355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Джоэль Курцмен » Да сгинет смерть! Победа над старением и продление человеческой жизни » Текст книги (страница 12)
Да сгинет смерть! Победа над старением и продление человеческой жизни
  • Текст добавлен: 13 июня 2017, 22:00

Текст книги "Да сгинет смерть! Победа над старением и продление человеческой жизни"


Автор книги: Джоэль Курцмен


Соавторы: Филипп Гордон
сообщить о нарушении

Текущая страница: 12 (всего у книги 14 страниц)

Локализация первого одиночного гена в хромосоме человека, осуществленная Мэри Вейсс и Говардом Грином с помощью техники окрашивания хромосом в 1971 г., положила начало установлению места других генов: к 1973 г. стали известны местоположения и функции еще 28 генов. К середине 1976 г. было картировано уже 200 генов. По свидетельству д-ра Фрэнка Рэддла из Йельского университета, одного из лидеров картирования, на карте появляются по три новых гена в месяц. Приведем высказывание Поля Муди из Университета штата Вермонт относительно перспектив картирования генов: "Бесспорно, постепенно мы узнаем, какая из хромосом содержит ген, управляющий специфическим ферментом, – это только вопрос времени. Одновременно будет увеличиваться и число известных генов, размещающихся в отдельных хромосомах".


Пересадка генов

Для того чтобы воспользоваться результатами картирования генов применительно к генной инженерии, необходимо найти способ включения новых генов в структуру клетки с нарушенными функциями. Удачные «пересадки генов» уже были осуществлены в первых экспериментах по гибридизации в начале 60-х годов, когда соединялись две разнородные клетки, и в более тонких экспериментах Поля Берга по генной инженерии с использованием рестрикционных ферментов и плазмид. Описан даже один случай пересадки генов у людей.

В 1970 г. внимание Стэнфилда Роджерса, врача-генетика из Ок-Риджской национальной лаборатории (штат Теннесси), привлек отчет о редком случае болезни, называемой аргининемия, у двух девочек, семи и двух лет. Аргининемия – наследуемая неспособность синтезировать фермент аргиназу из-за дефекта в ДНК. Без аргиназы организм не в состоянии расщеплять аминокислоты, накапливающиеся в процессе нормального обмена веществ. Болезнь прогрессирует медленно, по мере накопления продуктов обмена. Ома проявляется в виде нарастающих повреждений почек, мозга и других тканей.

Роджерс, много лет работавший с вирусами, знал, что если бы удалось найти подходящий вирус, который, будучи безопасным для человека, мог бы заставить клетки производить аргиназу, то инъекция такого вируса могла бы в свою очередь заставить клетки организма обеих девочек вырабатывать собственную аргиназу. Более того, Роджерсу был известен такой вирус. Вирус, носящий название вируса папилломы Шоупа (по имени Ричарда Шоупа из Рокфеллеровского института в Нью-Йорке, который открыл этот вирус в 30-х годах), представляет собой набор генов в плотной защитной оболочке из белка, по величине в тысячу раз меньше клетки человека. В начале 60-х годов Роджерс обнаружил, что примерно у половины исследователей, работавших с вирусом Шоупа, отмечался повышенный уровень аргиназы – видимо, из-за случайного попадания вируса в клетки.

Благодаря стараниям Рождерса больным девочкам был привит вирус Шоупа, и у них постоянно брали кровь на анализ, чтобы отыскать следы аргиназы. На протяжении нескольких месяцев картина не менялась. Однако медленное накопление ядовитых аминокислот продолжалось, вследствие чего клетки продолжали погибать. Но вот после месяцев ожидания у обеих девочек стала вырабатываться аргиназа. К сожалению, лечение вирусом Шоупа оказалось недолговечным. И все-таки, хотя вред, нанесенный организму больных девочек накоплением шлаков, оказался слишком велик, чтобы его можно было нейтрализовать введением чужеродных генов, возможность такого лечения подтвердилась.

С тех пор люди больше не подвергались лечению с помощью "пересадки генов", однако многие ученые, помимо Роджерса, добились существенных успехов в отработке методики, которая со временем позволит производить подобные операции. Трое исследователей из Национального института здравоохранения в Бетесде (штат Мэриленд) – Карл Мерилл, Марк Грир и Джон Петриччоне – проводили опыты с вирусами, намереваясь переносить ДНК в клетки, содержащиеся в искусственной среде и взятые у лиц, страдающих галактоземией. Это заболевание представляет собой наследственную неспособность синтезировать галактозу – фермент, необходимый для расщепления сахара, находящегося в молоке и маточных продуктах. В прошлом больные галактоземией вынуждены были ограничивать себя в потреблении молока и молочных продуктов, однако это не спасало их от заболевания печени и катаракты в результате накопления галактозы в тканях.

Вирусы выполняли роль миниатюрных шприцев, с помощью которых гены, взятые у способных использовать галактозу бактерий, вводились в культуру клеток больных галактоземией. Как оказалось, при добавлении галактозы в питательную среду клетки не только не погибали от накопления галактозы, но и процветали и даже сумели передать своему потомству способность синтезировать галактозу. Это был, по словам исследователей, "первый шаг к излечению болезней, вызванных генетическими ошибками". Подобные опыты проводятся и другими учеными, и может статься, что пересадка генов со временем окажется эффективным средством борьбы более чем с 2000 наследственных болезней, от которых страдает человечество.

Как только методика пересадки генов будет полностью отработана, ее можно будет использовать для борьбы со многими возрастными изменениями в функционировании отдельных клеток. И если существуют "гены смерти", которые управляют процессами дегенерации клеток, можно будет вводить в организм новые гены – синтетические или взятые у молодых организмов (людей, животных, бактерий), которые "выключат" гены смерти. Если же старение – результат нарушения работы отдельных генов (а не активная деятельность "генов смерти"), то с помощью пересадки генов можно будет заменить или исправить эти плохо работающие гены. Возможно, пользуясь пересадкой генов, ученые смогут даже ввести развивающемуся в утробе матери плоду новую генетическую информацию, которая истребит "гены смерти" еще до рождения ребенка или предотвратит разрушение генов с возрастом.

Что и говорить, перспективы захватывающие, но следует помнить предостережение Р. Родни Хауэлла, генетика из Техасского университета: "Прогресс в лечении наследственных заболеваний будет продолжаться, но только постепенно. Каждая болезнь, безусловно, потребует отдельного решения задачи. Мне кажется маловероятной возможность одновременного революционного "прорыва" на всех направлениях".


Корана, Ниренберг и синтетические гены

Если можно будет пересаживать гены человеку, то не исключена возможность введения и искусственных генов для лечения наследственных болезней и предупреждения старения. Искусственные, синтетические гены, некогда существовавшие только в воображении писателей-фантастов, уже созданы. Первый такой ген создал Хар Гобинд Корана, американский генетик родом из Индии, работавший в Университете штата Висконсин и в Массачусетском технологическом институте. За свое открытие 46-летний Корана в 1968 г. разделил Нобелевскую премию с Маршаллом У. Ниренбергом (Национальный институт кардиологии в Бетесде, штат Мэриленд). Открытие, которое дало ясную картину процесса синтеза белка в клетке и привело Корану к синтезу гена, принадлежит Ниренбергу и было сделано им в 1961 г.

Ниренберг пытался расшифровать код в молекуле РНК, который заставляет каждую аминокислоту занять предназначенное ей место в молекуле белка. Начал он с простой РНК, оставив напоследок сложные природные РНК, и разгадывал код примерно так же, как это делает специалист по криптографии: сначала находит знак, заменяющий букву "е" (чаще всего встречающуюся в английских текстах), а уже затем приступает к расшифровке кода в целом. Такой подход оправдал себя, и простая РНК дала Ниренбергу ключ к одной части кода: он узнал, каким именно образом РНК определяет нужные аминокислоты при синтезе белка. Это открытие принесло Ниренбергу, которому в ту пору было всего 37 лет, всемирную славу. Его пригласили выступить перед представительным собранием ученых в Московском государственном университете им. М. В. Ломоносова[11]11
  Это происходило на Международном биохимическом конгрессе в Москве в 1961 г. – Прим. ред.


[Закрыть]
, где, по словам одного из участников, это открытие заслужило признание «поистине сенсационного: была расшифрована первая буква генетического алфавита и тем самым было положено начало расшифровке кода».

В 1964 г. Корана, опираясь на открытие Ниренберга, задался целью создать искусственную РНК. Он собирал ее из имеющихся в продаже химических веществ и долгие месяцы кропотливо сплетал цепи синтетической молекулы РНК, звено за звеном, пока не добился успеха.

Создание Кораной синтетической РНК в сочетании с расшифровкой генетического кода, начатой Ниренбергом, позволило генетике шагнуть далеко вперед. Знание принципа, по которому РНК управляет аминокислотами при синтезе белков, помогло ученым понять, как протекает процесс обмена веществ в норме и как он нарушается. Зная функции РНК, они глубже постигли, каким образом генетическая информация, заключенная в клетке, проявляет себя в жизненно важных химических процессах.

Получив в 1968 г. Нобелевскую премию по физиологии и медицине, Корана и Ниренберг восприняли эту честь по-разному. Ниренберг, о котором говорили, что он настоящий гений, поглощенный своей идеей настолько, что ничего не видит вокруг и может споткнуться о собственные ноги, был недоволен шумной известностью. Примерно ко времени получения Нобелевской премии он стал задумываться над тем, допустимо ли с этической точки зрения вторгаться в область генетики. Дело кончилось тем, что Ниренберг прекратил исследования по генетике и занялся изучением поведения. Корану весть о присуждении Нобелевской премии застала на обрывистом берегу Атлантического океана, где он любовался закатом. Репортеров он встретил отрешенно, а на их вопрос, как он относится к награде, ответил: "Мне сейчас трудно ответить. Я все время работаю – впрочем, наверное, как и все мы".

Корана продолжал усиленно работать, и тем же точным, кропотливым способом, каким собирал молекулу РНК, стал собирать молекулу ДНК, стремясь создать настоящий ген.

Но ДНК – химически гораздо более сложная молекула, чем РНК, хотя состоит она в основном из тех

же компонентов. Молекула ДНК больше молекулы РНК, так как ее составляют две закрученные длинные цепочки атомов, а РНК – длинная однотяжевая цепочка. Корана потратил пять лет, прежде чем ему удалось собрать вещества, из которых складывается ДНК, в работающий ген. В 1970 г. он объявил о первом в истории успешном синтезе гена. Этот ген состоял из 154 отдельных компонентов, каждый из которых был не крупнее миллиардной доли дюйма.

Над созданием синтетических генов успешно работали и другие группы исследователей, в частности Фотис Кафатос с сотрудниками в Гарвардском университете. Новые, более простые методы, разработанные Нобелевскими лауреатами Дэвидом Балтимором и Говардом Темином, позволили упростить создание искусственных генов. Методика Балтимора-Темина напоминает использование фотографического отпечатка (РНК) для получения негатива (ДНК). Эти методы, уже широко применяемые многими лабораториями для массового синтеза ДНК, заключаются в превращении легко получаемой РНК в своеобразный конвейер для сборки генов. Такая технология производства генов, по словам обозревателя газеты "Нью-Йорк таймс", может оказаться нужной, "когда наука будет готова к производству генов с заранее заданными функциями, например для синтеза недостающего белка или для нейтрализации нежелательного белка". Творцы генов приблизили время, когда мы смажем с легкостью создавать гены, необходимые для борьбы со старением.

В августе 1976 г. Корана и его коллеги по Массачусетскому технологическому институту продвинули генетику еще на шаг вперед, ухитрившись не только синтезировать ген E. coli, но и пересадить его в живую клетку, где он продолжал работать, как и его "собрат" – природный ген. По признанию одного генетика, "синтез гена означал мощный прорыв вперед. Теперь этот ген работает, как настоящий, – от этого просто дух захватывает". Со временем наследственные болезни будут излечиваться путем замены дефектных генов здоровыми, созданными человеком.


«Включение» и «выключение» генов

Многое из того, что происходит с человеком в процессе роста и развития на протяжении его жизни, – результат «включения» одних генов и «выключения» других. Половая зрелость наступает с вступлением в действие многих генов, которые были в организме с самого рождения ребенка, но находились в состоянии покоя. Менопауза (прекращение менструаций) наступает, когда гены, вступившие у женщины в действие примерно в возрасте 11 лет, понемногу перестают действовать. Одряхление, которым сопровождается старение, также может быть результатом выключения генов. Одним из способов вмешаться в эту ситуацию включение – выключение может оказаться введение в стареющий организм специфических искусственных включающих элементов, которые заставят гены поддерживать тело в том состоянии, в каком оно было, когда человек был моложе.

Генетикам давно известно, что в ядро каждой клетки заключен полный набор генетической информации, необходимой всему организму. Клетка человеческой печени, например, содержит генетическую инструкцию для создания не только здоровой клетки печени, но и клеток сердца, нервных, зрительных и других специализированных клеток. В ДНК каждой специализированной клетки заложены тысячи покоящихся генетических инструкций, вплетенных в специфический узор многих миллионов компонентов, из которых сложены гены.

Но для того, чтобы нормально функционировать, клетка печени (или любая другая клетка) может вводить в действие (включать) только определенную часть своей полной генетической информации. Более того, в различное время – в зависимости от потребностей организма – включаются (или выключаются) другие гены. Например, после того как вы съели очень сладкую конфету, организм должен увеличить производство гормонов поджелудочной железы, которые вызовут превращение части сахара в энергию, а часть запасут в виде жира. Гены, управляющие этой функцией поджелудочной железы, должны дать клеткам железы "инструкцию", по которой они производят гормон только при возникновении потребности в нем. В других случаях эти гены не работают.

Следует добавить, что некоторые ухудшения – например, снижение с возрастом способности организма расщеплять и выводить из клеток продукты обмена – не всегда возникают "по вине" отдельных генов. Скорее, прекращает работать или неправильно работает механизм включения – выключения определенных генов и специфических процессов, которые связаны с расщеплением отходов.

Первым проложил путь к пониманию механизма включения и выключения генов Жак Моно в 1946 г. И затем на протяжении двух десятилетий он вместе с Франсуа Жакобом продолжал эти исследования. Оба ученых работали в Пастеровском институте в Париже – центре некоторых наиболее оригинальных и захватывающих открытий в генетике.

Жакоб начал свою карьеру как хирург, но в 1944 г. получил в Нормандии очень тяжелое ранение, после которого карьера хирурга была для него закрыта. Тогда он защитил докторскую диссертацию в Сорбонне, и вместе с Моно принялся изучать механизм включения – выключения генов в клетке. Успех к ним пришел после многих лет работы.

Работая с мутантными штаммами E. coli, исследователи обнаружили, что почти все гены бактерий имеют механизм включения – выключения на одном конце. Они назвали его "оператором". Как выяснилось, другие гены создают белок, который соединяется с оператором и закрывает его, что приводит к выключению гена. Этот ген они назвали "регулятором". Белки, которые синтезировались регуляторами и "выключали" структурные гены, получили название "репрессоров". Покрытие гена оператора репрессорами можно сравнить с помещением телеграфного ключа в запертый ящик – механизм в полном порядке, но телеграмму послать нельзя. За открытие системы оператор – регулятор – репрессор Жакоб и Моно были удостоены в 1965 г. Нобелевской премии.

Корана, а по его примеру и другие ученые вслед за Жакобом и Моно старались изучить и создать механизм включения – выключения. В Лаборатории молекулярной биологии в Кембридже англичанин Джон Гёрдон сосредоточил свое внимание на тех веществах в клетке, которые можно назвать "главными выключателями" (рубильниками). Как утверждает ученый, именно они вводят в действие и выключают гены в процессе развития и могут быть причастными к управлению генами взрослого организма. Энн Дженис Бразерс из Университета штата Индиана уже удалось сделать первый шаг – она выделила один из таких "главных выключателей" клетки.

Изучение этих механизмов чрезвычайно важно. Если врачи-генетики будут досконально знать механизмы, ведающие включением и выключением генов, они смогут ввести человеку сыворотку, содержащую эти выключатели, и восстановить управляемые генами жизненно важные функции. Они сумеют также использовать вещества, называемые "рубильниками", чтобы включить инактивированные и выключить другие гены. Это позволит им предотвращать или обратить вспять те генетические изменения, которые, по мнению некоторых геронтологов, приводят к старению.


Клонирование: создание идентичных близнецов

Как мы уже видели в гл. 4, пересадка оказывается удачной только отчасти. Трудно найти органы, ткани которых были бы совместимы с тканями реципиента, что позволило бы избежать реакции отторжения трансплантата. Но представим себе, что органы можно будет «выращивать» отдельно, по заказу, причем вне организма и к тому же из собственных клеток реципиента. Такой орган был бы генетически идентичным организму реципиента и тем самым иммунная реакция против него исключалась бы. Такой путь открывает перед нами один из процессов генной инженерии, называемый клонированием (от греческого слова «clon», что означает «ветвь», «отпрыск» и подразумевает размножение путем черенков).

По образному сравнению одного из научных обозревателей газеты "Лос-Анджелес тайме", "клонирование в биологии можно уподобить процессу фотокопирования в производстве: это средство изготовления множества копий одного оригинала". Клонирование представляет собой форму генной инженерии, когда берется одна клетка, заключающая в себе полный набор генов организма, ее заставляют делиться до тех пор, пока не воспроизводится весь организм, из которого была взята клетка. Если, например, получить клон из одной-единственной клетки взрослого мужчины, то этот клон будет идентичным близнецом данного мужчины, полностью повторяющим его отпечатки пальцев, родимые пятна, белки и ДНК. А в результате орган, пересаженный от клонированного организма "оригиналу", не будет отторгнут.

Как мы уже отмечали, в каждой клетке содержится полный набор генов для воссоздания всего организма, только большинство из них попросту отключено. В 1969 г., исходя из предположения, что каждая клетка несет полную генетическую информацию, д-р Джон Гёрдон, в то время работавший в Оксфордском университете, приступил к экспериментам по переносу генетического материала из клеток взрослой лягушки в лягушачью яйцеклетку (икринку). Исследователь рассуждал так: если ядро взрослой клетки содержит все нужные гены, яйцеклетка обеспечит весь необходимый химический аппарат для дальнейшего развития.

Гёрдон поместил клетку, взятую из кишечника южноафриканской шпорцевой лягушки, под микроскоп и с помощью микропипетки (стеклянной трубочки тоньше человеческого волоса, присоединенной к отсасывающему устройству) проколол оболочку взрослой клетки и вынул ядро. Затем удалил ядро из яйцеклетки лягушки и заменил его ядром взрослой клетки. Ставя этот опыт, ученый хотел получить ответ на вопрос: "Сопровождается ли прогрессивная специализация клеток в процессе развития утратой тех генов, которые более не нужны клетке данного типа?" Иными словами, сохраняет ли, например, клетка кишечника гены, необходимые для создания клеток другого типа – скажем, клеток кожи, печени, крови? Гёрдон предполагал, что если гены не утрачиваются, можно получить клон лягушки путем пересадки ядра.

Почти сразу же после пересадки ядра из клетки взрослой лягушки икринка начала делиться; через несколько дней она превратилась в головастика, а еще через несколько недель – в лягушонка. Гёрдон создал несколько клонов лягушек, и все они жили, процветали и даже размножались. Исследователь показал, по собственному признанию, "что по крайней мере некоторые ядра из клеток кишечника несли в себе все гены, необходимые для дифференциации клеток всех типов". Тем самым он доказал, что клонирование осуществимо.

В первой серии экспериментов Гёрдона только 1,5 % всех попыток клонирования дали взрослых лягушек. Столь низкий процент объясняется чисто техническими причинами. Если большинство лягушек и не достигло полного развития, пояснял ученый, то вовсе не потому, что у них отсутствовали какие-то гены. В некоторых случаях икринки-реципиенты не выдержали повреждений, нанесенных при введении ядра микропипеткой. И действительно, хотя сама процедура клонирования относительно проста, травмирование яйцеклеток при пересадке ядра оказалось настолько серьезным, что большинство их от этого погибло.

Но для людей сложностей возникает куда больше. В отличие от лягушек люди не развиваются в яйцеклетках, находящихся вне организма матери: яйцеклетки человека проходят цикл развития в матке женщины, и они еще более хрупки и чувствительны к вмешательству извне, чем икринки лягушек. К тому же недостаточно просто внести генетический компонент клетки человека в яйцеклетку, из которой удален ее собственный набор генов; нужно еще поместить ее в утробу женщины или в искусственную матку. Обратная пересадка яйцеклетки человека чрезвычайно сложна. Известны только несколько случаев, когда такая яйцеклетка достигла полного развития. Дуглас Бевис из Лидского университета (Англия); успешно реимплантировал в матку нескольким женщинам яйцеклетки, оплодотворенные в пробирке, и женщины родили нормальных младенцев. Процесс реимплантации для клонирования не отличается от искусственного оплодотворения, и в настоящее время шансы на удачную реимплантацию невелики. Как подчеркивает научный обозреватель газеты "Нью-Йорк таймс", "из тридцати подобных попыток [только] три увенчались успехом".

Дополнительные сложности реимплантации заключаются в том, что матку необходимо подготовить точно к сроку при помощи определенных гормонов. Все эти гормоны уже имеются, но очень трудно ввести будущей матери точную дозу. Нелегко искусственным путем добиться того химического равновесия, которое позволяет зародышу человека через несколько дней после оплодотворения прикрепиться к стенке матки.

Не исключено, что настанет день, когда женщина обратится к врачу, у нее из яичника извлекут яйцеклетку, введут туда генетический материал из другой клетки и снова поместят яйцеклетку в матку женщины. Так женщина сможет родить свою или еще чью-нибудь точную генетическую копию.

Один из возможных будущих источников органов для пересадки – лимитированное (ограниченное) клонирование. Когда искусственное создание "выключателей", управляющих функциями клеток, станет реальностью, появится возможность клонировать отдельные органы. Сценарий (хотя пока только научно-фантастический) будет выглядеть примерно так.

Когда у человека по старости или в результате болезни какой-либо орган, например легкие, приходит в полную негодность, некоторое количество его генетического материала вводят в яйцеклетку. Больного погружают в "холодовый сон", а тем временем яйцеклетку помещают в искусственную матку из силастика. При помощи компьютера в матку вводится точное сочетание гормонов в нужной концентрации, что позволяет зародышу прикрепиться к пластиковой стенке. По мере развития плода в заменитель крови, питающий растущий организм, вводятся генетические репрессоры, которые выключают все программы развития, кроме, скажем, сердца, печени, почки или любого другого нужного для пересадки органа. Компьютер будет по-прежнему управлять концентрацией репрессоров в искусственной крови, и в сравнительно короткий срок в распоряжении медиков появится здоровое человеческое сердце, которое можно пересадить в грудную полость реципиента.

Поначалу новое клонированное сердце размером не более сердца ребенка будет использоваться в качестве "помощника", пока больной оправляется от пребывания в охлажденном состоянии и набирается сил. Через несколько месяцев больное сердце можно удалить, и новое сердце возьмет всю работу на себя. А так как новое сердце-клон из клетки самого, реципиента, оно не подвергнется отторжению, как сердце, взятое от трупа.

Другой сценарий для ограниченного клонирования еще проще.

Представим себе, что больной, страдающий сердечным заболеванием, подключен к аппарату сердце– легкие на длительный срок (сейчас это невозможно из-за разрушения форменных элементов крови). Участок сердца, пораженный болезнью, врачи удаляют, сохранив основу из здоровых клеток. В эти клетки введут "включатель" генов клеток сердца, который побудит их регенерировать новое сердце.

Уже появилась надежда, что со временем такое ограниченное клонирование станет реальным. В Уистарском институте в Филадельфии (частном исследовательском учреждении) Винсенту Кристофало удалось добиться размножения клеток человека в питательной среде значительно дольше, чем это предусмотрено "генетическим пределом" Хейфлика. Он добился этого, добавляя в питательную среду синтетический гормон гидрокортизон. Кристофало предположил, что при нормальном процессе некоторые дочерние клетки, возможно, теряют способность к делению из-за того, что не способны синтезировать необходимый для деления белок. В этом случае гидрокортизон может "подстегнуть" синтез белка и направить процесс в нужное русло. Если бы Кристофало мог заставить старые клетки, например клетки сердца, снова делиться под действием определенных химических веществ, включающих их гены, вполне вероятно, что его метод привел бы к ограниченному клонированию органов. А если бы это осуществилось, стало бы реальностью и выращивание новых органов вместо поврежденных.

Айзек Азимов, известный популяризатор науки и фантаст, биохимик по специальности, убежден, что, коль скоро клонирование удалось на лягушках, "оно непременно будет осуществлено и на людях". Как показали опыты с крысами и кроликами, клонирование безусловно осуществимо на млекопитающих.

Вместе с тем сама идея клонирования – как полного, так и ограниченного – наталкивается на серьезные социальные и моральные преграды. Лучше всех подвел итог проблемам клонирования человека Азимов. Он сказал: "Поверьте мне, для общества в целом эта игра не будет стоить свеч". И хотя усовершенствованная техника клонирования может дать экономический эффект при разведении животных, в частности для получения целого стада племенных быков, клонирование людей сопряжено со слишком большими сложностями.

С чисто практической точки зрения человеку, нуждающемуся в органе для пересадки, придется дать клетку для клонирования, а затем ждать самое малое девять месяцев, пока клон будет развиваться, да еще несколько лет, пока он достигнет достаточных размеров и зрелости, чтобы его можно было пересадить. Но моральные проблемы, связанные с клонированием, намного важнее, чем практические затруднения. Главный вопрос заключается в том, можно ли не считать клон полноценной личностью только на том основании, что его выращивали как донора органов? Даже при ограниченном клонировании, когда клонируется только какой-нибудь участок сердца и не возникает проблемы убийства целого клонированного организма, чтобы изъять у него органы, все же процесс непременно начинается с вмешательства в человеческую яйцеклетку. Это ставит перед нами проблему аборта и "права на жизнь" в новом, еще более усложненном варианте.


Молодая наука

Современная генетика, которая насчитывает неполных 25 лет от роду, выросла в развитую область науки, добилась сенсационных успехов и открыла перед человечеством фантастические перспективы излечения врожденных дефектов, замедления процесса старения и продления жизни. Но именно эта область науки как никакая другая владеет нашей жизнью – ведь она изучает объекты и процессы, которые являются причиной процветания жизни или ее прекращения. Генная инженерия возлагает на нас огромную ответственность. Имеем ли мы право манипулировать генами? Готовы ли мы к тому, чтобы владеть этим могущественным орудием? Безопасны ли попытки бороться со старостью средствами генной инженерии или это смахивает на ловлю бабочек с помощью атомных бомб? И достаточно ли мы подготовлены к тому, чтобы позволить ученым манипулировать человеческим организмом?

Сейчас никто не сможет предвидеть, какой ответ даст жизнь на наши вопросы. Генетик Роллин Д. Хочкисс из Рокфеллеровского института в Нью-Йорке признается: "Многие из нас инстинктивно пугаются тех сложностей, с которыми связано вмешательство в работу тонко отрегулированных и всеобъемлющих систем, делающих человека тем, что он собой представляет. Все же, по-моему, такие попытки непременно будут делаться. И дорога будет вымощена мозаикой из альтруизма, жажды наживы и невежества". А знаменитый физик Бруно Понтекорво следующим образом подытожил трудности выбора, ожидающего нас в будущем:

"Мы заблуждаемся, полагая, что генная инженерия человека все еще относится к области научной фантастики и нам незачем о ней размышлять. Меня глубоко волнует тот факт, что она будет развиваться очень медленно и поначалу едва заметно. По моим подсчетам, скажем, в первые четыре-пять лет окажется возможным вылечивать с помощью генной инженерии в очень малой, ограниченной степени определенные врожденные дефекты. Против этого никто не станет возражать, и мы сделаем следующий шаг, а потом еще один и т. д. И если не приступить к обсуждению этих проблем уже сейчас, мы окажемся в таком же положении, как с атомной бомбой, – когда никто не представляет себе, что происходит… Возможности безграничны, и мы обязаны знать о них заранее".


    Ваша оценка произведения:

Популярные книги за неделю