355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Б Земляной » В мире занимательных фактов » Текст книги (страница 11)
В мире занимательных фактов
  • Текст добавлен: 6 октября 2016, 21:28

Текст книги "В мире занимательных фактов"


Автор книги: Б Земляной


Соавторы: Ю. Чевокина
сообщить о нарушении

Текущая страница: 11 (всего у книги 22 страниц)

От Алма-Аты до Фрунзе по прямой 244 километра. Для передачи изображения по телевидению в обычных условиях это слишком солидное расстояние. Тем не менее жители столицы Киргизии регулярно смотрят передачи из столицы Казахстана и наоборот, хотя между этими городами нет ни промежуточных ретрансляционных точек, ни передающего кабеля.

Ученые нашли новый способ увеличить дальность телепередач. Острые края горных вершин служат в качестве естественного отражателя и передатчика ультракоротких радиоволн.

На реке работает необычная гидроэлектростанция: поперек потока с берега на берег переброшен простой трос и на нем нанизаны поперечные турбины, похожие на ведра, разрезанные вдоль. Под напором течения турбины вращают трос и он, работая, как вал, приводит в движение генератор. Электрический ток от генератора питает лампочки.

Это – «гирляндная» гидроэлектростанция конструктора Б. С. Блинова.

Обычно сооружение ГЭС обходится очень дорого: требуются сложные изыскания, надо строить плотины. Да и затопление прилегающей к реке местности невыгодно: под воду уходят урожайные поймы. И вот создана такая энергетическая установка, которую могут построить своими силами колхозники и рабочие совхозов без больших затрат.

«Гирляндная» ГЭС по конструкции очень проста и может быть установлена на самых маленьких реках. Для нее достаточны глубина в 25 сантиметров и скорость течения 1 метр в секунду. Турбины могут с успехом работать и подо льдом. По стоимости «гирляндные»

ГЭС в десятки раз дешевле, чем гидростанция с плотинами. Мощность «гирлянд» различна. Например, на реке Бие спроектирована «гирляндная» электростанция на 250 киловатт, а в колхозе «Родина» под Москвой – на 32 киловатта. Количество турбин может быть увеличено, и благодаря этому возрастет общая мощность установки. Кроме того, «гирляндную» электростанцию легко переставлять с одного места на другое.

Давно мечтают люди оттеснить холод с высоких широт, превратить все континенты в цветущие сады, в область вечного плодоносящего лета, где не будет осени и зимы, морозов и туманов, слякоти и пронизывающей сырости, иссушающего тропического зноя и удушливой жары. Мягкое лето круглый год!

Фантастика? Ничуть не бывало! Вполне реальная перспектива. Надо лишь заглянуть вниз, в недра и, проникнув в них, набросить «узду» на тепловые источники, проложить им дорогу из «преисподней» наверх.

Рекордная глубина, пока что доступная для бурения, равна почти восьми километрам. И каждый новый десяток метров дается с громадным трудом. Препятствие – температура. Непрерывно, по мере погружения, она повышается через каждые сто метров на три градуса. Десять тысяч метров, это по крайней мере, триста градусов. А гигантское давление? О нем тоже не следует забывать.

«Прокладывать буровые скважины на десять и более километров хотя и заманчивое дело, но с ним, видимо, придется потерпеть, – рассказывает директор лаборатории гидрогеологических наук СССР профессор Макаренко. – В первую очередь мы возьмемся за те гидротермы, которые находятся значительно ближе, на глубине одной-трех тысяч метров от поверхности и на расстоянии, вполне посильном для «бегуна на среднюю дистанцию»– турбобура.

За две-три недели турбобур просверлит скважину в земле и оттуда ударит неоскудевающий мощный фонтан кипятка. Горячий фонтан будет бить веками, тысячелетиями, подобно минеральным источникам. Ведь его питает тепло атомного распада – процесса, не прекращающегося в глубинах земли».

Постоянство, высокая температура (в сто, двести, триста градусов) подземной воды, сжатой давлением в десятки атмосфер, не исчерпывают, а открывают список ее достоинств и возможностей. Насыщенная химическими элементами и солями, она представляет собой отличное, доступное и дешевое химическое сырье. Анализ обнаружил в ней йод, бром, борную и угольную кислоты, гелий, литий, горючие газы. Как ее не назвать полезным ископаемым.

А целебные свойства такой воды, когда она именуется минеральной! Самые различные недуги с успехом лечатся при регулярном приеме ванн или питье лечебной воды.

А естественная теплофикация? От пробитой поблизости от города скважины протянут под улицами разветвленную сеть труб. Воздух станет идеально чистым – ни пыли, ни копоти, ни дыма. Таков будет облик города, питаемого гидротермами.

Трубы с горячей водой не только прорежут жилые кварталы, но и выйдут за их пределы, вдохнут жизнь в пригородное хозяйство в зимнюю пору. Они согреют землю и воздух в теплицах, парниках, оранжереях, где, не взирая на стужу, будут выращиваться сочные овощи, фрукты, зелень, цветы.

Гидротермы положат конец и вечной мерзлоте, белому безмолвию бескрайних просторов тундры. Всюду изменится и станет благодатным климат.

Над просторами Каспия кружат самолеты. На борту их, кроме пилотов, бортмехаников и радистов, находятся аэросъемщики и ученые, лаборатории аэрометодов Академии наук СССР. Вооружившись специальными аппаратами, они фотографируют морское дно.

Аэросъемка помогает ученым исследовать подводную геологическую структуру Каспия, определить нефтеносность, уточнить изменения, происходящие время от времени на морском дне. Чтобы дать исчерпывающую научную характеристику подводного рельефа, участники экспедиции спускаются под воду, и, путешествуя по дну морскому с фотоаппаратами, молотками, добывают ценные материалы.

Съемки с воздуха и под водой, образцы пород, добытые с больших глубин, а затем исследованные в лаборатории, позволяют составлять карты дна Каспийского моря. Эти карты широко используются разведчиками нефти, инженерами, сооружающими вышки и эстакады, работниками рыбных промыслов.

Северная Двина. Река еще скована льдом, но под лучами весеннего солнца на крутых ее берегах уже появились первые проталины. В излучине, на льду, алеют сигнальные флажки. Поравнявшись с ними, летчик включает распылитель, и на лед ложится темная полоса.

Так для борьбы с ледяными заторами на реках применяется новый метод, рекомендованный инженером Н. С. Антрушиным.

На больших реках, особенно текущих на север, из-за-различных климатических условий в верховьях и низовьях таяние льда происходит не одновременно. Нередко в излучинах льдины, набиваясь до самого дна, образуют прочную плотину. Начинается наводнение.

Гораздо проще и дешевле предупреждать образование заторов. Для этого предварительно зачерняется лед: черный цвет сильнее поглощает солнечное тепло, зачерненный лед тает быстрее.

Советский антрополог и скульптор Михаил Михайлович Герасимов доказал, что формы костей и мягких покровов тела человека находятся в тесной взаимосвязи. Он добился исключительных успехов в пластической реконструкции лица по черепу.

По сохранившимся черепам профессор Герасимов вылепил скульптурные изображения великого Рудаки, героя «Слова о полку Игореве» князя Всеволода Святославовича, Ивана Грозного, Тимура, великого русского флотоводца Ушакова.

Метод восстановления лица по черепу находит теперь применение и в криминалистической практике. Так, в 1940 году по черепу Герасимовым было восстановлено лицо убитой женщины, причем реконструкцию затрудняло отсутствие нижней челюсти. Когда после восстановления лицо сравнили с фотографией убитой, обнаружились очень сходные черты. Убийца, которым оказался муж погибшей, был уличен и осужден.

В Казахстане последователем М. М. Герасимова! овладевшим методикой восстановления лица по черепу, является Ноэль Шаяхметов – начальник Актюбинском областного бюро судебно-медицинской экспертизы.

В наши дни сообщение между европейским и азиатским берегами Босфора поддерживается с помощью лодок, катеров и специальных пароходов-паромов.

В настоящее время проводится исследование грунта на дне пролива с целью изучения возможности сооружения здесь моста. Это будет один из самых больших мостов в мире. При высоте 50 метров мост обеспечит беспрепятственный проход по проливу больших морских судов. По двухэтажной проезжей части сможет одновременно двигаться несколько транспортных потоков. Через этот мост пройдет будущая межконтинентальная автострада Европа – Азия – Африка. Поскольку у Турции нет средств для такого гигантского строительства, на его финансирование претендует ряд американских, французских и западно-германских фирм.

Под Монбланом, этой высочайшей вершиной Альп, сооружается самый длинный в мире автодорожный тоннель протяжением 11 600 метров.

Он соединит Францию и Италию. Новый путь сократит дорогу между этими двумя странами больше чем на 200 километров. Ширина той части тоннеля, по которой будут двигаться автомобили, составит 70 метров. Кроме того, с обеих сторон будут проложены пешеходные пути.

Геологи предупредили строителей о сложности работ. 8 километров пути придется вести в твердом граните. Предполагается, что в некоторых местах проходчики будут вынуждены работать при жаре до 50 градусов.

В Торонто (Канада) планируется постройка отеля высотой в 123 этажа. Это здание, стоимость которого, по предварительным подсчетам, составит 318 миллионов долларов, будет самым высоким в мире. Сейчас им считается «Эмпайр стейт билдинг» в Нью-Йорке, насчитывающий 102 этажа.

Крупнейший мост находится в США, штат Луизиана. Он соединяет берега озера Понигартрен, и длина его составляет 39 километров.

В горах над долиной реки Зилль, вблизи Инсбрука, сооружается высочайший в мире мост. Его опоры поднимутся на 84 метра. Он соединит новую автостраду между Австрией и Италией.

Крупнейший тоннель – Симплонский – протяженностью 19 780 метров находится на железной дороге Берн – Милан и соединяет территории двух государств – Швейцарии и Италии.

Самая длинная плотина в мире – Горьковская на Волге—15 242 метра.

Коленчатые валы от 2 до 70 тонн весом для океанского флота производит Чехословакия. Там и заказывают их многие морские державы для своего судостроения.

Промышленное использование подводных богатств применяется не только нефтяниками, но и горняками. В 1960 году в Мексиканском заливе вступила в действие морская шахта для добычи серы, мощность пластов которой достигает 125 метров. Надводная часть сооружения имеет высоту шестиэтажного дома. Добычу ведут на глубине 600 метров.

Поликапролактам, называемый у нас капроном, в Швеции называется грильоном, в Польше – стилоном, в ГДР – перлоном. Его волокна можно перегибать более 30 тысяч раз. Для сравнения скажем, что проволоку из сверхпрочного металла можно перегнуть в одном месте не более 20 раз.

В ГДР дамские перлоновые чулки изготовляют из сверхтонких нитей; длина нитей одного чулка 5 500 метров, весит чулок всего шесть граммов и состоит из 1 миллиона 500 тысяч петель.

Нити капронового волокна на 25 процентов легче нитей из вискозного шелка, а крепость их значительно большая. Это позволяет вырабатывать из капронового волокна ткани, которые в 3–4 раза прочнее вискозных, в 2–3 раза износоустойчивее хлопчатобумажных и шелковых тканей.

В институте искусственных волокон в г. Лодзи (Польша) разработана технология производства синтетического волокна из поливинилового спирта. Свойства его близки к свойствам хлопка, но эти волокна более прочны. Новое волокно, названное винилоном, стойко против концентрированных кислот и щелоков, а также гнилостных бактерий в морских и тропических условиях.

Чтобы получить нити искусственного шелка намного тоньше паутины, нужны особые сетки – фильеры, на квадратном дюйме которых (2,54 X 2,54 сантиметра) умещается четыре тысячи восемьсот невидимых глазу сквозных отверстий.

Часы на высотном здании МГУ в Москве установлены на высоте 76 метров. Заводятся часы сразу на неделю.

Каждая стрелка весит 80 килограммов, длина ее больше двух человеческих ростов. На изготовление часов пошло около 9 тонн нержавеющей стали, мастерскими сделано 25 тысяч всевозможных креплений, винтов, гаек, шайб.

Летом 1918 года В. И. Ленин дал указание произвести реставрацию спасских курантов. Он хотел, чтобы Спасская башня агитировала, а не молчала, чтобы она говорила языком революции. Исполняя поручение В. И. Ленина, в Кремль пригласили пять специалистов, среди которых были представители крупнейших часовых фирм Павла Бурэ и Рагинского. Они дали согласие выполнить намеченные работы, но потребовали за ремонт 90 тысяч рублей и 150 тысяч рублей за переделку музыкального мотива. Предложение этих фирм было отвергнуто.

В августе 1918 года за ремонт часов взялся кремлевский слесарь Н. В. Беренс, а за переделку курантов – музыкальной части часов – художник М. М. Черемных, ныне заслуженный деятель искусств. В сентябре 1918 года реставрация была закончена, С тех пор с высоты Спасской башни на всю страну стал разноситься торжественный бой кремлевских курантов.

К 15-й годовщине Октября была произведена настройка механизма курантов, а через пять лет часы еще подновили. Поверхность циферблата покрыли специальными стойкими красками. Шпиль Спасской башни украсила пятиконечная рубиновая звезда. Обод циферблата, цифры и стрелки покрыли золотом. На позолоту четырех циферблатов израсходовано 26 килограммов золота.

Такова коротко история часов Спасской башни.

Они занимают 8-й, 9-й и 10-й этажи Спасской башни и состоят из четырех отдельных узлов: механизма хода, боя четвертей, боя часов и курантов. Часы заводятся 2 раза в сутки в одно и то же время – в 12 часов дня и в 12 часов ночи – обычным подъемом гирь, которые весят от 100 до 200 килограммов.

Несмотря на то, что ход часов контролируется специальными приборами, два раза в сутки механизм проверяет дежурный часовщик, который осматривает часы, заводит их, проверяет ход по хронометру и, если нужно, делает поправки. Циферблаты часов выходят на четыре стороны башни. Диаметр циферблата – 6 метров 12 сантиметров. Высота цифр – 72 сантиметра. Длина часовой стрелки —2 метра 97 сантиметров, длина минутной стрелки 3 метра 28 сантиметров. По меткому выражению В. И. Ленина, часы Спасской башни называют «главными часами» государства.

ОТКРЫТИЯ И ИЗОБРЕТЕНИЯ

Пьера Кюри и его жену Марию Склодовскую-Кюри называют «родителями» радия. Они вместе открыли новые химические элементы радий и полоний, вместе исследовали явления радиоактивности. За свои работы в области радиоактивности Пьер Кюри в 1903 году был удостоен Нобелевской премии.

Для получения тяжелой воды (в молекуле которой обычный водород заменен его изотопом-дейтерием) необходимо очень сложное оборудование. Несколько лет назад американские исследователи нашли в иле, взятом у Багамских островов, миллиарды бактерий, обладающих способностью «утяжелять» воду. Ученые рассчитывают также найти дорогую тяжелую воду в глубинах океана. Не исключено, что наступит день, когда мощные насосы начнут откачивать тяжелую воду из естественных источников.

Учеными Академии наук СССР разработан лабораторный метод получения алмазов. По их данным были созданы чертежи установок, в которых получены искусственные алмазы. Основной принцип действия таких установок повторяет природные условия, в которых «рождаются» алмазы – высокая температура при громадном давлении.

Раскрыта еще одна тайна природы: люди научились превращать мягкий графит в минерал, прочность которого не превзойдена в окружающем нас мире. Получение алмазов в промышленных масштабам – одно из блестящих открытий нашего века.

Советскими учеными получено и другое вещество – боразан, не существовавшее ранее в природе и по своим свойствам не уступающее алмазу.

Старший научный сотрудник лаборатории времени и частоты Всесоюзного научно-исследовательского института метеорологии имени Менделеева Д. П. Марковский сконструировал установку малых промежутков времени УМПВ-1, которая может измерять отрезки времени, равные одной миллионной доле секунды.

Нашу Землю окружает плоское, водородное облако. Космонавт с поверхности Луны в специальный прибор мог бы увидеть его. Оно напоминает по форме кольцо Сатурна. Облако это обнаружил астроном П. Щеглов. По расчетам, оно располагается на высоте не дальше 10 тысяч километров от Земли.

Советскому ученому, который пытался составить карту распределения излучения водорода по небу, удалось создать установку, в 50 раз более чувствительную, чем приборы, до сих пор применявшиеся для этой цели.

Учеными Дубны открыт новый вид радиоактивного распада – протонная радиоактивность.

До сих пор было известно пять видов радиоактивного распада ядер: альфа-радиоактивность, бета-радиоактивность, гамма-радиоактивность, спонтанное (т. е. самопроизвольное) деление и испускание так называемых запаздывающих нейтронов.

Группе советских ученых, руководимых членом-корреспондентом АН СССР Г. Н. Флеровым, удалось обнаружить существование протонной радиоактивности. Работа выполнена В. А. Карнауховым, Г. М. Тер-Акопьяном при участии ряда других сотрудников лаборатории ядерных реакций.

Работами одного из крупнейших советских физиков-экспериментаторов П. Л. Капицы установлено, что электрическая энергия распространяется не по проводам, как мы привыкли считать, а по воздуху. Провод дает лишь направление потоку энергии.

Чтобы уменьшить потери при передаче больших мощностей, в современных линиях передач переменного или постоянного тока создают высокие напряжения – в сотни тысяч вольт. Казалось бы, увеличивай напряженность – и потери будут уменьшаться. Но воздух не выдерживает таких громадных электрических полей: наступает пробой – электричество стекает на землю. Да и провода приходится делать очень толстые, подвешивая их на гигантских гирляндах изоляторов, защищать их от грозовых разрядов.

А что если передавать энергию без проводов, прямо по металлическим трубам – волноводам, проложенным в земле? Электромагнитная энергия будет течь внутри волноводов, как вода в трубе.

В волноводах могут распространяться только короткие волны – сантиметровые. А это и есть сверхвысокочастотные колебания, которые генерируются планотронами – генераторами сверхвысоких частот.

Теория П. Л. Капицы показывает, что можно создавать сверхмощные планотроны. Они будут преобразовывать энергию постоянного тока в энергию электромагнитных колебаний сверхвысоких частот и гнать ее по волноводам. По трубе радиусом 1 метр можно будет передавать всю энергию Братской ГЭС на тысячи километров. И это при коэффициенте полезного действия около 90 процентов!

От этой мощной магистральной линии можно будет ответвлять энергию по меньшим волноводам. Такая «канализация электроэнергии» может решить ряд интересных проблем техники. Например, не представляет особого труда использовать эту высокочастотную энергию непосредственно на нагревание. Надо направить ее прямо по трубам в металлургическую печь, где она будет плавить руду. Высокочастотная электроэнергия может быть направлена без изоляции по трубам в буровые скважины. Там она будет разогревать грунт на больших глубинах – это может помочь при добыче серы, тяжелых нефтей и т. д.

Но энергия нужна не только для нагревания – она должна вращать и роторы моторов. Что ж, П. Л. Капица теоретически и экспериментально показал, что планотрон обратим.

Если к динамомашине подвести электрический ток, она будет работать как электромотор. Так и здесь: планотрон может отлично преобразовывать сверхвысокочастотную энергию в постоянный ток нужных напряжений.

Существуют проводники, передающие световую энергию, к примеру солнечную, на значительное расстояние. Принцип их действия основан на так называемом законе полного отражения, который заключается в том, что когда луч света попадает на границу стекло – воздух, то при определенном угле падения он полностью отражается от поверхности раздела. Если же поверхности стеклянной массы параллельны, то отраженный луч попадает в канал, по которому распространяется, «течет» внутри стеклянного прутка.

…Из стеклянной массы вытягиваются тонкие, диаметром в сотые доли миллиметра, стеклянные волокна. Такие нити обладают большой прочностью и гибкостью, подобно тонким стальным проводам, но так как поперечное сечение волокна мало, они передают мало света. Для передачи достаточного количества света волокна складываются в жгут. Вот и световод – гибкий и легкий, удобный, малых размеров. Чтобы осветить помещение площадью 30 квадратных метров, нужен световод диаметром всего лишь 3 квадратных миллиметра. Передавать же свет можно на большие расстояния.

Любопытно, что уже сейчас в развитии волоконной оптики намечаются три важных направления: проблема передачи солнечной энергии большой концентрации, применение в медицине и использование волокна для передачи изображения.

Конструкторами Чехословацкой Социалистической Республики создан бесчелночный ткацкий станок, в котором вместо традиционного челнока используется… воздух, так называемый «воздушный луч». Новый тип ткацкого станка может ткать различные волокна, причем в два раза быстрее, чем челночный.

Этот станок – «брат» ранее сконструированного чехословацкими инженерами бесчелночного ткацкого станка, где вместо челнока использовалась капля воды. Но на таком станке можно было ткать только искусственные волокна.

У цеха сульфанола Красноводского нефтеперерабатывающего завода разные корреспонденты: капитаны дальнего плавания и домашние хозяйки, директора текстильных фабрик и сотрудники лабораторий научно-исследовательских институтов, работники механических прачечных и вагонных депо. И все просят об одном: «Дайте сульфанол!»

Родился сульфанол в лаборатории Всесоюзного научно-исследовательского института по переработке нефти и газов. Один из нефтяных газов – пропилен – и взяли ученые для получения сульфанола.

Опыты в лаборатории, споры, неудачи и снова опыты… И, наконец, получен первый килограмм долгожданной желтоватой пасты – сульфанола. Его тут же испробовали. Белую тряпку испачкали «адской» смесью – сажей, подсолнечным маслом, ланолином, вазелином – и выстирали в сульфаноле. Тряпка отстиралась. Но химики привыкли не доверять своим глазам. Насколько чиста тряпка, они проверили на специальном приборе – фотометре, сравнившем цвет выстиранной тряпки со стандартным образцом чистой белой ткани. Прибор не разочаровал их: сульфанол действовал прекрасно.

…От Красноводска уходят в море баржи, груженые мазутом и нефтью. А когда они возвращаются назад, единственным их грузом является морская вода, взятая для балласта: после нефти и мазута залить в танки ничего больше нельзя.

Чистка баржи – тяжелый и вредный для здоровья труд. Закутанные до глаз, в кислородных масках спускаются рабочие в отсеки. Десять человек может вычистить за день только один отсек, а их на барже 44!

Теперь представьте, что на борт каждого нефтеналивного судна взято несколько бумажных мешков с белым порошком. Баржа пришла в порт. Нефть или мазут выкачали. В танк засыпают порошок и заливают водой, морской или речной – какая имеется за бортом. Затем в танк вместо людей опускается гидромонитор – машина, соединенная с насосом. Вот и все. Из вертящегося гидромонитора с силой вырываются струи раствора и омывают стенки танка. Другой насос откачивает грязный раствор. Баржа отмывается так чисто, что хоть заливай танки подсолнечным маслом.

Сульфанол с таким же успехом можно применить для чистки железнодорожных цистерн, промывки шерсти и шелка на текстильных фабриках, в механических прачечных и для мытья бутылок. В нем можно отстирать шерстяное платье, даже если оно испачкано мазутом, жиром или подсолнечным маслом. В соленой воде он тоже мылится, не различает ни железа, ни шерстяного волокна, ни шелка, ни меха и изготавливается не из подсолнечного или хлопкового масла и животного жира, как «доброе, старое мыло», а просто… из газа.

Советским инженерам, работникам Всесоюзного научно-исследовательского института швейной промышленности В. И. Попкову, В. Г. Феденюку, И. М. Власову принадлежит приоритет в создании способа соединения деталей одежды с помощью термопластического клея.

Таким клеем соединяют отдельные детали, или, как говорят швейники, отдельные «узлы» одежды.

Готовые костюмы внешне ничем не отличаются от тех, что сшиты нитками. Но это только при беглом взгляде. Лацканы у пиджака, обработанного клеем, словно только что накрахмалены, без единой морщинки. Даже если лацканы вымокнут, они не сморщатся. А главное, клей позволяет широко автоматизировать швейное производство и значительно повысить производительность труда.

Пока еще с помощью клея «шьют» одежду, которая не стирается. Но уже найдены рецепты такого клея, который не теряет своей прочности и при стирке. На многих наших фабриках костюмы, демисезонные дамские и мужские пальто уже «шьют» с помощью клея.

В лаборатории физики сверхвысоких давлений Академии наук СССР изготовлен гидравлический компрессор, создающий давление в 1 500 атмосфер. Под таким колоссальным давлением тонкая струйка воды пробивает отверстие в стальном листе толщиной в 2 миллиметра.

В Сибирском отделении Академии наук СССР создана «гидропушка»– импульсный водомет, выбрасывающий струю воды под давлением в три тысячи атмосфер. Струя вылетает со сверхзвуковой скоростью и расшибает вдребезги ствол дерева, режет металл, разрушает самые прочные породы угля.

В одном из корпусов Всесоюзного электротехнического института имени В. И. Ленина можно увидеть молнию, услышать раскаты грома. Здесь работает генератор импульсных напряжений – «ГИН». Этот уникальный генератор – новинка отечественной электротехники – один из самых мощных в мире. Он создан для испытания высоковольтной аппаратуры под колоссальными напряжениями – до 7 миллионов вольт и выше.

Заведующий кафедрой Горьковского института инженеров водного транспорта профессор Михаил Яковлевич Алферьев создал судно – катамаран, каких нет еще нигде в мире.

Катамаран имеет два корпуса, что придает ему не только вес, устойчивость, но и значительно увеличивает скорость и позволяет принимать на борт большое количество грузов.

Первый катамаран грузоподъемностью 600 тонн, оснащенный двумя двигателями, весьма маневренное судно.

Идея газовой турбины – основного двигателя всех современных самолетов – возникла в XVIII веке.

В 1791 году в Англии был выдан патент на газовую турбину, но построена была первая в мире газовая турбина лишь в 1892 году русским инженером П. Д. Кузьминским.

Широкое же применение газовых турбин началось только с развитием металлургии, машиностроения, подшипниковой промышленности, аэродинамики и газодинамики.

В настоящее время газотурбинными двигателями снабжены красавцы воздушного флота «ТУ-114», «ИЛ-18», «АН-10», вертолет «МИ-6».

Скоростную батарею, так называемый «Адский орган» в 1741 году создал русский конструктор Андрей Константинович Нартов (1680–1756 гг.). Эта «многоствольная пушка» состояла из 44 мортирок, укрепленных на вращающемся барабане лафета. Когда одна группа мортирок давала залп, другие группы заряжались и путем вращения круга занимали место выстреливших. Такими орудиями пользовались повстанческие отряды Емельяна Пугачева, и в народе это сооружение было известно в свое время под названием «Пугачевской пушки».

А. К. Нартов является также создателем всем известного суппорта – механического держателя режущего инструмента на станках. Суппорт изобретен им в 1729 году. В иностранных же учебниках неправильно называют творцом суппорта Генри Модели, который предложил суппорт только в 1794 году.

Ледокольное судно является русским изобретением. В 1864 году кронштадтский купец Критнов срезал носовую часть у парохода «Пайлет» так, чтобы он мог «взбегать» на лед и обламывать его. Таким образом было продлено на несколько недель время навигации между Петербургом и Кронштадтом.

Идея устройства подводной брони впервые зародилась в русском флоте. В 1914 году русский корабельный инженер Р. Р. Свирский подробно разработал проект подводной защиты кораблей от минно-торпедных ударов.

На счету у инженера Бенардоса, выдающегося русского изобретателя, создателя электродуговой сварки, множество открытий и изобретений в самых различных областях человеческой деятельности. В 1876 году, например, он изобрел пароход, переходивший мели. При плавании парохода действовали гребные колеса, а когда надо было преодолеть мель, в движение приводились специальные цилиндры-катки. Пароход мог также перемещаться по рельсовому пути, проложенному по берегу реки.

В 1860 году на выставке Вольного экономического общества были выставлены сенокосилка, жатка, сеялка и землепахотная машина, изобретенные в 1852 году крестьянином деревни Ерлавский Почин Нолинского уезда Вятской губернии Андреем Нестеровичем Хитриным. Чертежи машин делала его дочь – простая крестьянская девушка. Изобретения самоучки были высоко оценены учеными.

Первым значительным изобретением, принесшим скромному нижегородскому механику Кулибину известность, были часы со сложнейшим механизмом автоматического действия. «Видом и величиною между гусиным и утиным яйцом», они не только показывали время, но и заключали в себе миниатюрный автомат со сложным театральным действием. Екатерина II, которой Кулибин преподнес свои часы, назначила изобретателя на должность заведующего мастерскими Академии наук.

Родиной электронного телевидения является наша страна, а первыми ее создателями – Б. Л. Розинг, Б. П. Грабовский, С. И. Катаев и другие.

В 1907 году Б. Л. Розинг получил привилегию на систему электрической передачи изображения на расстоянии. Практически неподвижное изображение геометрического тела на экране он получил 22 мая 1911 года. В 1925 году Б. П. Грабовский с В. И. Поповым и И. Ф. Белянским создали новый проект электронного телевизора (радиотелефон). В том же году были изготовлены электронно-лучевые трубки. В 1931 году С. И. Катаев успешно провел испытания своего знаменитого иконоскопа, которым было практически положено начало советскому телевизионному вещанию.

Уже много столетий человечество терпит огромные бедствия от землетрясений. Достаточно бывает одного сильного подземного толчка, чтобы превратить сотни и тысячи домов в груды развалин. Интересный эксперимент осуществлен советскими строителями, поставившими кирпичное здание на так называемый антисейсмический фундамент.

При таком фундаменте дом не стоит, а, подобно маятнику, «висит» над землей. Грузом этого «маятника» служит само здание. Точка приложения груза находится на нижнем конце стального стержня с рессорами на концах. Удары сейсмических волн действуют, таким образом, не на груз «маятника» (то есть здание), а на точку его подвеса. Поэтому колебание будет испытывать только точка подвеса, а здание благодаря большой инерционной силе останется неподвижным. Длина стержня «маятника» делается такой, что исключается явление резонанса между колебаниями здания и сейсмическими.


    Ваша оценка произведения:

Популярные книги за неделю