355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Джоэль Курцмен » Да сгинет смерть! Победа над старением и продление человеческой жизни » Текст книги (страница 4)
Да сгинет смерть! Победа над старением и продление человеческой жизни
  • Текст добавлен: 13 июня 2017, 22:00

Текст книги "Да сгинет смерть! Победа над старением и продление человеческой жизни"


Автор книги: Джоэль Курцмен


Соавторы: Филипп Гордон
сообщить о нарушении

Текущая страница: 4 (всего у книги 14 страниц)

Техника эксперимента еще не была окончательно отработана, и трудно было предвидеть, с какими осложнениями можно столкнуться, применяя ее на людях, поэтому было решено, что первую пересадку почки попытаются произвести человеку, которому дополнительный орган нужен будет только на время, пока не подлечат его собственные почки. Долгожданная пациентка, молодая женщина с тяжелым заболеванием почек, полученным во время беременности, поступила в госпиталь в 1947 г. Подходящая для пересадки почка была получена от умершего больного, и Хьюм приступил к операции. Он производил ее в маленькой комнате при свете двух небольших ламп – больная была так слаба, что даже перевозка в операционную могла стоить ей жизни.

Почку не сразу вживили в организм. Вначале ее положили на руку больной, прикрыв влажными губками, и Хьюм просто подключил женщину к почке через одну из артерий в руке. Три дня кровь циркулировала через почку, неся ей питательные вещества, а почка в свою очередь очищала кровь от вредных примесей. На четвертый день она начала сдавать, но к этому времени заработали собственные почки больной. После этой операции пересадка органов в ее современном виде стала реальностью.

С 1949 г. Хьюм приступил к экспериментам с помещением почки в тело больного. Вначале пересаженный орган помещали в нижнюю часть брюшной полости, а мочеточник выводили не в мочевой пузырь, а в отверстие в коже. Но через выведенный наружу мочеточник почка легко инфицировалась, поэтому никто из больных не прожил более семи месяцев. Тогда Хьюм стал помещать почки выше, ближе к их естественному анатомическому положению, а мочеточники выводил в мочевой пузырь больного, так что мочеотделение происходило относительно естественно. И все же, за исключением случаев пересадок почек от близких родственников, степень успеха была незначительной.

Как выяснилось, пересадка почки от отца к сыну происходит гораздо удачнее, чем в тех случаях, когда люди не связаны между собой кровным родством. Более того, вначале такие операции вообще оканчивались неудачей. Напротив, пересадка почки от одного идентичного близнеца другому давала самый большой показатель приживаемости. Первая удачная пересадка почки была осуществлена именно между близнецами в 1954 г.; мальчик, получивший почку, прожил еще восемнадцать лет.

Неудача пересадки почек у людей, не связанных кровным родством, объясняется тем, что организм реципиента отторгал полученный чужеродный орган так, словно это была угрожающая его жизни бактерия. Трансплантации не удавались как раз потому, что иммунная система организма работала очень эффективно. Как мы увидим ниже, большинство научных работ было направлено на то, чтобы преодолеть механизм отторжения.


Инвентаризация трансплантатов: современное состояние дел

В 1969 г. д-р Роберт Шварц из Центрального госпиталя Новой Англии в Бостоне заметил, что «каких-нибудь десять лет назад пересадку органов считали невозможной все серьезные ученые, за исключением кучки энтузиастов». Сейчас почти 7000 человек живут и здравствуют после пересадки почек именно благодаря этим энтузиастам.

Пересадки почек относятся к числу самых успешных операций по трансплантации органов, но некоторые успехи наметились и в других областях. Напомним, как обстоят дела в настоящее время.

Сердце

С тех пор как Луису Вашканскому была сделана операция в Кейптауне, пересадки сердца – наиболее драматические из всех трансплантаций – прошли долгий путь. К декабрю 1975 г. 64 группы хирургов во всем мире провели 286 пересадок сердца. 50 оперированных живы по сей день (1976 г.). Дольше всех живет 56-летняя домохозяйка из штата Висконсин, получившая новое сердце в 1967 г.

При пересадке сердца возникает множество чисто хирургических осложнений, не говоря о проблеме отторжения. В сутки сердце делает около 100 000 сокращений и перекачивает примерно 8000 л крови через кровеносную систему. Каждый из четырех сердечных клапанов открывается и закрывается примерно 400 000 раз, прогоняя кровь через 96 000 км кровеносных сосудов. При такой физической нагрузке сердце будет действовать, только если работа хирурга безупречна. С чисто технической точки зрения хирургия пересадки сердца чрезвычайно сложна, но обычно главными "виновниками" неудач являются болезнь и отторжение.

В настоящее время пересадкой сердца занимаются немногие центры, так как результаты этих операций почти непредсказуемы. Наиболее активная работа проводится в Станфордском университете, где группа врачей под руководством Нормана Шамуэя делает примерно одну операцию в месяц, причем процент успешных операций значительно выше средних цифр для всего мира.

Почки

К августу 1975 г. в 288 центрах мира было проведено 16 444 пересадок почек. Из 14 479 больных, за которыми велось послеоперационное наблюдение, у 47 % почки работали, у 21 % почки не работали и приходилось прибегать к диализным аппаратам; 32 % скончались. (Почти у двух третей умерших функция почек сохранилась; они погибли от болезней, несчастных случаев или хирургических ошибок.) Среди пациентов, проживших после операции минимум пять лет, 71 % получили почку от брата или сестры, 62 % – от одного из родителей и примерно 50 % – от умерших. Известны 55 случаев, когда женщины с пересаженной почкой беременели и рожали здоровых детей.

С каждым годом общая статистика успешных пересадок почек улучшается. По словам Джимми А. Лайта, заместителя директора Программы Уолтера Рида по пересадке органов, "при оптимальном подборе доноров и реципиентов до 80 % всех пересадок почек будут надежными на пять лет и дольше".

Печень

К апрелю 1974 г. произведено 200 пересадок печени; из них 11 человек прожили свыше года и только один – пять лет. Сложность состоит в том, что при нарушении функции печени кровь загрязняется шлаковыми продуктами и токсинами, а это в свою очередь ослабляет все клетки организма. При заболевании печени нельзя применить аппарат, подобный искусственной почке, поэтому общее хорошее состояние здоровья у больных с дисфункцией печени поддерживать невозможно.

Шансы на успех значительно повысятся, если будет найден способ поддерживать здоровье человека с больной или поврежденной печенью до тех пор, пока не будет получен орган для пересадки. Невзирая на сказанное, Томас Э. Старлз из Колорадского университета – первый, кто произвел пересадку печени, – считает, что "пересадка печени в наше время – вполне осуществимая и узаконенная, хотя пока и несовершенная форма лечения".

Поджелудочная железа

Поджелудочная железа вырабатывает инсулин, который в свою очередь контролирует усвоение сахара организмом. Больные имеют возможность получать инсулин перорально или в виде инъекций, поэтому нет необходимости прибегать к пересадке поджелудочной железы, как к крайнему средству спасения жизни человека с дисфункцией поджелудочной железы. Тем не менее проведено 46 пересадок поджелудочной железы; первую из них произвел в декабре 1966 г. д-р Ричард С. Лиллихей на медицинском факультете Университета штата Миннесота.

Двое больных прожили почти два года, остальные либо утратили функцию пересаженного органа в результате отторжения, либо умерли вскоре после операции. Однако один человек жив до сих пор (1976 г.), хотя прошло четыре года после операции.

Роговица

В разных центрах США произведено более 4000 пересадок роговицы с целью лечения слепоты, вызванной царапинами или язвами на роговице. Пересадка этого прозрачного наружного слоя глаза успешна в 25 % случаев. Однако чаще всего хирург делает только частичную пересадку, подсаживая в глаз пациента всего несколько слоев роговицы, и в этих случаях доля успешных операций исключительно высока – до 95 %.

Пересадка роговицы происходит без осложнений, которые сопровождают пересадку других органов, ибо роговица не пронизана кровеносными сосудами и в нее не попадают клетки иммунной системы крови. Высокий процент неудач при полной пересадке роговицы – результат трудностей в работе хирурга.

Кости

Первые 15 операций по пересадке костей были проведены в 1974 г., и с тех пор сделано еще восемь. Операции делались под руководством д-ра Генри Дж. Мэнкина, заведующего отделением ортопедической хирургии в Главной больнице штата Массачусетс в Бостоне. 15 раковым больным пересадили кости от недавно умерших, и эта операция предотвратила ампутации рук или ног, которые в противном случае были бы неизбежны. Все больные, кроме троих, относительно свободно владели конечностями уже через несколько месяцев после операции.

В последние годы было установлено, что иммунная система организма не отторгает пересаженные кости, если перед пересадкой их замораживали, а затем оттаивали.

Пупочные канатики

Сосуды из полимеров неплохо зарекомендовали себя в операциях на сердце, но в ногах и стопах в качестве заменителей вен на долгое время они менее пригодны. Братья-близнецы из Нью-Джерси, Ирвинг и Герберт Дардик (оба – специалисты по сосудистой хирургии), разработали серию химических воздействий, с помощью которых им удалось сформировать, подобрать по размеру и сохранять пупочные канатики с их венами и артериями как "биологический пересадочный материал". Братья Дардики пересадили эти сосуды 30 с лишним больным, которым грозила смерть или ампутация стоп или ног.

Легкие

С 1963 г. произведено 38 операций по пересадке легких. В настоящее время оставшихся в живых пациентов нет; только трое прожили дольше месяца. Главная причина неудач заключается в том, что легкие чрезвычайно трудно сохранять вне тела. Тысячи километров тончайших капилляров, пронизывающих легкие, почти невозможно промыть, и в результате многие крохотные пузырьки-альвеолы, где должен происходить газообмен, заполняются сгустками свернувшейся крови.

Другая сложность в том, что легкие должны начать работать сразу же после пересадки. Почка, пересаженная больному, может "отдыхать", пока пациент подключен к искусственной почке. Что же касается пересаженных легких, то они должны приступить к работе немедленно, ибо организм, лишенный кислорода, погибнет в считанные минуты. Имеются и чисто хирургические сложности: дыхательные пути нужно сшить так, чтобы впоследствии швы не разошлись, а просветы не были бы забиты сгустками крови.

И все же д-р Фрэнк Дж. Вейт из госпиталя Монтефьоре в Нью-Йорке, осуществивший ряд пересадок легких, настроен оптимистически. "Несмотря на то, что в настоящее время мы получаем несколько обескураживающие результаты, – говорит он, – и несмотря на большое количество сложных задач, которые предстоит разрешить, несомненно, что перспективы в области пересадки легких людям блестящие".

Нервная система

В 1957 г. советский хирург Владимир Демихов произвел невероятный эксперимент: он пересадил голову одной собаки на туловище другой и тем самым создал двуглавое животное. Подопытная собака жила пять дней, и хотя была ослаблена, все же самостоятельно держалась на ногах. При воздействии световых и звуковых раздражителей обе головы пытались лаять. На кинопленке можно видеть, как Демихов показывает место, где к телу собаки была подсажена вторая голова и где были соединены артерии и вены. Животное-хозяин и пересаженная голова погибли от сильной иммунологической реакции, "Пересадки мозга", подобные описанной, слишком напоминают научную фантастику, и у американских ученых они вызвали сомнения.

Более надежное направление исследований было продемонстрировано много лет спустя, в июне 1976 г., на конференции нейрохирургов во Флориде. Там другой советский ученый, Левон Матинян, показал фильм о крысах, которые вновь достигли значительной свободы движений после того, как их спинной мозг был перерезан. Животные получили инъекции ферментов. По словам Матиняна, у выздоровевших крыс полностью восстановилась подвижность задних ног в течение двух-восьми месяцев. И хотя некоторые американские ученые все еще недоверчиво отнеслись к научной методике советских исследователей, кажется, широко распространенное мнение о том, что нервная система не способна к регенерации, придется пересмотреть. Перед учеными открываются поразительные перспективы. Быть может пройдут годы, прежде чем новые знания найдут практическое применение, но в конечном итоге регенерация нервных элементов придет на помощь людям с параличом нижних конечностей, жертвам инсульта и всем тем, кто страдает от травм головного или спинного мозга.

Чтобы произошла эффективная регенерация, нейроны, прежде связанные между собой, а теперь разорванные, должны сохраняться живыми – воссоздать погибшие клетки невозможно. Нейрон должен вырастить аксон – отросток, проводящий импульсы, – достаточно длинный, чтобы связаться с соседним нейроном. Он не должен расти в другом направлении или натыкаться на шрам.

Советские ученые применяли ферментотерапию и на людях с повреждениями спинного мозга, и, хотя нам неизвестны детали и статистические данные об успешности лечения, они утверждают, что добились "положительного эффекта". Ферменты (применяется комбинация двух из них – трипсина и гиалуронидазы) предотвращают образование шрамовой ткани, которая может помешать росту нервного волокна, а также расщепляют мертвую нервную ткань и таким образом поставляют новый клеточный материал для роста нервных тканей. Как утверждают советские специалисты, ферменты оказываются наиболее эффективными, если ввести их сразу же после несчастного случая; если же повреждения слишком велики, то они вообще не оказывают никакого действия.


Детективный роман: попытка преодолеть отторжение трансплантатов

Как мы уже говорили, главная сложность при пересадке органов заключается в том, что организм реципиента отторгает орган донора.

Обычно отторжение трансплантата происходит в несколько этапов. Самая большая опасность подстерегает больного сразу же после операции, затем наступает временное затишье, но через несколько месяцев иммунная система может перейти в активное наступление на пересаженный орган. Первая атака обычно происходит в первые послеоперационные дни в самое опасное время, когда больной еще не оправился от операционной травмы и от последствий болезни, которая вызвала необходимость пересадки. Если больному удается выжить после первого приступа, он может выписаться из больницы и жить относительно нормальной жизнью до второго приступа. Рано или поздно пересаженный орган вновь подверг гнется массированной атаке со стороны иммунной системы и, возможно, перестанет функционировать. В результате больной, ослабленный потерей жизненно важных функций пересаженного органа, скорее всего погибнет.

Таков естественный ход послеоперационных событий в тех случаях, когда не делается попыток предотвратить отторжение. Но уже с первых экспериментов по пересадке органов ученые и хирурги поняли, что для успешного проведения операции необходимо каким-то образом подавить реакцию иммунной системы. Чтобы понять, как они решили эту проблему, необходимо познакомиться с работой иммунной системы.

Иммунная система – это группа органов и клеток, предназначенных для борьбы с болезнетворными бактериями, вирусами, раковыми опухолями, а также для отторжения чужеродных тканей, в том числе трансплантированных. Главный механизм иммунной системы заключается в способности распознавания чужеродных белков. Белки представляют собой длинные, свернутые цепочки аминокислот (рис. 2), которые служат основным строительным материалом нашего организма; белки управляют большинством химических реакций внутри клетки. Тело человека – кожа, волосы, мышцы, ногти, внутренние органы – в основном состоит из белков. Инструкции, или "матрицы", по которым клетки синтезируют все эти разнородные белки, необходимые для нормального роста и возобновления клеток, хранятся в ядре каждой клетки. Информационные матрицы представляют собой цепи молекул ДНК (дезоксирибонуклеиновой кислоты, см. рис. 3). Заложенная в молекуле ДНК и унаследованная нами от родителей информация диктует, какого рода белки будут синтезированы нашими клетками.



Рис. 2. Модель типичного белка. Длинная цепочка аминокислот свернута в хитроумный клубок, что позволяет белку выполнять свои функции в клетке

Большинство белков, закодированных в ДНК, у всех людей одинаковы; особенно это касается белков, участвующих в основных процессах жизнедеятельности. Таков, например, гемоглобин, содержащийся в красных клетках крови (эритроцитах) и переносящий кислород ко всем клеткам нашего тела. Другие белки строго индивидуальны но своей структуре, так что биохимик, подвергая их анализу, может с такой же точностью отличить людей друг от друга, как детектив делает это по отпечаткам пальцев. Только у идентичных (однояйцевых) близнецов все белки полностью совпадают, так как они получили одну и ту же ДНК. Именно поэтому однояйцевые близнецы, похожие друг на друга как две капли воды (о разнояйцевых этого не скажешь), могут без всяких осложнений прибегать к пересадке органов друг от друга, тогда как всем прочим людям приходится преодолевать более или менее серьезные трудности, в зависимости от того, насколько их ткани совместимы с тканями донора.


Рис. 3. Структура ДНК, получившая название 'двойной спирали'. Молекула состоит из двух цепочек, каждая из которых сложена миллиардами точнейшим образом расположенных атомов и содержит закодированную генетическую информацию отдельной клетки человеческого организма. Код определяет, какая образуется клетка: к примеру, печени, щитовидной железы или крови

Как же иммунная система узнаёт белки? Наши уникальные белки находятся на мембранах каждой из миллиардов клеток нашего тела. Мембрана окружает каждую клетку, как кожа, и регулирует усвоение питательных веществ и других химических веществ клеткой, а также выведение продуктов ее жизнедеятельности. Эти белки (получившие название трансплантационных, так как они играют важную роль при трансплантации) действуют наподобие ключей, которые могут подходить к замкам двоякого рода в иммунной системе – клетках типа Т и В. (Т – от названия «тимус», небольшой железы внутренней секреции, находящейся под грудной костью и продуцирующей клетки типа Т; В – от названия «сумка (bursa) Фабрициуса», органа, находящегося в кишечнике у цыплят.) Клетки типа Т и В могут быть «открыты» только индивидуальным ключом для данного человека – его уникальными поверхностными белками.

Когда в тело вторгаются бактерии или вирусы (а также трансплантаты, которые тоже состоят из чужеродных белков), их "ключи" не подходят к замкам типа Т и В. Это несоответствие провоцирует защитную реакцию клеток Т и В. Клетки типа Т становятся истребительными, они нападают на чужие клетки и уничтожают их. Клетки типа В выделяют антитела – белки особого рода, которые "метят" чужаков и привлекают специальные клетки иммунной системы (называемые макрофагами или "пожирателями-великанами"), действительно пожирающие всех чужаков. Сам по себе процесс "мечения" может ослабить мембрану клетки противника, так что она лопается. Иммунная система защищала нас миллионы лет, и отключить ее не так-то просто – даже ради жизненно необходимой операции по пересадке органов.

Случается, что клетки Т и В вдруг, как бы сбившись с толку, начинают нападать на клетки собственного организма, словно они отмечены чужеродным белком. Такая неспособность различать "свое" и "чужое" получила название аутоиммунной болезни: организм нападает на самого себя. Примером могут служить артрит и миастения (дегенерация мышечных нервов). Знаменитый австралийский ученый-медик сэр Фрэнк Макферлан Бёрнет сравнивает аутоиммунную болезнь с "бунтом войск внутренней безопасности в стране". Порой происходит обратное явление: иммунная система отказывается нападать на интервентов. Такая потеря защитной реакции называется толерантностью: иммунная система "терпит" присутствие посторонних организмов.

В норме, по мнению Бёрнета, иммунная система в период внутриутробного развития человека "учится" терпеть только клетки собственного организма и нападать на все прочие. Но до того, как начался этот процесс "обучения", иммунная система человека будет "терпеть" любой белок. Таким образом, аутоиммунная болезнь возникает, когда иммунные клетки "разучиваются" отличать "свое" от "чужого", как бы забывая то, чему научились в период внутриутробного развития. Теория Бёрнета получила экспериментальное подтверждение в опытах сэра Питера Медавара, проведенных в Лондонском университетском колледже в 1953 г. Вскрывая беременных мышей, Медавар аккуратно вводил каждому из зародышей клетки от взрослых мышей. Когда мышата рождались, оказывалось, что они не отторгают кожные трансплантаты, пересаженные рт мышей, чьи клетки им вводились ранее. Мыши, которым делались прививки во внутриутробном периоде, оказались толерантными к чужим клеткам, потому что эти клетки присутствовали в их организме в то время, когда происходило "обучение" иммунной системы, и эта си" стема приняла введенные клетки за клетки собственного тела. Медавар назвал эту экспериментальную толерантность "приобретенной".

Эксперименты Медавара открыли широкие возможности в будущем. По словам Бёрнета, "как только было доказано, что можно добиться приживления лоскута кожи у мыши… всем стало очевидно, что ту же идею можно использовать при пересадке тканей или органов от человека к человеку". Но одновременно с разработкой этой идеи ученые изыскивали различные пути, пытаясь как можно скорее найти способ борьбы с отторжением трансплантатов.

Убийство рентгеновскими лучами

В 50-е годы единственным способом иммунодепрессии – так медики называют предотвращение реакции отторжения – было разрушение клеток типа В и Т путем облучения всего организма рентгеновскими лучами. Этот метод позволял трансплантату сохраняться более длительное время.

Однако так как главная задача иммунной системы – защищать наш организм от заражения вирусами и бактериями, то, к несчастью, разрушение клеток Т и В устраняло всякую устойчивость к заражению болезнями. Поэтому, когда д-р Джон П. Меррилл, коллега Дэвида Хьюма по больнице Брайама в Бостоне, в апреле 1958 г. столкнулся с тяжелым случаем – у женщины не было обеих почек (и не было однояйцевого близнеца), – он был вынужден впервые прибегнуть к подавлению реакции отторжения путем рентгеновского облучения всего тела. Чтобы предотвратить последующую возможность заражения, женщину поместили на месяц в стерильную операционную. Стерилизации подвергалось все, что окружало больную, и все, с чем она должна была так или иначе входить в контакт: постельное белье, одежда всех, кто допускался в операционную, сама операционная, аппаратура и непосредственно трансплантат.

Пересадка сама но себе оказалась удачной, и вскоре после операции почка стала выделять нормальную мочу, но все же облучение оказалось слишком сильным, и через 32 дня больная умерла от общего заражения. (Люди, подвергающиеся такому интенсивному облучению, могут пасть жертвой вирусов, бактерий или грибов, с которыми при обычных условиях легко справляется иммунная система организма.) Другие группы хирургов во всем мире, занимающиеся пересадкой тканей и органов, были вынуждены применять облучение всего тела просто потому, что иных методов не существовало. И хотя некоторые операции проходили удачно, больные обычно жили после таких операций не более года. Постепенно ученые стали искать менее опасные методы иммунодепрессии. Самым перспективным из них оказался противораковый препарат под названием меркаптопурин.

Раковая терапия для трансплантатов

Клетки системы иммунитета, странствующие по всему организму, изнашиваются быстрее других клеток и нуждаются в постоянном возобновлении. Это происходит путем деления клеток, при котором одна клетка делится на две. А так как воспроизводство (деление) иммунных клеток протекает очень быстро, то они особо чувствительны к препаратам, которые разрушают именно делящиеся клетки. Клетки раковой опухоли также делятся очень быстро, и одно из основных направлений терапии рака было посвящено поиску лекарств типа меркаптопурина, которые были бы способны убить быстро делящиеся клетки.

Опыты на животных показали, что рентгеновское облучение не только убивает Т– и В-клетки, но и разрушает ткани, где они воспроизводятся, тогда как противораковые препараты уничтожают только Т– и В-клетки. Дэвид Хьюм, теперь уже в Медицинском колледже штата Виргиния, экспериментально доказал, что меркаптопурин позволяет продлить жизнь пересаженных почек у собак в шесть раз по сравнению с животными, не получавшими это лекарство. Но применение препарата осложнялось побочными явлениями и возможностью инфекции. В 1960 г. ученые научились частично снимать эти осложнения, пользуясь препаратом, по действию близким к меркаптопурину, но менее токсичным – имураном (или азатиоприном).

Оба лекарства очень быстро были введены в практику и экспериментально использовались во время пересадок почек у людей: меркаптопурин в апреле 1960 г., а имуран – в марте 1961 г. в бостонской больнице Брайама. И хотя оба эксперимента оказались неудачными из-за того, что врачи еще не умели правильно применять лекарства, молодой человек, прооперированный в той же больнице д-ром Джозефом Мурреем в апреле 1962 г., прожил с новой почкой 21 месяц. Более того, за это время он справился с воспалением легких и перенес операцию аппендицита, и большую часть времени жил дома и работал. Когда ночка стала отказывать, ему пересадили новую. В трансплантации наступила новая эра.

Подавление стероидами

Хотя имуран остается столпом иммунодепрессивного воздействия, подобный же эффект оказывают и вещества, называемые кортикостероидами (или, сот кращенно, стероидами). Это синтетические аналоги стероидных гормонов, выделяемых корой надпочечников. Кортикостероиды регулируют множество важнейших функций организма, в частности водно-солевой баланс в тканях. Люди, принимающие стероидды, часто приобретают характерный вид: их лица округляются, как полная луна, от избытка воды в тканях.

Обычно стероиды применяются как дополнение к имурану, когда начинается реакция отторжения, Комбинация имурана со стеродами весьма эффекттивно подавляет реакцию отторжения. Некоторые люди, получившие пересаженную почку не от родственников, живут с новой почкой свыше 10 лет – иными словами, по сравнению с началом 50-х годов жизнь трансплантата продлилась на 1200 %.

Однако имуран и стероиды опасны тем, что они снижают иммунитет организма в борьбе с болезнями, в результате реципиенты подвержены большей опасности заболеть раком, чем средний человек. Считается, что раковые клетки время от времени образуются у всех людей, но болезнь у них не развивается, так как иммунная система разрушает злокачественные клетки, едва они появляются. Поэтому разрушение иммунной системы или ее целенаправленное подавление может привести к тому, что раковые клетки начнут безудержно размножаться и возникнет опухоль.

АЛС для всех

Еще один способ подавления реакции отторжения – введение вещества, называемого АЛС (антилимфоцитарная сыворотка). В отличие от рентгеновского облучения АЛС не разрушает ткани, где образуются Т– и В-клетки, а рассчитана на то, чтобы временно вывести эти клетки из строя.

В 1963 г. сэр Майкл Вудрафф, профессор хирургии Эдинбургского университета, сделал следующее открытие: если ввести Т– и В-клетки крыс кроликам, то в теле кроликов в ответ на вторжение чужеродных белков быстро формируются специфические антитела, разрушающие клетки крыс. Вудрафф взял кровь, содержащую убивающие клетки крысы антитела (называемые АЛС), и перелил ее обратно крысам. После этого крысам были пересажены лоскуты чужой кожи. Как оказалось, АЛС значительно подавляет реакцию отторжения у крыс, убивая специфические клетки Т и В, причем пересаженная кожа остается на месте в 12 раз дольше, чем у крыс, не получивших АЛС.

В 1967 г. после экспериментов на животных д-р Томас Старзл из Чикагского университета испытал АЛС при пересадке почек у человека. В результате больные жили дольше и более редкие попытки отторжения трансплантатов у них проходили легче, чем у тех, кто получал обычные иммунодепрессанты. Другие врачи попробовали применить АЛС на больных, которые перенесли пересадку печени или сердца, и получили обнадеживающие результаты, особенно в тех случаях, когда АЛС применялась в сочетании с имураном и стероидами, а не вместо них.

И все же АЛС обладает по меньшей мере двумя серьезными недостатками. Во-первых, производство АЛС постоянной эффективности сопряжено с многими трудностями, а во-вторых, АЛС способствует, большей вероятности заболевания раком. Не удивительно, что ученые продолжают поиски иных способов помешать отторжению трансплантатов. Одно из таких направлений – десенсибилизация.

Десенсибилизация

Десенсибилизация как результат продолжения более ранней работы Медавара по приобретенной толерантности – процесс, частично заимствованный из методики лечения аллергии. Аллергические реакции сходны с реакциями отторжения тканей. Чужеродный белок, содержащийся, например, в волоске кошки или пыльце растений, провоцирует слабую реакцию отторжения в чувствительной слизистой оболочке глаз, носа и горла, вызывая насморк, слезотечение и раздражение оболочки этих органов.

Многие виды аллергии лечат инъекциями ничтожных количеств белка-аллергена. Иногда после нескольких сеансов организм десенсибилизируется: небольшие количества белка уже не вызывают аллергической повышенной реакции, хотя до сих пор никто не знает, в чем секрет такой десенсибилизации.

Со времени ранних работ Медавара было известно, что если ввести чужеродные белки зародышу, то позднее, после рождения, он примет пересаженный лоскут кожи, скажем, от донора введенного белка. Но все считали, что человека, когда он уже родился, невозможно десенсибилизировать к чужеродным белкам, по крайней мере к тем, которые несут клетки пересаженного органа.

А вот у животных можно было добиться десенсибилизации. Чужеродные белки, полученные от коров (очищенная сыворотка), в ничтожных количествах вводили взрослым кроликам. Вначале кролики реагировали на чужеродной белок, но после двенадцатидневных повторных инъекций реакция постепенно угасала; кролики были слегка десенсибилизированы.

Исследователи испытывали различные схемы введения чужеродного белка и различные методы изменения его состава, пытаясь добиться большей эффективности в преодолении реакции иммунной системы, но до сих пор для людей десенсибилизация остается только мечтой. Предстоит решить две задачи. Во-первых, чтобы добиться десенсибилизации у животных, нужно подвергать их воздействию чужеродных белков длительное время. Но при пересадке у человека такой возможности нет, так как орган умершего должен быть использован немедленно. Во-вторых, в экспериментах с животными использовались только очень чистые типы белков. Между тем при пересадке органа хирурги помешают в тело человека сотни типов разнообразных белков, и десенсибилизировать его к такому множеству белков трудно. И все же десенсибилизация позволяет надеяться на возможность подавления реакции отторжения у людей, не разрушая защитную иммунную систему в целом.


    Ваша оценка произведения:

Популярные книги за неделю