна материи.
Эта смелая мысль о всеобщем "дуализме" частицы и волны позволила построить теорию, с помощью которой можно было охватить свойства материи и света в их единстве. Кванты света становились при этом особым моментом всеобщего строения микромира.
Первое квантовое условие Бора, которое ранее было непонятно, получило теперь простое объяснение. Загадочное количественное постоянство в модели атома неизбежно вытекало из того обстоятельства, что объем электронных орбит был, очевидно, целочисленным кратным длине волны электрона; в противном случае идущие друг за другом волны усиливались бы посредством наложения или взаимно гасились бы.
Альберт Эйнштейн, который по рекомендации своего друга Поля Ланжевена обратил внимание на статью де Бройля "Исследования по квантовой теории", был восхищен идеями молодого французского физика. Он сообщал Максу Борну: "Ты должен ее прочитать; даже если она выглядит безумной, она все же совершенно самобытна". В своих работах Эйнштейн выступил в защиту взглядов Луи де Бройля.
О том, насколько революционизирующе подействовало на старшее поколение физиков представление о волнах материи, свидетельствует речь, с которой в 1938 году выступил Макс Планк на чествовании Луи де Бройля. Планк говорил: "Еще в 1924 году г-н Луи де Бройль изложил свои новые идеи об аналогии между движущейся материальной частицей определенной энергии и волной определенной частоты. Тогда эти идеи были настолько новы, что никто не хотел верить в их правильность, и я сам познакомился с ними только три года спустя, прослушав доклад, прочитанный профессором Крамерсом в Лейдене перед аудиторией физиков, среди которых был и наш выдающийся ученый Лоренц... Смелость этой идеи была так велика, что я сам, сказать по справедливости, только покачал головой, и я очень хорошо помню, как г-н Лоренц доверительно сказал мне тогда: "Эти молодые люди считают, что отбрасывать в сторону старые понятия в физике чрезвычайно легко!" Речь шла при этом о волнах Бройля, о соотношении неопределенностей Гейзенберга – все это для нас, стариков, было чем-то очень трудным для понимания. И вот развитие неизбежно оставило позади эти сомнения. Осенью того же 1927 года я лично познакомился с г-ном де Бройлем на 5-м Сольвеевском конгрессе в Брюсселе и был восхищен его скромностью и образованностью".
Принц Луи де Бройль, родившийся в 1892 году, потомок древнего французского аристократического рода, сейчас считается крупнейшим из ныне живущих ученых Франции. Как и Эйнштейн, он олицетворяет собой тип естествоиспытателя-теоретика, в одиночестве размышляющего над стоящими перед ним проблемами, и в то же время он один из самых блестящих академических преподавателей среди физиков новейшего времени. Его лекции известны своей содержательностью и вместе с тем умелым распределением материала и артистически безупречным построением.
Будучи студентом, Луи де Бройль не интересовался вначале естествознанием. Он изучал историю, особенно историю права и политическую историю средневековья. Однако методы гуманитарных наук в том виде, в каком он с ними познакомился, его не удовлетворяли. Под влиянием своего старшего брата Мориса де Бройля, известного физика-экспериментатора, заслужившего признание исследованием излучения, он обратился к математике и теоретической физике. Однако у него сохранилась ярко выраженная склонность к историческим изысканиям и исследованиям.
Занятия историей своей науки никогда не были для Луи де Бройля, как для многих других крупных физиков, второстепенной деятельностью. Исторический смысл оказывался для него не случайным дополнением, а основным требованием всей его исследовательской работы. Во многих своих исследованиях де Бройль исходил непосредственно из исторических соображений. Идея о волнах материи также возникла у него в конечном счете в результате размышлений над историей оптики.
Луи де Бройль умел мастерски преподнести широчайшему кругу читателей проблемно-исторические взаимосвязи простым и понятным языком, не прибегая к претенциозным математическим формулам. История развития учения о свете была одной из его излюбленных тем. Иногда он выступал с биографическими работами о физиках прошлого. Свидетельством его уважения к гениальному французскому естествоиспытателю Андре Мари Амперу, одному из основателей электродинамики, является блестящая научная биография, написанная с законным чувством национальной гордости.
Мировая война на многие годы прервала его учебу. Долгое время студент-физик служил радистом на Эйфелевой башне в Париже. В 1920 году он смог снова приступить к исследованиям в лаборатории своего брата. Результаты этих исследований прославили его имя.
В своем нобелевском докладе в 1929 году ученый сказал, что его интерес к теоретической физике пробудил тот факт, "что структура материи и структура излучений становились все таинственней, по мере того как физику все более и более завоевывало странное понятие "квант", введенное Планком в 1900 году при исследовании черного излучения". Движущей причиной научно-исследовательской работы служит, по его мнению, также и та "святая любознательность", которую Эйнштейн рассматривал как первоисточник всех естественнонаучных и технических достижений. Луи де Бройль считал справедливым требование, предъявляемое к естествоиспытателю Шрёдингером: он должен "быть способным удивляться и быть помешанным на догадках".
Как и все глубокие, стремящиеся к открытию нового физики-мыслители, Луи де Бройль с недоверием относился к поспешным выводам. В предисловии к книге "Свет и материя" говорится: "Крушение, которое в течение каких-то десятилетий потерпели прочно обоснованные принципы и, казалось, не менее основательные выводы, показывает нам, насколько осторожным надо быть при попытке построить общие философские заключения, опираясь на прогресс науки. Тот, кто замечает, что сумма нашего незнания намного превышает сумму нашего знания, едва ли чувствует себя склонным делать слишком поспешные выводы".
Эти слова французского физика, напоминающие одно из высказываний Ф. Энгельса в "Анти-Дюринге", нельзя толковать пессимистически. Подтверждением служит заключительное замечание: "Несмотря на это, однако, можно утверждать, что прогресс квантовой физики во многих отношениях открыл перед нами совершенно новые перспективы и что направление философских учений как в близком, так и в отдаленном будущем, несомненно, будет находиться под ее влиянием".
В одном из своих первых сочинений де Бройль требовал создания новой механики атома. Новая механика должна была иметь для старой механики такое же значение, как волновая оптика для лучевой оптики. Эту новую механику, получившую название волновой, или ундулаторной (От лат unda – волна – Прим. ред.), механики, вскоре после этого создал Эрвин Шрёдингер, который был в то время профессором теоретической физики в Цюрихском университете.
Использовав теорию соотношения волновой и лучевой оптики, разработанную в первой половине XIX века ирландским математиком Гамильтоном, Шрёдингер распространил волновое уравнение де Бройля, которое касалось движения без применения сил, на случай действия сил. Он исходил из того, что "все вообще все – является одновременно частицей и волновым полем"
Результаты своих исследований Шрёдингер весной 1926 года опубликовал под названием "Квантование как самостоятельная проблема" в виде нескольких статей в "Анналах физики". Эти работы, в которых исследователь попытался построить мост между макромеханикой и микромеханикой, содержат получившее известность дифференциальное уравнение волнового поля атома водорода, при помощи которого, по словам Планка, "волновая механика, казавшаяся ранее чем-то мистическим, сразу была поставлена на прочное основание".
"Уравнение Шрёдингера", при составлении которого Шрёдингер пользовался советами преподававшего в то время в Цюрихе крупного математика Германа Вейля, относится к числу наиболее распространенных формул в мировой литературе по физике атомного века Его классическая красота вызывала и вызывает такое же восхищение и уважение физиков-теоретиков, как в свое время максвелловская система формул электромагнитного поля. Говоря об этой системе, Людвиг Больцман приводил восторженные слова Фауста: "Начертан этот знак не бога ли рукой?" Макс Борн, оценивая труд Шрёдингера, восклицал: "Что существует более выдающегося в теоретической физике, чем его первые шесть работ по волновой механике?"
Уже в начале апреля 1926 года, после получения сигнальных оттисков первой основополагающей статьи по волновой механике, Планк писал Шрёдингеру "Читаю Вашу статью с тем же напряжением, с каким любопытный ребенок выслушивает развязку загадки, над которой он долго мучился, и радуюсь красотам, раскрывающимся перед моими глазами". Несколько недель спустя он сообщал: "Вы можете себе представить, с каким интересом и воодушевлением я погрузился в изучение этого эпохального труда, хотя сейчас я очень медленно продвигаюсь вперед в этом своеобразном ходе мыслей" В то же время Эйнштейн писал Шрёдингеру: "Замысел Вашей работы свидетельствует о подлинной гениальности".
Эрвин Шрёдингер родился 12 августа 1887 года в Вене, "очень жизнерадостном и непринужденном городе", как сказал он в короткой речи при присуждении ему Нобелевской премии Как Рентген и Эйнштейн, он был сыном ремесленника. Отец Шрёдингера был владельцем предприятия по производству клеенки. О нем пишут, как о разносторонне образованном человеке, обладавшем ярко выраженными склонностями к естествознанию и искусству, а также немалыми познаниями в разных областях. Какое-то время он изучал химию.
Большие способности сына обнаружились сразу, как только с ним начал заниматься домашний учитель В школе Эрвин Шрёдингер также всегда был первым учеником Как и Генрих Герц, он любил все предметы без исключения: математику и физику так же, как и языки, занимавшие по количеству часов первое место в учебном заведении с гуманитарным уклоном, которое он посещал. Его очень интересовала поэзия, особенно драмы классика австрийской литературы Франца Грильпарцера. Ему претило лишь заучивание наизусть исторических фактов Склонность к естествознанию отчетливо выявилась у Шрёдингера еще в школьные годы, так что после "матуры", как в Австрии называют выпускные экзамены, выбор профессии не составил для него затруднений.
Физик-экспериментатор Франц Экснер, товарищ студенческих лет Рентгена в Цюрихе, и физик-теоретик Фридрих Газенёрль были учителями Шрёдингера в Венском университете Газенёрль как раз в это время стал преемником Людвига Больцмана. В своей первой лекции он восторженно отозвался о трудах этого гениального физика и первопроходца современной атомистики Газенёрль был блестящим преподавателем Так как Шрёдингер, по собственному признанию, с трудом усваивает книжный материал, стимулирующее воздействие лекций было для него особенно важно Газенёрлю он был обязан, говорил он в 1929 году, становлением своей личности как ученого. При получении Нобелевской премии он сказал: "Если бы Газенёрль не погиб, то он, конечно, стоял бы теперь на моем месте".
Выдающееся дарование молодого Шрёдингера сразу же поразило его университетских товарищей. Физик-теоретик Ганс Тирринг, который позднее в течение многих лет был профессором Венского университета, так писал о своей первой встрече со Шрёдингером: "Во время зимнего семестра 1907...1908 годов я, еще новичок, посещал библиотеку математического семинара. Однажды когда в комнату вошел светловолосый студент, мой сосед толкнул меня и оказал внезапно: "Это Шрёдингер". Я никогда не слышал ранее этого имени, но уважение, с каким оно было произнесено, и взгляд коллеги произвели на меня такое впечатление, что я с самой первой встречи проникся убеждением, которое с течением времени становилось все тверже: он что-то особенное. Знакомство вскоре превратилось в дружбу, в которой Шрёдингер так же, как везде и всегда, был дающей стороной".
Школьные и университетские друзья вспоминают о будущем лауреате Нобелевской премии как о страстном путешественнике и альпинисте, который больше всего любил горы. Подобно многим жителям австрийской столицы, он был усердным посетителем венского Бург-театра, пользовавшегося в то время мировой славой. Известные актеры, такие, как Адольф фон Зонненталь и Йозеф Кайнц, своим вдохновенным искусством способствовали необычайному успеху спектаклей этого театра. В рукописном наследии физика был найден специальный театральный дневник его студенческих лет. Там добросовестно описана каждая постановка, которую он видел в Бург-театре, часто записи дополняются критическими замечаниями об исполнении ролей.
В 1910 году Шрёдингер получил степень доктора философии. Через год после этого он стал ассистентом Франца Экснера в Институте экспериментальной физики. В его обязанности входило проведение большого практикума по физике. Это было для него отличной школой, о которой он всегда с благодарностью вспоминал. В своей вступительной речи в Берлинской Академии наук он подчеркнул, что Экснер оказал ему чрезвычайно большую поддержку: благодаря ему он прежде всего понял, "что значит измерять".
Первая мировая война на многие годы прервала научную работу молодого физика. Находясь на австрийском южном фронте (Шрёдингер был офицером крепостной артиллерии), он в период затишья находил время следить за специальной литературой. Так, уже в 1916 году, вскоре после первой публикации Эйнштейна по основам общей теории относительности, он познакомился с этой работой. Как и для многих его коллег, система идей нового учения о гравитации первоначально казалась ему трудной для понимания. Позднее он сам активно участвовал в дальнейшем развитии положений теории относительности и в создании единой теории поля.
После перемирия Эрвин Шрёдингер возвратился к научной деятельности, сначала в Венском физическом институте. После краткой доцентуры в Иене, где он в то время был ассистентом физика-экспериментатора Макса Вина, он преподавал, правда всего лишь один семестр, в Высшей технической школе в Штутгарте и в Бреславльском университете. Записи лекций его учителя Газенёрля служили ему основой и руководством в его преподавательской деятельности.
С 1921 года Шрёдингер работал в Цюрихском университете: он принял профессуру, которую до него занимали Эйнштейн и Лауэ. Здесь была создана волновая механика. Шесть лет спустя (в 1927 году) приобретший к тому времени известность физик получил предложение стать в Берлине преемником Макса Планка, который за год до этого был освобожден от должности.
Этому приглашению предшествовали два доклада, для чтения которых Шрёдингер во время летнего семестра 1926 года по приглашению Планка приезжал в Берлин. К этому периоду относятся несколько его писем к старейшине теоретической физики. "Буду очень благодарен Вам, г-н тайный советник, писал он в мае 1926 года, – если Вы кратко посоветуете мне, как построить свой доклад. Я имею в виду, должен ли я больше думать о присутствии в аудитории Вас, Эйнштейна и Лауэ, мысль о чем и без того подавляет меня, или ориентироваться на слушателей, далеко отстоящих от теоретической работы; неизбежным следствием будет тогда скука для вышеназванных (и многих других)".
Так как исследователь хорошо чувствовал себя в Цюрихе, где у него возникли оживленные научные контакты с математиком Вейлем и физиком Дебаем, он не мог, не раздумывая, решиться принять предложение, хотя слава Берлина как столицы физики в те годы затмевала славу любого другого крупного европейского города. Решающими в конце концов стали слова Планка, сказавшего, что он был бы рад найти в Шрёдингере своего преемника.
К этим событиям относятся стихи, которые физик записал в альбом Планка после переезда в Берлин. Запись заканчивается строками:
Из пестрых писем, долгих разговоров был суеты парад
Витиеватый. И слово, сказанное между нами,
Достойными почтения устами Как выход было. Просто: "Очень рад".
Цитируемые здесь и далее стихотворения переведены Л. Корсиковой.
"Годы в Берлинском университете относятся к самым счастливым в моей жизни", – писал он в июне 1947 года из Дублина декану математическо-естественнонаучного факультета Университета им. Гумбольдта в ответ на приглашение занять прежнее место. Шрёдингер прибавил, что он все еще чувствует себя духовно близким Берлинскому университету и постоянно имеет в виду "возможность возвращения туда даже просто в качестве пенсионера".
Это чувство близости основывалось прежде всего на том, что в одно время со Шрёдингером в Берлинском университете работали такие выдающиеся физики, как Макс Планк, Альберт Эйнштейн, Макс фон Лауэ, Вальтер Нернст и Лиза Мейтнер. Связи с известными учеными, представлявшими другие области науки, также во многом способствовали тому, что Шрёдингеру, уроженцу Вены, в научном и личном плане так по душе пришлась столица Пруссии.
"Две крупные высшие школы, имперское учебное заведение, Институт им. кайзера Вильгельма, Астрофизическая обсерватория и множество исследовательских групп в промышленности плотно населили тогда Берлин физиками первой величины. Глубокое впечатление оставляли еженедельные общие коллоквиумы, эти интимные конгрессы, где они собирались все вместе; большим удовольствием было обсуждение всех животрепещущих проблем на этом форуме". Так писал ученый позднее в автобиографических записках.
Наиболее тесно сблизился Шрёдингер в берлинские годы с Планком и Эйнштейном. Он и его жена регулярно принимали участие в домашних концертах, проходивших на квартире у Планка, хотя сам он не играл ни на одном инструменте. Эйнштейна он часто посещал на его даче в Капуте. Плавая под парусом в водах Хавеля, оба физика обсуждали вопросы своей науки. Дом Шрёдингера в Груневальде с его "вечерами венских сосисок", стал вскоре центром научного общения.
Будучи противником фашистского господства, в 1933 году Эрвин Шрёдингер оставил свое место. Он не принадлежал к тем, кто преследовался по расовым мотивам, не выступал, подобно Эйнштейну, с политическими заявлениями, которые сделали бы невозможным его дальнейшее пребывание в Германии в тогдашних условиях. Но он ненавидел фашизм, и для него было невыносимо работать при этом варварском режиме. Так закончилось это "прекрасное время преподавания и учебы в Берлине".
После своего добровольного отъезда за границу физик сначала три года прожил в Оксфорде под предлогом научного отпуска. Оттуда он поехал в Стокгольм, чтобы получить Нобелевскую премию. В особой атмосфере богатого традициями английского университетского города австриец чувствовал себя конечно, не так уютно, поэтому он поддался уговорам своего друга и коллеги Тирринга и возвратился на родину. Он отклонил поступившее в это время приглашение в Эдинбург.