355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Фридрих Гернек » Пионеры атомного века (Великие исследователи от Максвелла до Гейзенберга) » Текст книги (страница 14)
Пионеры атомного века (Великие исследователи от Максвелла до Гейзенберга)
  • Текст добавлен: 6 сентября 2016, 23:21

Текст книги "Пионеры атомного века (Великие исследователи от Максвелла до Гейзенберга)"


Автор книги: Фридрих Гернек



сообщить о нарушении

Текущая страница: 14 (всего у книги 29 страниц)

Недавно найденные письма свидетельствуют, что весной 1901 года Эйнштейн из Милана, где он жил у родителей, обратился к Вильгельму Оствальду в Лейпциг. Он послал знаменитому физико-химику оттиск своей первой публикации и просил найти возможность использовать его в качестве ассистента, как "математика-физика, знакомого с абсолютными измерениями". Он писал, что не имеет средств и только подобное место может обеспечить ему дальнейшее образование. Герман Эйнштейн поддержал просьбу сына в трогательном письме.

Не известно, был ли получен ответ на эти письма. Во всяком случае, не имеющий места молодой человек был счастлив, когда получил возможность преподавать в течение двух месяцев в профессиональной школе в Винтертуре, замещая учителя, который должен был пройти военные сборы. На этом возможность заработать на хлеб была исчерпана. Вычислительными работами для обсерватории он зарабатывал лишь на карманные расходы. Попытка устроиться воспитателем в интернат в Шаффгаузене закончилась неудачей из-за расхождения в мнениях с руководителями заведения.

По рекомендации отца своего школьного товарища Эйнштейн в 1902 году получил в Патентном бюро в Берне место "технического эксперта". Он должен был проверять патентные заявки " выписывать свидетельства. Работа в качестве "патентованного батрака", как он шутливо говорил, гарантировала ему средства к жизни "а многие годы. Одновременно она побуждала его к размышлениям над физико-техническими проблемами, к которым у него всегда была живая склонность. Еще и в берлинские годы Эйнштейн занимался мелкими изобретениями и охотно мастерил приборы.

Работа оставляла ему достаточно времени для научных размышлений. Эйнштейн являл собою тип мыслящего исследователя. Он мало читал, но много думал. В "счастливые бернские годы", как он их сам называл, он, однако, планомерно знакомился с произведениями преимущественно гносеологического содержания. По предложению студента-философа Мориса Соловина был основан философский кружок, членами которого, кроме Соловина, стали Эйнштейн и математик Конрад Габихт. Друзья назвали его гордо я иронично "Академия Олимпия".

Письма, которые Эйнштейн на протяжении всей своей жизни писал Соловину и которые были опубликованы в факсимильной репродукции, принадлежат к прекраснейшим эйнштейновским документам. Во введении Соловин перечислил книги, которые были совместно прочитаны тремя "академиками". Это были сочинения Пирсона, Маха, Юма, Спинозы, Джона Стюарта Милля, Рихарда Авенариуса, Ампера, Гельмгольца, Римана, Дедекинда, Пуанкаре и других. По прочтении половины страницы, иногда даже одной фразы нередко начинались многодневные дискуссии. Понятия субстанции и причины у Юма "академики" обсуждали несколько недель. На повестке дня заседаний были также выдающиеся произведения художественной литературы, среди них "Дон Кихот" Сервантеса. Для разнообразия Эйнштейн играл на скрипке.

Глубокое изучение трудов, которые большей частью не могут быть причислены к материалистическому направлению, пробудило или усилило определенные идеалистические черты во взглядах Эйнштейна, сохранившиеся и в более поздние годы. Тем не менее эти занятия с целью самосовершенствования послужили для ученого своеобразной тренировкой, способствовали успеху исследований, результаты которых были представлены научной общественности в 1905 году. В этом же году "Академия Олимпия" после трехлетнего существования прекратила свою деятельность, так как Габихт и Соловин покинули Берн.

Вскоре после этого Эйнштейн выступил с тремя большими группами теоретических открытий, которые привели к новому взгляду на природу и обогатили сокровищницу достижений физики.

Первыми по времени им были начаты исследования в области молекулярной физики, прежде всего кинетической теории теплоты. В 1905 году Эйнштейн впервые дал полное и законченное толкование колебательного явления, которое, собственно, было давно известно, но не получило еще математического оформления.

Речь шла о том беспорядочном зигзагообразном движении мельчайших взвешенных частиц, которое в 1827 году заметил английский ботаник Роберт Броун, наблюдая цветочную пыльцу под микроскопам. В его честь оно было названо броуновским движением. Физика рассматривала его как следствие термически обусловленных беспорядочных толчков, испытываемых видимыми под микроскопом частицами со стороны невидимых молекул.

Не зная предшествующих исследовательских работ, Эйнштейн путем теоретических размышлений пришел к точному математическому изображению взаимозависимости, существующей между скоростью движения частиц, их величиной и вязкостью применяемой жидкой среды. Предложенный им новый метод определения размеров молекул и его формула давали возможность непосредственно считать молекулы.

Отправным пунктом для выводов Эйнштейна послужили результаты исследований польского физика Смолуховского, поддержавшего статистическим толкованием броуновского движения предложенную Больцманом кинетическую теорию атома.

"Эйнштейновский закон броуновского движения", как его обычно сегодня называют, уже через три года, в 1908 году, был убедительно подтвержден блестящими опытами французского физика-экспериментатора Жана Перрена, который позднее получил за эту работу Нобелевскую премию. Главным образом благодаря этим открытиям Вильгельм Оствальд, один из упорнейших противников теории атома, был наконец "обращен в атомизм", как он писал в своем дневнике осенью 1908 года.

Великий атомист Людвиг Больцман не был свидетелем этого и последующих триумфов атомной теории. В 1906 году он в припадке отчаяния покончил жизнь самоубийством. Он был убежден, что отстаиваемое им учение об атомах завоюет признание только в отдаленном будущем.

Вкладу Эйнштейна в молекулярную физику при оценке достижений этого необычайно многостороннего исследователя часто уделяется слишком мало внимания. Однако его значительность позволила Максу Борну сказать, что Эйнштейн, самостоятельно разрабатывая вопрос, заново открыл все основные направления статистической механики.

Исследования Эйнштейна по кинетической теории теплоты важны также в философском отношении. Со времен Демокрита, Эпикура и Лукреция атомизм так тесно связан с материалистическим пониманием природы, что каждое подтверждение атомистических представлений, как правило, служило укреплению позиций философского материализма. Результаты исследований Эйнштейна в молекулярной физике также способствовали подтверждению материалистического взгляда на природу.

Важное значение имеет предисловие Эйнштейна к предпринятому Германом Дильсом изданию знаменитого материалистического трактата в стихах "О природе вещей" Лукреция. Эйнштейн высоко оценил гносеологическое и этическое значения материалистических воззрений римского поэта-философа. Он отметил стремление Лукреция освободить людей от рабского страха, который порождался религией и суевериями и использовался церковниками для своих целей.

Второй большой комплекс исследований, с которыми Эйнштейн вступал в научную жизнь, непосредственно связан с квантовой гипотезой Планка " основывается на ней. К этому времени прошло уже почти пять лет с момента открытия элементарного кванта действия, однако физики почти не уделяли ему внимания и не оценили этого открытия или не сделали выводов из него.

Планк относил свою квантовую формулу только к рассматриваемым им законам теплового излучения "черного тела". Эйнштейн предположил, что здесь речь идет о естественной закономерности всеобщего характера. В элементарном кванте действия h Эйнштейн видел свойство света. Не оглядываясь на господствующие в оптике взгляды, он применил гипотезу Планка к свету, придя к выводу, что следует признать корпускулярную структуру света.

Квантовая теория света, или фотонная теория Эйнштейна, утверждала, что свет есть постоянно распространяющееся в мировом пространстве волновое явление, что вместе с тем световая энергия, чтобы быть физически действенной, концентрируется лишь в определенных местах, по образному выражению Эйнштейна, как бы в форме "горошин".

Поэтому свет имеет прерывную, "горошинообразную" структуру. Он может рассматриваться как поток самостоятельно существующих и самостоятельно действующих неделимых энергетических зерен, световых квантов, или фотонов. Их энергия определяется элементарным квантом действия Планка и соответствующим числом колебаний. Свет различной окраски состоит из световых квантов различной энергии, то есть, если говорить образно, световых "горошин" различной величины и массы.

Эта теория Эйнштейна, развитая им с наглядностью, напоминающей о Фарадее, была с точки зрения философии антитезой взглядам на оптику Гюйгенса и Френеля. В результате стал возможным блестящий диалектический синтез волновой теории света и корпускулярной теории света Ньютона на новой, более высокой ступени естественнонаучного познания.

Эйнштейновское представление о световых квантах помогло понять и наглядно представить – по аналогии с разрывом снаряда – законы фотоэффекта, который впервые наблюдал Герц и который подробнее исследовали Галлвакс и Ленард. Поскольку коротковолновый, ультрафиолетовый свет состоит из богатых энергией световых квантов – образно говоря, из больших и тяжелых световых горошин, – то электроны, вырванные из поверхности металла под воздействием этих световых квантов, должны двигаться с гораздо большей скоростью, чем при длинноволновом свете, который состоит из световых квантов, менее богатых энергией, – из мелких и легких световых горошин. Правильность такого толкования фотоэлектрического эффекта (за эту работу Эйнштейн в 1922 году получил Нобелевскую премию по физике) через десять лет получила подтверждение в экспериментах американского физика Милликена. Открытое в 1923 году другим физиком из США, Комптоном, и названное в его честь явление, которое отмечается при воздействии очень жесткими рентгеновскими лучами на атомы со свободными электронами, вновь и окончательно подтвердило квантовую теорию света. С этих пор она относится к наиболее подтвержденным экспериментально физическим теориям.

Среди современных физиков вначале лишь очень немногие признали фотонную теорию: среди них физик-экспериментатор Штарк, который позднее – в других областях – выступал как ярый противник Эйнштейна.

Как далеко обогнал Эйнштейн со своим квантовым учением физическую мысль того времени, показывает одна из работ Планка 1910 года. В ней подчеркивается, что к корпускулярной теории света следует относиться с "величайшей осмотрительностью". Планк придерживался мнения, что дифференциальные уравнения Максвелла – Герца для пустого пространства не согласуются с существованием в вакууме самостоятельных энергетических квантов.

Понять позицию Планка позволяет ходатайство, в котором он при поддержке Нернста, Рубенса и Варбурга рекомендовал избрать Эйнштейна действительным членом Берлинской Академии наук. Планк просит отнестись снисходительно к тому, что Эйнштейн "в своих спекуляциях может иногда заходить слишком далеко", приводя в качестве примера "гипотезу световых квантов".

Представление о световых квантах образовало один из наиболее фундаментальных вкладов в квантовую теорию. Уже поэтому Эйнштейн должен рассматриваться как один из величайших ее создателей. Теория Эйнштейна, развивающая взгляды Планка, позволила Нильсу Бору создать его всемирно известную модель атома. Гениальные идеи Луи де Бройля о "волнах материи" также исходили непосредственно из эйнштейновского представления о световых квантах и были бы без них невозможны.

Как и все великие естественнонаучные открытия, новое учение о свете имело теоретико-познавательное значение. Старое метафизическое положение о непрерывности природных процессов, которое было основательно поколеблено Планком, Эйнштейн отбросил в гораздо более обширной области физических явлений. В противоречивости света, предстающего и как волна, и как частица, диалектика природы проявилась особенно наглядным и убедительным образом.

В течение почти двух десятилетий после создания квантовой гипотезы света и квантовой теории специфической теплоты твердых тел Эйнштейн творчески развивал квантовую теорию. Исходя из планковского закона излучения, Эйнштейн в 1917 году пришел к мысли об "индуцированной эмиссии", ставшей теоретическим отправным пунктом современной мазерной и лазерной техники.

Третья крупная теоретическая конструкция, над построением которой ломал голову в свободное время 26-летний "батрак" из Патентного бюро и которая принесла ему всемирную славу, – новое учение о времени, пространстве, движении, массе и энергии. Теория относительности стала наиболее известным, но поначалу вызывавшим наибольшие споры достижением Эйнштейна.

Работа "К электродинамике движущихся тел", напечатанная в 1905 году в "Анналах физики", является основным исходным документом релятивистской картины природы.

Было бы односторонне и неверно рассматривать Эйнштейна исключительно как творца теории относительности, как это иногда происходит. Он был первооткрывателем и в других областях. Вместе с тем было бы несправедливо оставлять без внимания то, что Лоренц, Пуанкаре и некоторые другие математики-физики уже провели существенные подготовительные разработки для теории относительности. Но Эйнштейн сделал последний шаг для решения назревшей проблемы. Сделать этот шаг были неспособны ни Лоренц, бывший сторонником механистического материализма, ни Пуанкаре, остававшийся в плену субъективно-идеалистических воззрений.

Созданная Эйнштейном теория относительности вторгалась в господствующие взгляды на природу глубже, чем все остальные его открытия. Здесь речь шла о вопросах времени и пространства. Ни одна физическая теория, писал Лауэ в своей "Истории физики", не волновала и не возбуждала умы со времен античности так, как это вторжение в привычные представления о пространстве и времени.

Нечто подобное должны были испытать Аристарх Самосский и Коперник, когда они разрушали сложившийся порядок в мироздании, и великие геологи XVIII...XX столетий, когда они подвергали сомнению освященный Библией счет времени. И это повторилось теперь с теорией относительности, выдвинувшей совершенно новое понимание времени и пространства.

Теория относительности Эйнштейна возникла непосредственно из неудач классической теории. Ее первые предпосылки мы находим в отдаленном прошлом. В Мюнхене 13-летний Эйнштейн благодаря "Естественнонаучным книгам для народа" обратил внимание на скорость света. В Аарау он размышлял над тем, что, собственно, наблюдалось бы, если бы можно было следовать за световой волной со скоростью света. Не должно ли было бы, как выразит он это позднее, предстать перед нами "не зависящее от времени волновое поле": словно остановившаяся, оцепеневшая в движении световая волна? "Такое все-таки кажется невозможным!"

Переворот, который теория относительности осуществила в естественнонаучном и философском мышлении, может быть оценен во всем своем объеме только тогда, когда мы представим себе воззрения на время, пространство и движение, которые до выступления Эйнштейна считались вечными истинами.

Ньютон учил, что есть "абсолютное, истинное и математическое время", текущее однообразно, "без связи с каким-либо внешним предметом". Достаточно было представить себе космические стандартные часы, по которым можно было бы в любом месте вселенной узнавать о состоянии времени. Точно так же Ньютон говорил об "абсолютном пространстве". Он рассматривал его как своего рода емкость, которая "без связи с каким-либо внешним предметом постоянно остается одинаковой и неподвижной". Для Ньютона существовало также "абсолютное движение": перемещение некоторого тела с одного абсолютного места на другое абсолютное место.

Такой глубокий мыслитель, как Лейбниц, сомневался в правомерности этих взглядов Ньютона. Но до Маха ни одному физику не приходила мысль подвергать сомнению ньютоновские догмы абсолютного времени, абсолютного пространства и абсолютного движения.

В 1871 году Мах указал на то, что наши представления о времени мы получаем "через зависимость вещей друг от друга", в наших представлениях о времени выражается "глубочайшая и всеобщая зависимость вещей". Понятие абсолютного времени есть пустое "метафизическое" понятие, "понятие-чудовище". Сходным образом отрицает он ньютоновские идеи абсолютного пространства и абсолютного движения как безнадежные идеи, не имеющие никакого физического смысла.

Гносеолог Людвиг Ланге, ученик лейпцигского психолога Вильгельма Вундта, присоединился к маховской критике и творчески развил ее в своей работе "Историческое развитие понятия движения и его возможный конечный результат". Этот труд Макс фон Лауэ считал одним из верстовых столбов на пути физической мысли от Коперника до Эйнштейна.

Критика Махом классических понятий времени, пространства и движения была важна для Эйнштейна в гносеологическом аспекте. "Несмотря на то что сегодня Мах по праву расценивается как идеалистический философ, – заметил по этому поводу Леопольд Инфельд, – не может быть сомнения, что его специальный физический анализ механики сыграл определенную роль в развитии физики, ведущем к теории относительности". Эйнштейн также неоднократно высказывал подобные мысли: так, в некрологе в 1916 году он оценил Маха как предтечу теории относительности.

Конечно, критика Ньютона Махом была только одной из предпосылок создания теории относительности. В области теоретической физики особое значение имела электродинамика Максвелла и Герца: в той форме, которую придал ей голландец Хендрик Антон Лоренц путем введения закона взаимодействия электромагнитного поля и электронов. На этом фундаменте Эйнштейн возводил здание своей теории.

В области экспериментальной физики заслуживает внимания опыт Майкельсона. Для создания теории относительности он сыграл такую же роль, как в свое время попытки построить, вечный двигатель для установления принципа сохранения энергии.

Опыт, предпринятый Майкельсоном в 1881 году в Берлине и Потсдаме и давший вполне убедительные результаты после повторения в 1887 году вместе с Морли в США, должен был служить для измерения абсолютной скорости Земли во вселенной.

Исходя из предпосылки, что существует покоящийся световой эфир, физики высказали предположение, что при движении земного шара через этот эфир должен быть заметен "эфирный ветер", подобно тому, как при быстрой езде в автомобиле заметен ветер даже лри спокойном воздухе. Рассеяние световых волн из-за эфирного ветра должно было, как полагали, показать в измеримых величинах перемену скорости света, если от наземного источника света будут посланы световые сигналы в разных направлениях. Таким образом можно было измерить оптическим путем скорость Земли относительно покоящегося эфира и тем самым одновременно относительно абсолютного пространства.

Несмотря на то что зеркальный интерферометр, гениально придуманный и с непревзойденной тщательностью и точностью построенный Майкельсоном, должен был показать даже крохотную долю действия, которое ожидалось теоретически, всякий эффект отсутствовал. Повторение эксперимента Морли и Миллером в 1904 году также дало негативный результат: не проявилось никакого признака или воздействия эфирного ветра. Скорость света в пустом пространстве оказалась при всех условиях опыта неизменной по времени. Она была независимо от направления одинакова и равна примерно 300 тыс. километров в секунду.

Исход эксперимента Майкельсона не согласовывался с господствующим представлением о световом эфире. Он очень разочаровал физиков. Но, как каждое разочарование, если только оно основательно и окончательно, он означал также шаг вперед.

Вначале пытались разобраться с опытом Майкельсона и его загадочным результатом в рамках механистической картины природы. Новые факты исследований постоянной скорости света пытались привести в соответствие со старыми теоретическими положениями. Эти попытки делал прежде всего Лоренц, в мышлении которого глубоко укоренился механистический взгляд на природу.

Лоренц примкнул к гипотезе, выдвинутой до него ирландским физиком Фитцджеральдом, который предполагал, что предметы укорачиваются в направлении своего движения соответственно их скорости в абсолютно неподвижном эфире. Благодаря этому изменению формы – как результату движения в эфире и в соответствии с массой, которая определяется через скорость, временное различие выравнивается и тем самым устраняется действие эфирного ветра. Если дело обстоит именно так, опыт Майкельсона не мог дать никакого иного результата. Лоренц также учил вычислению по формуле притяжения тел, названному в его честь "преобразованием Лоренца".

Толкование, которое Лоренц давал своей формуле, не могло, однако, удовлетворить физиков, в особенности потому, что тем самым система, покоящаяся в эфире, являлась как бы привилегированной относительно всех других. Законы механики должны были бы произвольно быть во многом изменены, чтобы такое положение вещей – для которого не было достаточных оснований считалось верным. Контракционная гипотеза осталась чисто механистической попыткой толкования. Она была достойна удивления, но казалась искусственной и малоубедительной.

Специальная теория относительности, как называлась теория Эйнштейна в ее первой стадии, сразу и основательно решила загадку опыта Майкельсона. Эйнштейн перевернул ход мыслей Лоренца: он возвел принцип постоянства скорости света в пустом пространстве, являвшийся у Лоренца следствием, в ранг естественного закона и поставил его как фундаментальное положение в начале всех рассуждений.

Принцип относительности, установленный Галилеем и Ньютоном для механического движения, Эйнштейн перенес из механики в электродинамику движущихся тел. При этом следовало при переходе к другой системе связей соответственно изменить и значение времени, которое у Галилея и Ньютона оставалось неизменным.

Величины времени и величины пространства, выступавшие в классической физике как самостоятельные, были теперь связаны друг с другом посредством скорости света, "сплавлены", как сказал Планк. Или, выражаясь иначе: измерения пространства и времени были объединены в теории относительности под углом зрения независимой от направления постоянной скорости света в вакууме.

Материальный световой эфир был для этого представления не только ненужным, но даже несовместимым с ним. Максвелловское толкование электромагнитного поля как особого состояния в эфире стало беспредметным. Электромагнитное поле, которое уже Фарадей рассматривал как нечто действительное, ощутимое, предметное, в эйнштейновской картине мира, лишенной эфира, окончательно получило характер объективной физической реальности, которая независима от всего вещественного.

Поле выступало наравне с телами. На это постоянно настойчиво указывал Лауэ, в последний раз в 1959 году в своем докладе "Теория познания и теория относительности".

Эти представления Эйнштейна уводили физику далеко вперед. В остальном он мог включить электромагнитную теорию света Максвелла, расширенную Лоренцом, без изменения как готовый раздел в свою теорию относительности.

Лоренц разработал также и математический аппарат: правила вычисления, делающие возможными преобразования естественных законов в тождественных системах, движущихся с равномерной скоростью. Свои уравнения, "преобразования Лоренца", выведенные из максвелловских уравнений электромагнитного поля, сам Лоренц толковал еще механистически и тем самым ошибочно: из различных замеров времени и длин правильным каждый раз будет только один; все остальные искажены эфирным ветром.

Истинный физический смысл преобразований Лоренца впервые раскрыл Эйнштейн. Он объявил равноценными все эти измерения. Каждое верно для той системы, к которой оно относится. Мнимое время преобразований Лоренца есть действительное время. Таким образом, уравнения Лоренца предстали в новом свете. Они были освобождены от шатких лесов механицизма и поставлены на твердую основу диалектики.

Исходя из факта, что абсолютную одновременность двух пространственно отдаленных друг от друга событий физически невозможно представить, так как не существует бесконечно большой скорости сигналов, Эйнштейн сделал вывод, что понятие абсолютной одновременности и выводимое из него понятие абсолютного времени не имеют физического смысла. Требование Маха исключать из физической науки "бессмысленные", то есть не проверяемые опытом, понятия сыграло при этом важную роль.

Ни один физик до Эйнштейна не придал значения гносеологическим следствиям, которые вытекают для проблемы времени из конечной величины скорости света как наибольшей скорости сигналов. То, что скорость света величина не бесконечная, как думал еще Декарт, было известно со времен измерений датского астронома Рёмера, современника Ньютона и Гюйгенса. Лоренц, который ввел понятие "относительное время" в электродинамику, остановился на полпути, не сумев преодолеть механистические предрассудки. Только Эйнштейн существенно способствовал решению вопроса.

Теория относительности впервые за всю историю физического мышления послужила серьезным подтверждением мысли Маркса – высказанной им в 1859 году в другой связи – о времени как количественном бытии движения. Естественнонаучное и теоретико-познавательное значение эйнштейновского понимания времени состояло именно в том, что оно устранило традиционное представление об абсолютном, независимом от движущихся предметов, одинаково действительном для всех систем универсальном времени.

По теории относительности нет предметов без времени и нет времени без предметов. Во вселенной существуют лишь собственные времена различных материальных систем. Эти времена точно совпадают друг с другом только тогда, когда соответствующие системы находятся относительно друг друга в покое.

Релятивистское представление о времени привело к выводу, который для классического физического мышления был совершенно невозможен в движущихся системах время протекает медленнее, чем в тех, которые в отношении к ним находятся в покое.

Быстро движущиеся часы – безразлично, идет ли речь о механических, атомных или световых часах, – отстают, таким образом, в своем ходе от тех часов, которые по сравнению с ними покоятся. Эйнштейн в 1905 году привел в этой связи пример: часы на экваторе идут чуть медленнее, чем точно такие же часы на одном из полюсов Земли. Это явление называют релятивистским растяжением (дилатацией) времени.

Если, например, космонавт в космическом корабле сможет совершить длительное путешествие во вселенной со скоростью, близкой по величине к скорости света, то он по возвращении на Землю будет менее постаревшим, чем его оставшиеся ровесники. Его часы – и часы его жизни – шли бы медленнее, чем на Земле.

Этот "парадокс времени", называемый также парадоксом близнецов, потому что он чаще всего разъясняется на примере, в котором говорится о братьях-близнецах, поставил перед мышлением особенно высокие требования. Он годами стоял в центре споров вокруг теории относительности, был предметом многих недоразумений и поводом ко многим шуткам, подвергался ожесточенным нападкам противников.

Однако в конце 30-х годов удалось физически доказать растяжение времени путем экспериментов с возбужденными атомами водорода и позднее на элементарных частицах космического излучения. При мезонном распаде космического излучения растяжение времени особенно впечатляюще из-за огромной скорости этих частиц. Результаты измерений точно соответствуют величинам, которые Эйнштейн предсказал теоретически.

Недавно парадокс времени был вновь блистательно подтвержден путем применения определенных эффектов физики ядра, которые открыл в 1958 году Рудольф Мессбауэр, мюнхенский физик-атомщик, получивший за это Нобелевскую премию, и которые в его честь названы "эффектом Мессбауэра".

Теория относительности положила начало совершенно новому пониманию соотношения массы и скорости движения.

Механическая масса, понимаемая как инерционное сопротивление тел любому ускорению, считалась в классической физике неизменяемой во времени, постоянной. Она рассматривалась как некоторое количество, которое не может быть уменьшено или увеличено ни химическими, ни физическими воздействиями. Еще за десять лет до Эйнштейна Оствальд на собрании естествоиспытателей в Любеке указывал на этот фундаментальный тезис естествознания, не встретив ни малейших возражений Незадолго до этого Герц также разъяснил в своей "Механике" постоянство основных свойств инертной массы.

Из эйнштейновской теории относительности, однако, следует, что масса тела растет с увеличением скорости, что необходимо делать различие между массой покоящегося тела и массой движущегося. В сфере макрофизики, физики больших тел и малых скоростей, возрастание массы в результате движения лежит далеко за границей измеримого. Поэтому оно остается незаметным. Напротив, в микромире, например, при быстром движении электронов возрастание массы достигает существенной величины, если скорость частицы приближается к скорости света в свободном пространстве.

Это явление уже в 1901 году наблюдал немецкий физик-экспериментатор Кауфман при опытах с отклонением быстрых электронов. Французские исследователи пришли к тем же результатам. Учение Эйнштейна теоретически объяснило эта эмпирические результаты. В области движения электронов было, таким образом, получено первое и на многие годы единственное экспериментальное доказательство выводов из специальной теории относительности.

Одно из величайших достижений специальной теории относительности признание того, что c, скорость света в свободном пространстве, образует верхнюю границу для всех мыслимых скоростей тел и для распространения всех физических воздействий. Никакое сложение величин скоростей не может ни достигнуть, ни превысить по величине c, это значит: никакое тело, обладающее массой покоя, не может быть приведено в движение со скоростью, равной скорости света в вакууме или даже превышающей ее Для этого требовалась бы, как это следует из релятивистской динамики, бесконечно большая сила, что физически бессмысленно.

При этом в физической картине мира c, по выражению Эйнштейна, играет роль "недостижимой граничной скорости". Физически возможным является только асимптотическое приближение к величине скорости света в свободном пространстве Тем самым был дан ответ на вопрос, который так живо интересовал Эйнштейна в Аарау. Никто никогда не может наблюдать независимое от времени волновое поле, потому что, исходя из естественных законов, никакое тело, а также никакой самый быстрый космический корабль отдаленного будущего не в состоянии устремляться за световым лучом со скоростью света.


    Ваша оценка произведения:

Популярные книги за неделю