355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Джоэль Курцмен » Да сгинет смерть! Победа над старением и продление человеческой жизни » Текст книги (страница 5)
Да сгинет смерть! Победа над старением и продление человеческой жизни
  • Текст добавлен: 13 июня 2017, 22:00

Текст книги "Да сгинет смерть! Победа над старением и продление человеческой жизни"


Автор книги: Джоэль Курцмен


Соавторы: Филипп Гордон
сообщить о нарушении

Текущая страница: 5 (всего у книги 14 страниц)

Поиски подходящего донора

Два способа дают возможность несколько уменьшить необходимость подавления иммунитета – они позволяют врачам заранее предсказать интенсивность реакции отторжения у данного больного. Один из них, способ смешивания лимфоцитов, заключается в проверке реакции иммунных клеток реципиента на клетки будущего донора. К сожалению, для окончательного ответа требуется около семи дней, а при пересадке органов для спасения жизни больного такие сроки слишком велики.

Второй способ состоит в "типировании" клеток донора и реципиента примерно так же, как это делается для определения групп крови перед переливанием. В этом случае результаты становятся известными очень быстро – в течение часа. Однако применение этого способа тоже ограничено: тестирующие растворы для всех видов "типирования" не всегда находятся под рукой, так что полностью определить тип всех клеток невозможно. К тому же можно упустить какую-нибудь причину несоответствия, которая вызовет реакцию отторжения и в конечном счете приведет к разрушению пересаженного органа.

И все же тесты на совместимость – близкое соответствие трансплантационных белков – позволили хирургам достигнуть больших по сравнению с прежними успехов в трансплантации, так как они позволяют уменьшить объем иммунодепрессивных процедур. Тем самым опасность, что больной после пересадки подхватит какую-нибудь инфекцию или заболеет раком из-за того, что его иммунитет слишком подавлен, также значительно уменьшается.


Хранение трансплантатов и их источники: замороженные органы и неоморты

Помимо иммунологических проблем, неизбежных при трансплантации, возникает весьма серьезная проблема получения органов. И хотя многие люди добровольно соглашаются перед смертью пожертвовать свои органы для других, все же этого слишком мало для всех нуждающихся в пересадке. Случается, что нужный орган доступен, но реципиент в это время болен инфекционной болезнью и ему нельзя делать пересадку. Между тем «лабораторная жизнь» органов ограничена, и бывает так, что орган крайне необходим, а он успевает «испортиться» за время хранения до операции.

Поиски шли в разных направлениях. Одно из них разрабатывало замораживание тканей и органов с тем, чтобы они были готовы к использованию в нужный момент. В 1948 г. д-р Обри Ю. Смит из Национального института медицинских исследований в Лондоне случайно обнаружил, что глицерин – маслянистая жидкость, побочный продукт при производстве мыла, – предотвращает образование кристалликов льда при замораживании спермы животных, иными словами, действует как антифриз. Последовали опыты по применению глицерина для сохранения человеческой спермы. Джером Шермен из Университета штата Арканзас, усовершенствовавший этот метод в начале 60-х годов, утверждает, что от искусственного оплодотворения замороженной спермой родилось более 500 детей, причем в двух случаях сперма в замороженном виде хранилась свыше десяти лет.

Эти успехи натолкнули ученых на идею замораживания крови. С самого начала текущего столетия, когда переливание крови стало спасением жизни людей, врачи не могли избавиться от "трехнедельной тирании": считалось, что кровь, хранящаяся в холодильниках, должна быть использована не позднее, чем через три недели, так как затем клетки крови начинают распадаться. Ежедневно во всем мире в больницах и банках крови выливались сотни литров "старой" крови. Однако в 60-х годах д-р Артур Роу из Нью-Йоркского центра переливания крови разработал метод замораживания крови (с добавлением небольших количеств глицерина для предохранения клеток от повреждения). Метод Роу в комбинации с методом, разработанным д-ром Гарольдом Миррименом из Американского общества Красного Креста (Мерримен добавлял большие дозы глицерина), позволил широко использовать замороженную кровь, и недалеко то время, когда в каждом банке крови будет храниться замороженная кровь. Помимо традиционного применения, замораживание крови позволит обеспечить самопереливание крови (аутодонорство) в тех случаях, когда человеку (особенно с редкой группой крови) понадобится переливание.

Кровь и сперма – не единственные клетки или ткани, которые можно успешно использовать в медицинской практике после замораживания. С 1955 г. применяется для пересадок замороженный костный мозг, хотя в этом нет особой необходимости – свежие клетки получить не так уж сложно. В начале 60-х годов врачи начали использовать замороженную роговицу, но метод не получил широкого распространения из-за сложности технологии и недостатка необходимой аппаратуры. Тем не менее опыты по совершенствованию методики продолжаются.

Сейчас перед учеными стоит первоочередная задача – найти способ сохранения органов для трансплантации в замороженном виде. Англичанин Джеральд Мосс из Манчестерского университета показал, что печень животных, хранившаяся до двух недель при температуре – 45 °C, способна после оттаивания к восстановлению метаболической активности.

Однако провести успешную пересадку такой оттаявшей печени ему не удалось. Рональд Дицмен из Университета штата Миннесота замораживал почки собаки при температуре сухого льда (-53 °C) на небольшой срок (менее часа), затем оттаивал их и вполне успешно пересаживал. Размороженные почки работали после пересадки целую неделю. Успешно пересаживались после размораживания, хотя и с меньшим успехом, сердце и поджелудочная железа собак. По данным Исаму Суда из медицинского колледжа в Кобэ (Япония), головной мозг кошек и обезьян, замороженный на такой долгий срок, как семь лет, после размораживания проявлял некоторую электрическую активность. Это значит, что нервные клетки мозга, видимо, не погибают и способны функционировать после длительного хранения в замороженном состоянии. Но, прежде чем хранение предназначенных для пересадки органов в замороженном состоянии станет реальностью, предстоит проделать значительную исследовательскую работу.

Совершенно необычную идею запаса органов для трансплантации выдвинул Уиллард Гейлин, психиатр по профессии, президент Института общественных, этических и биологических наук в Гастингсе-на-Гудзоне (штат Нью-Йорк). Гейлин предложил создать популяцию "неомортов", как он их называет, – людей, чей мозг уже не функционирует, но чью жизнь можно было бы поддерживать при помощи различной аппаратуры. По его словам, "благодаря развитию новой медицинской технологии мы теперь в состоянии поддерживать висцеральные функции (функционирование органов)… без каких-либо функций [высшей нервной деятельности], определяющих человека как личность". Это позволило бы хирургам содержать колонии "живых" трупов – источников самых различных типов тканей – для использования в качестве доноров разных органов.

Ежегодно от травм головного мозга погибает 365 000 человек. Многие из них могли бы сохраняться как неоморты, и их тела, живущие искусственной жизнью, могли бы послужить источником органов для хирургов. В подобном состоянии все характеристики, определяющие личность, отсутствуют: нет ни интеллекта, ни памяти, ни сознания. Это тела, но не люди.

Содержание большой популяции неомортов позволило бы хирургам хранить про запас органы, которые невозможно получить в момент острой необходимости. Эти органы можно использовать именно тогда, когда обстоятельства для пересадки наиболее благоприятны. Неоморты могли бы стать также источником регенерирующих тканей, таких, как кровь, кожа и костный мозг, причем все ткани и жидкости были бы всегда свежими и здоровыми.

По мнению Гейлина, "студенты-медики могли бы практиковаться [на неомортах] в обычных хирургических операциях… стандартных и более усложненных процедурах с целью диагностики", не опасаясь за последствия. Они могли бы также следить за развитием болезни в крови и органах при искусственном заражении. Популяция неомортов, снабженная ради удобства картотекой органов, позволила бы врачам максимально использовать все ткани и органы.

Если принять идею Гейлина о неомортах, необходимо пересмотреть само определение смерти. Остановка сердца в таком случае не будет считаться смертью. Как определяет Норман Шамуэй из Станфордского университета, пионер хирургии сердца, "в 70-х годах и в свете современной медицинской техники… критерием для заключения о смерти является мозг". А так как многие типы мозговых травм необратимы, надо полагать, что смерть мозга означает смерть данного человека. В мае 1972 г. этот критерий получил легальное признание как определение смерти во время процесса против д-ра Р. Р. Лоуэра из Медицинского колледжа штата Виргиния. Лоуэру было предъявлено обвинение в убийстве донора, у которого он извлек сердце для пересадки. В свое оправдание врач возразил, что у больного была неисцелимая мозговая травма, и, следовательно, он был уже мертв до того, как у него удалили сердце. Суд решил дело в пользу Лоуэра, заметив в своем определении, что повреждение мозга было достаточным основанием для вынесения заключения о смерти.

Но одного-единственного решения суда в подобных случаях недостаточно. Определение смерти до сих пор горячо дебатируется. В 1975 г. Карен Куинлэн, 21 года, получила сильнейшую мозговую травму в результате отравления большими дозами алкоголя и барбитуратов одновременно. Обследовавшие ее врачи установили, что повреждения мозга необратимыми нет никакой надежды на то, что девушка когда-либо придет в сознание. Однако, когда ее родители подали в суд прошение о том, чтобы им разрешили отключить аппаратуру, поддерживающую жизнь их дочери, суд ответил отказом. Судьи не могли воспринять в качестве определения смерти необратимое разрушение мозга и утрату интеллекта. Впоследствии, однако, суд пересмотрел свое решение и позволил отключить аппаратуру. К моменту написания этой книги [имеется в виду 1976 г. – Ред.] больная так и не пришла в сознание.

Каковы бы ни были потенциальные преимущества, которые эта идея сулит медицине, "неоморты" останутся не более чем пустым звуком, по крайней мере в обозримом будущем. Моральные, юридические и этические основания для их использования просто неприемлемы для общества – цель явно не оправдывает средства. Вместе с тем ход историй убеждает нас в том, что социальные ценности претерпевают изменения, и в будущем нас ждут, быть может, такие реальности, о которых мы сейчас и помыслить не можем.


Регенерация частей тела

Некоторые организмы обладают способностью заново отращивать целые части и органы. Известны, например, деревья, которые вырастают из одной веточки. У саламандр отрастают утерянные конечности. У ящериц восстанавливается хвост, который по весу составляет почти четвертую часть тела. Морские звезды могут потерять половину своего тела и снова восстановить недостающие части.

Но у людей способность регенерировать поврежденные ткани чрезвычайно ограничена. Мы можем заново отрастить небольшую частичку печени, щитовидной железы, кости, селезенки, кожи и восстановить объем крови, но для этого необходимо, чтобы сохранилась большая часть исходной ткани. У болей низко организованных животных, вроде саламандр, конечность может регенерировать даже в тех случаях, когда она потеряна полностью. Если бы человек, подобно саламандрам, ящерицам и другим рептилиям, был способен заново отращивать утраченные части организма, отпала бы всякая надобность в пересадках.

У крыс примерно такая же ограниченная способность к регенерации, как у людей. В своих удивительных экспериментах Роберт Беккер, профессор-ортопед из Медицинского центра штата Нью-Йорк, сумел добиться у крыс восстановления части ампутированных конечностей. Вживляя в культи электроды и постоянно пропуская через ткани электрический ток, ученый добился того, что у подопытных животных восстанавливалась значительная часть конечностей.

Как же он к этому пришел? Давно известно, что вокруг тела человека и животных имеется слабое электрическое поле, возникающее в результате постоянной электрической активности нервов при прохождении импульсов и сокращении мышц. Когда Беккер в начале 60-х годов начал изучать электрическое поле, окружающее саламандр, он заметил, что поле претерпевает определенные изменения при ампутации конечности и при ее регенерации и что можно измерить силу и знак соответствующих зарядов. Но когда он приступил к опытам над крысами, то обнаружил, что изменения в электрическом поле, окружающем крысу после ампутации конечности, отличаются от изменений в электрическом поле саламандры. Беккер решил, что крысы, возможно, не обладают способностью к регенерации просто потому, что у них не возникают необходимые изменения электрического потенциала. Тогда он стал вживлять электроды и воспроизводить в электрическом поле крысы такие же изменения, какие наблюдались у саламандр. Таким путем ему удалось добиться регенерации части конечностей у крыс.

Хотя до сих пор не производились опыты по регенерации конечностей у человека с помощью электродов, некоторые исследования позволяют полагать, что под действием электрической стимуляции заживление может происходить быстрее. Ученые лаборатории ортопедических исследований Колумбийского университета обнаружили, что, помещая электроды на область перелома и подавая на них низкочастотные электрические импульсы, можно ускорить срастание кости. В некоторых случаях кости срастались вдвое быстрее обычного. В настоящее время Беккер проводит серию экспериментов ка сердце, применяя электроды в качестве средства, способствующего восстановлению поврежденного органа.

Еще одно интересное наблюдение принадлежит англичанке Синтии Иллингворт из детской больницы в Шеффилде. Она обнаружила, что у ребенка примерно до одиннадцатилетнего возраста палец, поврежденный не далее первой фаланги, может регенерировать без всякого медицинского вмешательства. У одного пятилетнего мальчугана вырос заново весь кончик пальца: кость, ноготь и кожа – при полном отсутствии специального лечения. Это позволяет, предположить, что если регенерирующим фактором является некое химическое вещество, которое мы теряем с возрастом, то, возможно, биохимикам удастся отыскать нужное сочетание химических веществ, которое вырабатывается у детей и отсутствует у взрослых. Дэн Нейфелд из Университета имени Джорджа Вашингтона, работающий над проблемой химической стимуляции восстановления конечностей, убежден, что такая регенерация возможна. "Обладает ли человек способностью к регенерации? – спрашивает он. – Я уверен, что обладает". И добавляет: "Если бы я в это не верил, я бы бросил свои эксперименты".

С первых попыток, относящихся к концу 40-х годов, трансплантация прошла долгий путь. Сейчас пересадки почек и роговицы стали обычными операциями, и в настоящее время пересадку почек успешно переносит большинство больных. И все же многие виды трансплантации до сих пор находятся в стадии эксперимента. Это один из передовых рубежей медицины. С каждой успешной пересадкой почки ученые все больше узнают о том, как действует иммунная система, как организм учится принимать чужеродные белки и при этом борется с болезнями. Близится время, когда мы получим ценные результаты и при других операциях по пересадке.

Однако проблемы отторжения и трудности хранения органов таковы, что пересадки органов благотворны далеко не для всех. У тех, кто не может рассчитывать на пересадку, остается другая надежда, и эта надежда – новая технология бионики.

5. Новая технология бионики[6]6
  В этой главе авторы ограничиваются рассмотрением работ по созданию бионических органов, проводимых преимущественно в США; практически они совсем не знакомы с аналогичными исследованиями, успешно осуществляемыми в Советском Союзе: В СССР давно созданы и эффективно используются в медицинской практике аппараты – искусственное сердце и легкое, искусственная почка, эффективная система очистки крови при отравлениях человека; широкое признание и спрос за рубежом полумили созданные у нас протезы, в том числе протезы тазобедренного сустава и другие. Международным авторитетом пользуются разработанные в СССР новые методы пересадки тканей и органов, консервация крови и т. д. – Прим. ред.


[Закрыть]

Специализированные органы и системы – органы чувств, пищеварительная система и органы размножения – эволюционировали миллионы лет, позволяя выживать и функционировать все более сложным формам жизни. В результате возникли органы удивительной эффективности и чрезвычайно хитроумно устроенные. Так, глаз лягушки способен заметить и взять на прицел любое насекомое в радиусе, доступном для ее языка. У гусей столь высоко развита система координации глаз и мозга, что они могут точно прокладывать свой курс на огромных расстояниях, пользуясь, судя по всему, определением положения звезд и визированием по ориентирам точно так же, как моряки, оснащенные секстантами и хронометрами.

Не одну сотню лет люди пытаются копировать изобретения природы. Дневники Леонардо да Винчи, например, испещрены набросками летательных аппаратов, смоделированных по принципу строения крыла птиц. А в сентябре 1960 г. на базе американских ВВС Райт-Паттерсон в Дейтоне (штат Огайо) состоялась конференция ученых, занимающихся конструированием механизмов и приборов "по проектам природы". Они собрались, чтобы формально отметить создание новой науки, изучающей природные процессы и технологию подражания им. На этой конференции родилось слово "бионика", полученное от слияния греческого слова "биос" (что значит "жизнь") и суффикса – ик (что значит "подобный"). По определению Джека Стила, психиатра, математика и специалиста по электронике ВВС США, бионика – это "наука о системах, которые функционируют по образу живых систем и таким образом напоминают или копируют живые системы".

В те времена ВВС интересовались живыми существами с целью разработки более эффективных систем обороны. Одни из первых экспериментов были направлены на то, чтобы узнать, каким образом улитки определяют направление, ориентируясь по магнитному полю Земли. Ученые изучали также строение кожи дельфина, пытаясь разработать покрытия судовых корпусов, которые уменьшали бы сопротивление воды и позволяли бы повысить скорость при экономии топлива.

Разумеется, изучение бионики не ограничивается интересами министерства обороны. Бионика занимается и такими всеобъемлющими проблемами, как создание искусственного интеллекта – для применения в компьютерах – и создание запасных частей человеческого организма – для применения в медицине и продления жизни.

Бионика – гибридная наука. Занятые ее проблемами ученые являются специалистами не только в биологии и зоологии, но и в медицине, инженерных науках, математике, физике, химии, электронике, психологии и логике. Эта область исследований пользуется достижениями почти всех других областей, начиная от текстильной промышленности (например, создание легчайших парашютов по образцу крыла птиц) и кончая микрогравировкой по металлу, необходимой для конструирования микроминиатюрных блоков памяти, которые требуются для создания искусственного интеллекта и в других новых областях науки. Медицинская бионика позаимствовала в далеких, на первый взгляд, областях идеи и технологию создания "запчастей" человеческого тела.

Материалы, применяющиеся в бионике, в большинстве своем носят новые для нашего слуха названия: это волшебные волокна, такие, как орлон, дакрон, найлон; пластмассы, такие, как полиуретан, метилметакрилат, полиэтилен; редкие металлы, вроде титана, хромокобальтовые сплавы, соединения кремния, различные типы нержавеющей стали и сплавы тикониума.

Основное достоинство перечисленных материалов заключается в том, что иммунная система организма их не отторгает. Поскольку иммунная система распознает только белки, а эти материалы состоят не из белков, они не подвергаются ее атаке. Более того, новые материалы не только совместимы с тканями нашего тела, но многие из них становятся как бы основой, на которой сам организм наращивает новую ткань. Расширенную, поврежденную аорту (некогда это была распространенная и неизбежная причина смерти) теперь можно легко подремонтировать дакроновым протезом: его подшивают к истонченной артерии, а затем природа, слегка изменяя свой привычный курс, покрывает эту основу здоровой живой тканью.

Заменители могут не только занять место поврежденной конечности или органа – зачастую они даже во многом дублируют функции "оригинала". Выполненные из неорганических в своей основе материалов почки работают, сосуды несут кровь, сердца бьются. Электронные водители ритма сердца (кардиостимуляторы), синтетические мышцы, чувствительные (сенсорные) окончания на кончиках пальцев – все это создается теперь искусственным путем, и новинки технологического прогресса обещают нам, что скоро глухие будут слышать, слепые – видеть, безногие – ходить.

Бионические приспособления бывают четырех видов (некоторые из них прикрепляются снаружи, другие вживляются в организм): протезы, по своему назначению наружные – зубные или протезы конечностей; заменители – например, искусственный плечевой сустав; синтетические – сухожилия, созданные из искусственных волокон, и искусственные – т. е. механизмы, заменяющие собой орган.


Протезы: от Длинного Джона Сильвера до «Человека ценой в шесть миллионов долларов»

Возможно, многие из нас знакомы с протезами благодаря одному из героев романа «Остров сокровищ» – пирату, по прозвищу Длинный Джон Сильвер. Потеряв ногу в сражении, он заменил ее деревяшкой, для которой в настиле палубы возле штурвала было сделано специальное углубление, чтобы ему было удобнее стоять у руля. Помним мы и капитана Хука[7]7
  Хук (hook) – по-английски «крючок». – Прим. ред.


[Закрыть]
из пьесы «Питер Пэн»: ему крокодил откусил руку, и вместо кисти у него был железный крючок – оружие, достойное пирата, но, разумеется, не подходящее для тонких манипуляций. А ведь именно деревянные ноги и крючки сотни лет служили людям протезами – заменителями недостающих конечностей.

Но есть бионическое приспособление с гораздо более давней – хотя на первый взгляд и менее драматической историей – это искусственные зубы. Зубные протезы существовали в Древнем Египте 3000 лет назад: фараоны заменяли выпавшие зубы зубами из слоновой кости или просто из кости, прикрепленными тонкой золотой проволокой. Римские дантисты также умели весьма хитроумно вырезать и прикреплять фальшивые зубы из костей животных или человека. Если зубы были хорошо выпилены, то и служили они хорошо, но пристроить фальшивые зубы к деформирующейся поверхности чьей-то челюсти – дело мудреное. В XV в. зубные протезы представляли собой зубы, вырезанные из слоновой кости и прикрепленные к деревянной пластинке, прикрывающей челюсти: такой протез был столь неудобен, что пользовались им с чисто косметической целью, во время еды его вынимали. Позднее, в XIX столетии, протезисты позаимствовали у ювелиров технологический прием, называемый "штамповкой", и стали изготовлять зубные протезы, которыми можно было пользоваться и для пережевывания пищи. Применяя свинцовые и цинковые формы, полученные со слепков челюстей конкретного человека, дантисты "штамповали" золото по этому слепку, затем приклеивали к нему плотную резину, а к ней крепили фарфоровые зубы. И только в 30-х годах текущего столетия эти материалы уступили место акриловым пластмассам, которые используются и по сей день.

Однако даже самые сложные зубные протезы кажутся пустяком по сравнению с новыми хитроумными изобретениями в области протезирования.


Бионическое зрение

Если не считать очков, изобретенных китайцами в X в., мы не располагали никакими искусственными приспособлениями, которые могли бы вернуть человеку зрение. Но теперь бионика сделала реальностью восстановление зрения во многих случаях, прежде считавшихся совершенно безнадежными.

Помутнение роговицы обычно происходит в результате механического повреждения или не вполне понятных изменений в химическом составе глаза. Но эти изменения приводят к тому, что наружная прозрачная оболочка глаза, так называемая роговица, которая пропускает видимый глазом свет, становится мутной и постепенно человек слепнет. Это заболевание, чаще всего возникающее в пожилом возрасте, ранее умели лечить только одним способом – пересадкой роговицы от трупа.

Обычно достаточно пересадить лишь часть роговицы, но иногда повреждения так сильны, что приходится заменять ее полностью. Однако из четырех полных пересадок роговицы удается только одна: это объясняется тем, что жидкость внутри глаза находится под давлением, и трансплантат очень трудно удержать на месте в течение месяца – срока, необходимого для его приживления. Кроме того, стоит больному чихнуть или закашляться – и пересаженная роговица может сместиться.

Эта проблема вынудила Уильяма Стоуна, хирурга-офтальмолога Массачусетского приюта для глухих и слепых в Бостоне, заняться созданием бионического заменителя поврежденной роговицы из прозрачного акрила – точно такого, какой идет на изготовление зубных протезов и ветровых стекол в кабинах реактивных истребителей. Пластиковая роговица ввинчивается в гнездо, напоминающее крохотную кнопку, и эта кнопка прикрепляется швами на поверхности глаза прямо напротив зрачка. Ввинчивающаяся пластиковая роговица, которую можно вывинтить или заменить другой по рецепту врача, вживлена уже 400 больным.

Медицинская техника снабдила нас и бионическим хрусталиком. Хрусталик глаза, находящийся непосредственно за радужной оболочкой, часто мутнеет вследствие катаракты. От этого он темнеет и рассеивает или не пропускает падающий на глаз свет. Обычно от катаракты избавляются путем хирургического вмешательства. Хирург делает маленькое отверстие в оболочке глаза (так называемом белке), подводит к нему небольшой высасывающий прибор и извлекает хрусталик из глаза. После такой операции накладывается шов, и свет снова свободно проникает в глаз.

К сожалению, лишенный хрусталика глаз не способен фокусировать лучи света самостоятельно – больной нуждается в толстых очках или в контактных линзах. Пользование очками сопряжено с большими неудобствами, приходится менять очки, если нужно перевести взгляд с близкого объекта на отдаленный; при этом вести машину, например, очень трудно. Некоторый выход из положения сулит использование контактных линз, настроенных на средние расстояния, в сочетании с бифокальными очками, но не все могут спокойно носить контактные линзы.

Д-ру Норману Джаффу из Университета в Майами удалось решить эту проблему: он изобрел искусственный вживляемый хрусталик. Из полиметакрилата – вещества, близкого к акрилу, применяемому для создания искусственной роговицы, – вытачивается крохотный бионический хрусталик с точной, фиксированной фокусировкой: хрусталик помещается в мягкое кольцо из дакроновых волокон. Это кольцо, вшиваемое позади радужной оболочки, служит своеобразным якорем, который удерживает хрусталик против зрачка. Пластиковый хрусталик не способен менять фокус, но в сочетании с очками можно достигнуть почти стопроцентного зрения. Теперь такими искусственными хрусталиками заменяют помутневшие от катаракты хрусталики не менее сотни хирургов в США.

Но повреждение хрусталика или роговицы далеко не единственная причина слепоты. Большинство из 110 000 жителей США, полностью лишенных зрения, потеряли его из-за более серьезных повреждений глаз. Одна из форм слепоты, в настоящее время не поддающаяся лечению, – глаукома, при которой жидкость позади хрусталика, называемая aqueous humorx выделяется в избытке; при этом ее давление возрастает настолько, что разрывает нежные светочувствительные слои сетчатки. Также неизлечимы в настоящее время случаи слепоты от болезней, вызывающих дегенерацию глазного нерва, и врожденных болезней, при которых травмированы сетчатка или нервы, связывающие ее с мозгом. Однако и в этих случаях появилась некоторая надежда, которую сулит нам технология телевидения.

Телевизионная камера работает примерно по такому же принципу, что и глаз: в ней свет, пройдя через фокусирующее устройство, преобразуется в электрические импульсы. Природа и форма импульсов, посылаемых телекамерой, сильно отличаются от импульсов, посылаемых глазом к мозгу, но теоретически возможно применять электрические импульсы от телекамеры, для того чтобы вызвать зрительные ощущения в мозгу.

Офтальмолог Уильям Добелл, директор отделения нейропротезирования Института биомедицинской инженерии при Университете штата Юта, изучив импульсы, которые нормальный глаз посылает в мозг при раздражении светом, изобрел специальный компьютер, который мог бы преобразовывать импульсы от телекамеры в импульсы, подобные испускаемым сетчаткой глаза. Затем Добелл сделал квадратики из тефлона и платины и вживил их двум слепым добровольцам внутрь черепной коробки поблизости от тех участков головного мозга, где получаемая с помощью глаза информация преобразуется и превращается в видимый образ. Маленькие электрические датчики в головах добровольцев были подключены к телекамерере, которая была наведена на несколько предметов самой простой формы. Едва электрические раздражения достигли датчиков, как оба испытуемых заявили, что "видят" вспышки света (так называемые фосфены). По свидетельству Добелла, один из больных, потерявший зрение 28 лет назад, утверждал, что улавливает бесцветные, мерцающие фосфены размером примерно с монету, видимую на расстоянии вытянутой руки.

Ученый продолжал работать над своим изобретением и создал систему искусственного зрения, которая позволила 33-летнему мужчине, лишенному зрения на протяжении 10 лет, подключиться к компьютеру, дающему человеку возможность "видеть" электронные сигналы в своем мозгу. В зрительные участки мозга испытуемого было вживлено 64 электрода, и от каждого электрода через отверстие в черепе шла тоненькая проволочка к графитовому штеккеру, вшитому в кожу. При включении штеккера в компьютер, соединенный с телекамерой, слепой человек получает возможность читать буквы по Брайлю в виде точек света и различать вертикальные и горизонтальные линии. По мнению Добелла, его эксперимент делает реальными долгосрочные имплантации. Как он полагает, со временем в глазницу слепого будет помещаться телекамера, связанная через миниатюрный компьютер с вживленными в мозг электродами. И хотя потребуется еще немало экспериментов, чтобы от простых схематических рисунков перейти к более сложным черно-белым изображениям, Виллем Кольфф, пионер бионических исследований, уверен, что в конце концов искусственное зрение подобного типа позволит слепым видеть изображения, напоминающие "картины на световом табло Хьюстонского космодрома".

Добелл напоминает, что развитие любого искусственного органа происходит постепенно: "Вначале возникает предположение, затем появляется надежда и только потом открываются перспективы. Несомненно, что сенсорные протезы уже перешли от стадии задумок к той стадии, когда появляется надежда". Будем надеяться, что перспективы откроются в ближайшем будущем.


Бионический слух

Некогда единственным приспособлением для тугоухих был слуховой рожок. Похожий на воронку рожок приносил некоторую пользу тем, чей слух пострадал от окостенения, или оссификации, трех основных слуховых косточек среднего уха (молоточка, наковальни и стремечка); с увеличением жесткости косточки все хуже передают звуковые колебания через внутреннее ухо в мозг. Такой вид потери слуха носит скорее механический характер, в отличие от повреждений слухового нерва или внутреннего уха, поэтому приспособления, усиливающие звук, попросту увеличивают амплитуду звуковых колебаний и частично компенсируют потерю слуха, обусловленную окостенением косточек среднего уха. Но слуховой рожок усиливает звук очень незначительно, и нужны были другие усилители.


    Ваша оценка произведения:

Популярные книги за неделю