355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Эдуард Кругляков » В защиту науки № 4 » Текст книги (страница 15)
В защиту науки № 4
  • Текст добавлен: 20 сентября 2016, 14:37

Текст книги "В защиту науки № 4"


Автор книги: Эдуард Кругляков



сообщить о нарушении

Текущая страница: 15 (всего у книги 17 страниц)

1.2. Темная материя. В 1932 г. немецкий астроном Фриц Цвикки заметил, что кроме светящегося вещества галактик во Вселенной должны иметься еще и невидимые, «скрытые» массы, которые проявляют себя только своим тяготением. Он изучал скопление галактик в созвездии Волосы Вероники – крупное образование, содержащее тысячи звездных систем, подобных Туманности Андромеды или нашей Галактике. Галактики движутся в этом скоплении со скоростями, достигающими тысячи километров в секунду. Чтобы удержать их в объеме скопления, требуется тяготение, которое не способны создать одни только видимые, светящиеся массы самих галактик. Для этого необходимо более сильное тяготение, и согласно подсчетам Цвикки тут нужны дополнительные массы, которые примерно раз в 10 больше суммарной видимой массы галактик скопления.

Позднее, в 1970-е гг., усилиями астрономов СССР и США было обнаружено, что скрытые массы должны присутствовать не только в скоплениях галактик, но и в изолированных крупных галактиках. Я. Эйнасто, В. Рубин, Дж. Острайкер, Дж. Пиблс и их коллеги выяснили, что скрытые массы образуют невидимые гало крупных галактик. Эти гало – почти сферические образования, радиусы которых раз в 5-10 превышают размеры самих звездных систем. Такая крупная галактика, как, скажем, Туманность Андромеды или наша Галактика, состоит из звездной системы, погруженной в распределение невидимой массы, которое простирается на расстояния до сотни килопарсек (кпк) от центра галактики. Эти темные гало – как и дополнительные массы у Цвикки – проявляют себя только своим тяготением. Невидимое вещество, наполняющее гало галактик и скоплений, принято сейчас называть темной материей. Открытие темной материи – второе (после открытия космологического расширения) важнейшее событие в истории космологии.

1.3. Реликтовое излучение. В 1965 г. американские радиоастрономы А. Пензиас и Р. Вилсон обнаружили, что вся Вселенная пронизана излучением, приходящим к нам изотропно, т. е. равномерно из всех направлений. Это третье из крупнейших открытий в космологии (о нем подробно рассказано в книге [2]). Максимум в спектре этого излучения приходится на миллиметровые волны, причем сам спектр, т. е. распределение излучения по длинам волн или частотам совпадает по форме со спектром абсолютно черного тела. Положение максимума в спектре излучения отвечает температуре около трех градусов абсолютной шкалы. В современных наблюдениях эта температура измеряется исключительно точно: T = 2,725 ± 0,003 K. Это излучение называют микроволновым фоном Вселенной, или ещё реликтовым излучением. Если говорить о нем на языке квантов, то можно сказать, что в мире имеется равновесный газ фотонов, равномерно заполняющих всё пространство. В каждом кубическом сантиметре Вселенной содержится примерно 500 реликтовых фотонов.

Это открытие было отмечено двумя Нобелевскими премиями. Первая присуждена в 1978 г. Пензиасу и Вилсону, а вторая – в 2006 г. Дж. Смуту и Дж. Мэтеру, которые дали точное доказательство (в 1992 г.) того, что спектр излучения действительно является «чернотельным». Это было сделано с помощью американского спутника COBE (COsmic Background Explorer). Кроме того COBE измерил слабую – на уровне тысячных долей процента – анизотропию фонового излучения. Последняя представляет собой «отпечаток», оставленный на реликтовом фоне первоначально слабыми неоднородностями вещества ранней Вселенной; позднее эти неоднородности (сгущения вещества) дали начало наблюдаемым крупномасштабным космическим структурам – галактикам и скоплениям галактик (см. об этом в книге [3]).

Заметим, что космическое фоновое излучение регистрировалось ещё в 1957 г. в Пулковской обсерватории с помощью рупорной антенны, построенной Т.А. Шмаоновым, С.Э. Хайкиным и Н.Л. Кайдановским. Но, увы, никто тогда не придал этому значения. Слабую анизотропию излучения первыми заметили И.А. Струков и его сотрудники (Институт космических исследований РАН) с помощью российского космического аппарата «Реликт». От ГАИШ МГУ в этом эксперименте принимал участие доктор физико-математических наук, профессор М.В. Сажин.

1.4. Темная энергия. В 1998–1999 гг. две международные группы наблюдателей, одной из которых руководили Б. Смидт и А. Райсс, а другой – С. Перлматтер, установили, что наблюдаемое космологическое расширение происходит с ускорением: скорости удаления галактик возрастают со временем (об этом подробнее рассказывается, например, в книгах [4,5] и недавнем обзоре [6]). Открытие сделано с помощью изучения далеких вспышек сверхновых звезд определенного типа (Ia), которые замечательны тем, что они могут служить «стандартными свечами», т. е. источниками с известной собственной светимостью; на это их свойство обратил внимание ещё много лет назад астроном ГАИШ профессор Ю.П. Псковский. Из-за их исключительной яркости сверхновые можно наблюдать на очень больших, истинно космологических расстояниях, составляющих тысячи мегапарсек от нас. Как мы уже говорили выше, именно на этих расстояниях и проявляется эффект ускорения.

«Обычное» вещество не способно ускорять галактики, а лишь тормозит их разлет: взаимное тяготение галактик стремится сблизить одну с другой. Поэтому открытый астрономами факт ускоренного расширения указывает на то, что наряду с обычным веществом, создающим тяготение, во Вселенной присутствует и неизвестная ранее ни по астрономическим наблюдениям, ни по физическим экспериментам особая космическая энергия, которая создает не тяготение, а антитяготение – всеобщее отталкивание тел природы. При этом в космологическом масштабе антитяготение сильнее тяготения. Новая энергия получила название «темной энергии». Темная энергия действительно невидима – она не излучает, не рассеивает и не поглощает света (и всех вообще электромагнитных волн); она проявляет себя только своим антитяготением.

По совокупности различных наблюдений к настоящему времени установлена доля каждого космического компонента в общем энергетическом балансе современной Вселенной. Эти компоненты сейчас называют видами космической энергии. На долю темной энергии приходится примерно 75 % всей энергии мира; на долю темной материи – 20 %, на долю обычного вещества (его принято называть барионами) – около 5 %; на долю излучения – меньше десятой доли процента. Таков рецепт «энергетической смеси», заполняющей современную Вселенную.

Замечательно, что три из четырех фундаментальных открытий в космологии, о которых мы рассказали сейчас, были первоначально предсказаны теоретически. Феномен космологического расширения предвидел в 1922–1924 гг. петербургский математик А.А. Фридман, ставший в наши дни общепризнанным классиком науки о Вселенной (о его трудах и жизни см. в книге [7]). Существование фонового электромагнитного излучения с температурой в несколько градусов Кельвина предсказал в 1948–1953 гг. Г.А. Гамов, некогда ученик профессора Фридмана по Петербургскому (Ленинградскому) университету. Согласно построенной Гамовым теории Большого Взрыва (см. [2]), это излучение представляет собой остаток, реликт некогда очень горячего начального состояния Вселенной, имевшего место в первые минуты её расширения. Что касается космического антитяготения, то четкое представление о нем содержалось в работе Эйнштейна (1917 г.), положившей начало современной космологической теории. И только темная материя не была предсказана теоретически – этот тип вещества, или энергии, не предусмотрен стандартной моделью фундаментальной физики.

2. Реальность Большого Взрыва: космическая эволюция. В космологической литературе (весьма обширной и разнообразной на сегодняшний день) словам «Большой Взрыв» не всегда придают один и тот же смысл. Иногда под этим понимают гипотетическое событие, в результате которого возникла Вселенная и началась её дальнейшая история. Не вполне ясно, впрочем, обязательно ли в этом случае говорить именно о возникновении мира «из ничего» или скорее, может быть, о каком-то его новом возрождении из чего-то уже некогда существовавшего. Как бы то ни было, о физике, которая стоит за этим событием, в настоящее время ничего достоверно не известно. По этому поводу вспоминают, случается, о мифе божественного сотворения мира, о древних космогонических легендах. Но как говорил знаменитый космолог Жорж Леметр (а он был также профессиональным теологом, аббатом и президентом Папской академии наук в Ватикане), космологическая теория, допускающая особое, сингулярное начальное состояние мира, «остается полностью в стороне от любых метафизических или религиозных вопросов. Она оставляет материалисту свободу отрицать любое трансцендентное Бытие. Для человека верующего это отводит любую попытку более близкого знакомства с Богом… что созвучно с изречением Исайи, гласящем о „Скрытом Боге“, скрытом даже в начале творения». Но такую просвещенную точку зрения разделяют, приходится сказать, далеко не все последователи тех или иных религиозных верований. Известны как многочисленные – наивные и безнадежные – попытки отрицать Большой Взрыв, так и тщетные усилия увидеть в Большом Взрыве «научный аргумент» в пользу божественного творения мира.

Чаще всего в физике и астрономии Большим Взрывом называют, однако, не начальное событие космической истории, а весь разворачивающийся в пространстве-времени процесс всеобщего расширения Вселенной. Этот процесс сопровождается длительной и богатой событиями космологической эволюцией, непрерывной цепью изменений и превращений во Вселенной. Заметим, что ключевое слово здесь – «эволюция», столь неприятное клерикальным критикам космологии, неразумно отвергающим в этой науке (как и в биологии) всё, что, по их мнению, противоречит религиозному мировоззрению. Между тем выяснение и надежное доказательство основных черт и этапов эволюционного развития Вселенной – одно из важнейших достижений современного естествознания. Приведем сейчас ряд конкретных наблюдательных фактов из эволюционной истории Вселенной.

2.1. Разбегание галактик. Важнейшим из всех этих фактов является, конечно, сам феномен космологического расширения. Мы уже успели сказать, что космологическое расширение было открыто по наблюдениям движений галактик почти сто лет назад. Это открытие выдержало проверку временем, причем за истекшие с тех пор годы были сделаны необходимые поправки и уточнения к описанию количественных закономерностей этого явления. Не обошлось, однако, и без попыток опровергнуть сам факт космологического расширения. Утверждалось, например, что эффект Доплера (к которому сводится описание красного смещения в области малых скоростей), экспериментально проверен лишь в ограниченных пространственных масштабах и, возможно, не справедлив для больших космологических расстояний. Одно время и сам Хаббл, открыватель космологического расширения, склонялся к той точке зрения, что дело не в эффекте Доплера, а в «старении света» по его дороге от галактик до нас. По словам одного из его современников, это выглядело так, как если бы сэр Исаак Ньютон явился и сказал: «Кстати, джентльмены, о том яблоке… Видите ли, оно в действительности не падает».

Идея старения света целиком противоречит общим законам физики – это было строго доказано ещё в 1930-е гг. Как мы уже говорили, свет распространяется вдоль нулевых геодезических линий в пространстве-времени, а эффект Доплера (в приближении сравнительно малых скоростей) и красное смещение – прямые следствия этого фундаментального общего обстоятельства. Справедливость стандартной теории распространения света проверена и подтверждена всей совокупностью многочисленных экспериментов и астрономических наблюдений – в том числе и на космологических расстояниях. Как видно, например, из знаменитой «Теории поля» Ландау и Лифшица, картина распространения света в космологии проста и естественна; никаким сомнениям тут нет и не может быть места.

2.2. Наблюдая прошлое Вселенной. Общая картина распространения света позволяет выяснить, при каких условиях в расширяющемся мире можно измерять не только скорости, но и ускорения галактик: как мы уже сказали, тут нужны очень большие расстояния. Таким путем было найдено, что до расстояний примерно в 7 млрд световых лет эти ускорения положительны: скорость удаления галактик возрастает со временем. Но на ещё более далеких расстояниях ускорение, как оказалось, меняет знак – там оно отрицательно и, значит, на этих сверхбольших расстояниях космологическое расширение происходит с замедлением.

Примем теперь во внимание, что свет распространяется в пространстве не мгновенно, не бесконечно быстро, а с некоторой конечной скоростью. Это означает, что мы видим предметы такими, какими они были тогда, когда они испустили принимаемый нами сейчас свет. Солнце мы видим с задержкой в 8 минут; галактики же, находящиеся на расстоянии 7 млрд. световых лет, мы видим такими, какими они были 7 млрд. лет назад. Телескоп – это настоящая машина времени, позволяющая воочию видеть прошлое мира. Можно сказать, что, наблюдая далекие галактики, мы видим и исследуем четырехмерное пространство-время.

Современный возраст мира составляет 13,7 млрд. лет: таковы самые свежие космологические данные на этот счет, вытекающие из комбинации различных независимых наблюдений. Эта величина – самая большая длительность, эмпирически оцениваемая в природе. Сказанное только что о космологическом ускорении означает, что первую половину своей истории Вселенная расширялась с замедлением, а вторую – с ускорением. Таким путем стала известна важнейшая веха в динамической истории Вселенной – момент смены знака космологического ускорения.

В первую половину своей истории расширяющаяся Вселенная практически не чувствовала присутствия в ней темной энергии – тогда плотность вещества (темной материи и барионов)была значительно выше плотности темной энергии. Дело в том, что плотность темной энергии не зависит от времени, это величина постоянная. А плотность вещества убывает в ходе расширения, так что в прошлом она была выше, чем сейчас; по этой причине до определенного момента тяготение вещества было сильнее антитяготения темной энергии. Эти две силы как раз и сравнялись по величине примерно 7 млрд. лет тому назад: сначала преобладало вещество и его тяготение замедляло разлет галактик, а потом наступила эпоха преобладания темной энергии, и её антитяготение стало сильнее тяготения вещества. Эта эпоха антитяготения и ускоренного космологического расширения продолжается поныне и будет длится неограниченно долго в будущем.

Предельные расстояния, которые достижимы с помощью лучших современных астрономических инструментов, составляют примерно 10 млрд. световых лет – на таких расстояниях видят самые яркие галактики и квазары. Так что космическая эволюция на протяжении последних 10 млрд. лет жизни Вселенной доступна теперь прямому наблюдению и детальному изучению. Это добрые две трети всей истории Большого Взрыва, и они разворачиваются, можно сказать, прямо у нас перед глазами. Астрономы планируют создание сложных и дорогостоящих космических и наземных инструментов (в частности, гигантского оптического наземного телескопа с зеркалом диаметром 42 м), которые позволят наблюдать Вселенную в том состоянии, когда её возраст был меньше миллиарда лет, т. е. прямым наблюдениям будет доступно больше 90 % всей истории мира.

2.3. Горячее начало. Галактики существовали во Вселенной не всегда; они на 1–2 млрд. лет моложе её. В первые 1–2 млрд. лет космическое вещество было равномерно перемешано и однородно распределено в пространстве; никаких галактик в то время не было, они ещё не успели сформироваться. Плотность вещества была тогда гораздо выше, чем средняя плотность вещества в нынешней Вселенной и даже плотность внутри современных галактик. Можно ли увидеть Вселенную в том раннем её состоянии, когда в ней не было галактик? Да, это возможно: для этого нужно изучать реликтовое излучение.

Предположим (вслед за Гамовым), что вещество ранней Вселенной было не только плотным, но и горячим. Тогда в космическом веществе должно было существовать термодинамически равновесное электромагнитное излучение, которое сохраняется потом и до современной эпохи. Если же ранняя Вселенная была холодной и вещество имело в те времена нулевую температуру, то такого излучения быть не должно. Так возникает ясный тест типа «да-нет» для решения вопроса о температуре ранней Вселенной. Ответ «да – излучение существует», полученный в наблюдениях (см. выше), полностью решает вопрос: ранняя Вселенная была горячей.

При высокой температуре вещества в ранней Вселенной космическое вещество было ионизовано и среда представляла собой плазму. Излучение эффективно взаимодействовало с плазмой и было с ней в термодинамическом равновесии. Но среда охлаждалась из-за космологического расширения, и как только температура упала ниже значения примерно 3000 К, произошла рекомбинация плазмы: электроны соединились с ионами и плазма превратилась в газ нейтральных атомов. Это произошло при возрасте мира 330 тыс. лет. Тогда фотоны космического излучения перестали взаимодействовать с веществом и распространялись с тех пор свободно. Они сохранили и донесли до нас картину «стенки последнего рассеяния», как об этом говорят радиоастрономы.

Какова же эта картина? Результат наблюдений состоит в том, что реликтовые фотоны приходят к нам изотропно, равномерно из всех направлений в пространстве. Поэтому даваемая ими картина проста и однообразна: это сплошной фон, на котором почти ничего не нарисовано. Казалось бы, картина бедновата информацией. Однако из самого этого факта немедленно вытекает вывод большой важности: вещество ранней Вселенной действительно было распределено однородно (или почти строго однородно – с точностью до тысячных долей процента) в эпоху последнего рассеяния фотонов. Согласно общей теории относительности, пространство, однородно заполненное веществом, и само должно быть однородным. Таким путем мы узнаем о пространственной геометрии ранней Вселенной. Изотропия реликтового фона усиливает это заключение: пространство должно быть не только однородным, но и изотропным – все направления в нем равноправны. Такое пространство обладает максимальной симметрией: оно выглядит одним и тем же при любых сдвигах и поворотах системы отсчета.

Таким образом, с помощью реликтового излучения строго фиксируется физическое состояние мира и его геометрические симметрии в раннюю эпоху, когда в нем ещё не успели образоваться галактики. И это далеко не всё из того, что способно сообщить нам реликтовое излучение.

2.4. Пространство Большого Взрыва. Наблюдения реликтового фона позволили в самые последние годы приблизиться к решению одного из фундаментальных вопросов космологии – вопроса о геометрии трехмерного изотропного пространства, в котором происходит разбегание галактик. Со времен Эйнштейна и Фридмана известно, что изотропное пространство может быть в принципе как эвклидовым (плоским), так и искривленным, подобным поверхности сферы или гиперболоида (пространство Лобачевского). Какой из этих трех типов геометрии реализуется в природе?

Детальное изучение тонкой структуры реликтового излучения, начатое космическими аппаратами «Реликт» и COBE, а затем успешно продолженное в последние годы американским аппаратом WMAP (Wilkinson Microwave Anisotropy Probe), позволило установить, что на равномерном реликтовом фоне имеется в действительности определенный «пятнистый» рисунок: это слабые – на уровне тысячных долей процента – отклонения от идеальной однородности фона. Как мы уже упомянули выше, эти отклонения представляют собой «отпечаток» слабых неоднородностей – сжатий и разрежений космической среды, которые позднее дали начало галактикам и их системам. В сжатиях температура излучения слегка выше средней – это дает яркие (относительно среднего фона) пятна, а в разрежениях – слегка ниже, и здесь возникают относительно темные пятна. При этом степень отклонения от фона различна от пятна к пятну и среди ярких, и среди темных пятен. В этой сложной картине запечатлены (закодированы, можно сказать) важнейшие физические характеристики как самих протогалактических неоднородностей, так и всей Вселенной. Задача исследователей состоит в том, чтобы извлечь и осмыслить богатую космологическую информацию, которую несет нам реликтовое излучение. Для этой цели используются данные о всей совокупности пятен различной яркости и углового масштаба.

Особенно интересны самые яркие пятна на картине реликтового фона. Двум таким соседним пятнам соответствуют два протогалактических сгущения, которые в эпоху рекомбинации космической плазмы располагались на вполне определенном характерном расстоянии один от другого. Теория образования галактик, основанная на классической работе Е.М. Лифшица (опубликованной ещё в 1946 г.), говорит о том, что это характерное расстояние задается возрастом мира в эпоху рекомбинации; этот возраст хорошо известен – 330 тыс. лет (см. выше). Линейному расстоянию между двумя сгущениями соответствует определенный угол между направлениями в пространстве на два соответствующих ярких пятна. При этом соотношение между угловым и линейным расстояниями зависит от того, какова геометрия пространства: в сферическом пространстве интересующий нас угол составляет полтора градуса, в гиперболическом – половину градуса, в плоском – один градус.

Оказалось, что характерное угловое расстояние между соседними яркими пятнами равно одному градусу (с точностью до 2 %). Это означает, что пространство, в котором происходит космологическое расширение, является плоским. Или, во всяком случае, практически плоским, очень близким к плоскому. Выходит, что природа предпочла самый простой вариант пространственной геометрии мира. Так стала известна геометрия пространства, о чем космологи мечтали почти сто лет.

2.5. Первичный термоядерный реактор. От геометрии мира вернемся снова к его истории. Стандартная ядерная физика и термодинамика позволяют изучить физические условия в космической среде в те ранние эпохи, когда в ней не было не то что галактик или звезд, но даже сложные атомные ядра не могли существовать. Таково состояние мира в первые секунды (!) космологической эволюции. Ядерную физику привнес в космологию Гамов в 1940-1950-е гг., успевший до этого стать классиком ядерной физики (в 1929 г. он создал теорию альфа-распада атомных ядер).

В Гамовской теории горячей Вселенной температура космической среды могла достигать столь высоких значений (многие миллиарды градусов), что тепловая энергия частиц была больше энергии связи нуклонов в атомных ядрах. При таких условиях космическая плазма представляла собой смесь протонов, нейтронов и электронов. Но по мере охлаждения плазмы из-за космологического расширения температура падала, и при значении около нескольких миллиардов градусов в космической среде начались термоядерные реакции (как в водородной бомбе), в ходе которых происходило образование ядер гелия-4, содержащих каждое по два протона и два нейтрона. Точный расчет, проделанный после Гамова Я.Б. Зельдовичем, Р. Вагонером и другими физиками, показал, что за первые три минуты в таком космическом термоядерном реакторе образуется примерно 25 % гелия (по массе). Эта доля гелия должна сохраниться и до нынешней эпохи. На временах, превышающих три минуты, ядерный синтез прекращается: из-за быстрого космологического расширения температура вещества падает до таких значений, при которых термоядерные реакции синтеза гелия уже не идут.

И снова прямой тест: сколько реликтового гелия в современной космической среде? Данные наблюдений говорят: примерно 25 % по массе. Налицо полное согласие теории первичного термоядерного синтеза и реальной распространенности гелия во Вселенной. Эта теория хорошо объясняет также и космическую распространенность реликтовых ядер гелия-3, дейтерия и лития-7.

Этот важнейший результат расширяет наши знания об истории Вселенной вплоть до тех очень давних времен, когда все расстояния в мире были в миллиард раз меньше нынешних, а возраст мира составлял всего несколько минут. Начиная с эпохи первичных термоядерных реакций, космологическая эволюция надежно прослеживается и строго документируется наблюдательными данными.

2.6. Два новых факта. Среди других свидетельств космической эволюции стоит сказать о совсем свежих фактах, которые живо обсуждаются в последнее время. В ходе космологического расширения падает плотность всех невакуумных энергий. В частности, уменьшается число реликтовых фотонов в единице объема. Это, очевидно, означает, что в прошлом число фотонов на единицу объема было больше, чем сейчас. Оказывается, этот вывод можно непосредственно проверить в наблюдениях. Действительно, Д.А. Варшалович (Петербургский Физико-технический институт им. А.Ф. Иоффе) обратил внимание на одну особенность в спектрах некоторых простых молекул, наблюдаемых в космической среде на далеких расстояниях, где все расстояния в расширяющемся мире были примерно в три раза меньше нынешних. Оказывается, что населенность возбужденных уровней у этих молекул заметно выше, чем у тех же молекул на близких расстояниях. Но эти возбужденные низкоэнергетические состояния возникают под действием фотонов реликтового излучения. И тот факт, что населенность указанных уровней в прошлом была высока, прямо говорит нам, что реликтовых фотонов тогда было гораздо больше (на единицу объема), чем сейчас.

Другой любопытный факт обнаружен в наблюдениях мощных вспышек космического гамма-излучения. Физическая природа этого явления сама по себе пока не очень понятна, но уверенно установлено, что эти вспышки происходят чаще всего на очень больших расстояниях, соответствующих красным смещениям, которые иногда заметно превосходят единицу. Недавно было выяснено, что регистрируемая длительность космических гамма-вспышек зависит от величины красного смещения (т. е. расстояния до них). От самых далеких из них, обнаруживающих красное смещение около 6, излучение шло так долго, что все расстояния в мире выросли за это время примерно в 7 раз. Оказалось, что и регистрируемая длительность этих вспышек тоже в несколько раз больше (в среднем), чем у подобных же событий, наблюдаемых на сравнительно близких расстояниях. По существу это тот же самый эффект красного смещения. Последний, как мы знаем, проявляется в том, что период электромагнитных колебаний в принимаемом свете больше, чем период тех же колебаний в момент испускания. Но в расширяющемся мире растут не только периоды колебаний, в нем увеличиваются – и притом по тому же закону – любые промежутки времени. Так что наблюдаемое увеличение длительности гамма-вспышек с увеличением красного смещения – ещё одно прямое указание на расширение мира.

Подобный эффект ранее был замечен и в наблюдениях вспышек сверхновых звезд. На малых расстояниях длительность вспышки измеряется, например, четырьмя неделями, а при красном смещении, равном единице, наблюдаемая длительность вспышек звезд того же типа (Ia) составляет, как оказывается, восемь недель. Для сверхновых этот эффект проявляется ещё четче, чем для вспышек гамма-излучения.

3. «Темный сектор» космологии. Изучение «темного сектора» космологии, на который приходится больше 95 % всей энергии/массы в современном мире (см. выше), выходит в наши дни на передний план космологических исследований, становится центральной задачей науки о Вселенной, да и всей фундаментальной физики. Речь идет прежде всего о наблюдательных, эмпирических исследованиях темной материи и темной энергии. Прямые указания как на само существование этих необычных видов космической энергии, так и на их важнейшие физические свойства, следуют из внушительного ряда независимых наблюдательных фактов различного характера.

Начнем с темной материи. Её изучение продолжается уже более 70 лет, и к настоящему времени надежные сведения о ней вытекают из следующих ниже данных.

3.1. Кинематика галактик в больших скоплениях. Начатые ещё Цвикки (см. выше), измерения скоростей движения галактик ведутся сейчас в большом числе скоплений галактик, и эти измерения неизменно указывают на то, что скорости галактик столь же велики (около тысячи километров в секунду), как и в том скоплении, которое в 1930-е гг. изучал Цвикки. Тем самым на новом обширном наблюдательном материале подтверждается первоначальный принципиальный вывод о наличии в мире темной материи.

3.2. Рентгеновский газ в скоплениях. Большие скопления галактик наблюдают в рентгеновских лучах с помощью орбитальных астрономических обсерваторий. Эти наблюдения позволили открыть горячий ионизованный газ в объеме скоплений; этот газ и служит источником рентгеновского излучения. Температура газа близка к ста миллионам градусов, и этой температуре отвечают средние скорости протонов – частиц плазмы, которые практически совпадают со скоростями галактик в этих скоплениях (тысячи километров в секунду). Тем самым рентгеновские наблюдения дают независимый довод в пользу темной материи в скоплениях: горячий газ скоплений не разлетается в окружающее пространство, потому что он погружен в глубокую потенциальную яму, создаваемую в основном мощным тяготением темной материи.

3.3. Эффект Сюняева-Зельдовича. Горячий газ скоплений как индикатор темной материи проявляет себя в наблюдениях реликтового фонового излучения. Рассеиваясь на горячих электронах межгалактического газа скоплений, холодные фотоны реликтового излучения приобретают дополнительную энергию. В результате при наблюдениях на определенной частоте в длинноволновой (рэлей-джинсовской) части спектра обнаруживается «темное пятно» в реликтовом фоне в направлении на скопление. Этот эффект уверенно регистрируется в многочисленных современных наблюдениях. Он независимо свидетельствует о реальном наличии горячего газа в скоплениях галактик, что в свою очередь ведет к выводу о наличии темной материи в скоплениях.

3.4. Эффект гравитационной линзы. Скопления галактик создают эйнштейновский эффект отклонения луча света полем тяготения. Источником света служат в этом случае далекие галактики и квазары. Изображения галактик искажаются при прохождении их света в гравитационном поле скопления, служащего своеобразной гравитационной линзой. Различают сильное и слабое линзирование. При сильном линзировании искажение столь значительно, что появляется несколько изображений источника. Это происходит в том случае, когда угловое расстояние между направлением на линзу и направлением на источник относительно невелико. При сравнительно больших угловых расстояниях искажение не так значительно (слабое линзирование) и оно сводится к изменению видимой формы источника, но уже без дробления его изображения. В обоих случаях этот эффект дает указание на массу скопления, служащего гравитационной линзой. Изучая такие искажения для сотен тысяч и миллионов далеких галактик, можно получить сведения о величине и распределении массы в скоплениях-линзах. Наблюдения такого рода неизменно показывают, что скопления содержат большие массы темной материи, которые в несколько раз превышают массу содержащегося в них обычного вещества.


    Ваша оценка произведения:

Популярные книги за неделю