Текст книги "Фенетика"
Автор книги: Алексей Яблоков
Жанры:
Биология
,сообщить о нарушении
Текущая страница: 6 (всего у книги 10 страниц)
Адаптивен ли фен?
В той или иной форме этот вопрос, вынесенный в заголовок раздела, встает почти всегда при рассказе о работах в области фенетики. Выше уже шла речь о фене левозакрученности у одного из видов наземных моллюсков. Оказалось, что особи, несущие этот фен, отличаются по характеру потребления энергетических запасов. Это говорит о том, что левозакрученность – не нейтральный признак и находится под контролем естественного отбора. Недавно свердловские зоологи показали, что различия между бесполосыми и полосатыми формами у других видов того же рода четко соответствуют различиям по интенсивности выделения CO2 при дыхании.
Работ подобного рода можно привести много, и все они позволяют прийти к общему заключению: во всех специально исследованных случаях особи – обладатели разных фенов всегда обнаруживали те или иные адаптивные различия. Фен красной окраски у двуточечной божьей коровки каким-то образом связан со способностью лучше переносить холод во время зимовки, а фен черной окраски – с более интенсивным размножением летом. Фен желтой окраски у калифорнийской полевки связан с лучшей выживаемостью при низкой температуре, а также с лучшим размножением при питании зеленым кормом (а не семенами), чем у особей с типичной серой окраской. Фен серой окраски у американской лягушки-сверчка связан с устойчивостью организма к потере влаги и лучшей сопротивляемостью некоторым инфекциям и т. д.
Принцип плейотропии – действие одного гена на многие признаки – означает, что между особями, несущими разные фены, должны существовать многочисленные различия в биологических признаках и свойствах. Наверное, некоторые фены могут иметь и непосредственное адаптивное значение. В других случаях фены имеют косвенное адаптивное значение, будучи связанными в развитии организма с какими-то важными биологическими признаками и свойствами.
Косвенным, но достаточно определенным подтверждением адаптивного характера фенов являются данные по сочетаниям различных дискретных вариантов структуры жевательной поверхности зубов рыжей полевки. Пять вариантов строения третьего верхнего и четыре варианта строения первого нижнего коренных зубов этого вида, выделенные саратовскими зоологами, теоретически могли бы дать 400 сочетаний. Однако в большой серии изученных особей было найдено немногим более 10 % от этого, числа. Если бы выделенные варианты строения были безразличны для организма, то можно было бы ожидать самых разных сочетаний, Но это не так, и, видимо, большая часть сочетаний оказывается неблагоприятной для организма.
Другой важный показатель адаптивной «небезразличности» фенов – удивительное постоянство их частоты в природных популяциях. Сравнение частоты некоторых фенов рисунка спины у прыткой ящерицы в сборах, произведенных в одном и том же месте, но с промежутком в 70 лет, показало ее стабильность. Есть много других примеров сохранения постоянной частоты фенов (линейных различий) на протяжении десятков поколений у многих видов дрозофил, лабораторных мышей, кроликов, крыс и практически любых лабораторных животных и других животных, разводимых в неволе, равно как среди культурных растений и домашних животных. Если бы фены, характеризующие все эти генетически более или менее однородные совокупности особей, не имели адаптивного значения, то трудно было бы представить себе их поддержание в стабильном состоянии даже на протяжении немногих поколений.
Важно подчеркнуть, что незнание конкретного адаптивного значения данного фена не может служить препятствием для его использования в качестве признака – маркера природных группировок особей. Этот вывод методически важен, так как позволяет не отвлекаться на изучение конкретных адаптаций, которые, кстати говоря, никогда не могут быть изучены полностью. Этот вывод, звучащий, может быть, несколько неожиданно, неизбежно следует из ограниченности нашего познания в любой данный момент времени. Ограничусь только одним примером.
Долгое время считалось, что крылья летучих мышей являются только органом полета. Но вот точные наблюдения в природе показали важную роль крыльев у летучих мышей как сачка во время ловли добычи. Вскоре выяснилась огромная роль крыльев летучей мыши в терморегуляции: это единственные большие не покрытые мехом участки тела и они значительно охлаждаются во время полета. С другой стороны, животное может таким образом складывать крылья во время отдыха, что образуется как бы дополнительный кожистый термоизоляционный покров. Итак, у крыльев летучей мыши есть функция полета, сачка, разнообразные функции терморегуляции. Казалось бы, и все. Но физиологи напомнили, что кожа млекопитающих – это орган, в котором происходит синтез витамина D, и этот процесс идет лишь под влиянием солнечного света. Может быть, большие крылья с их огромной поверхностью кожи в какой-то степени компенсируют летучим мышам недостаточную выработку витамина D, ведь солнечный свет обычно не попадает на них, поскольку все эти животные сумеречные или ночные. В будущем наверняка выяснятся еще какие-то функции их крыльев. И этот процесс углубления познания будет идти бесконечно, параллельно нарастанию суммы знаний о строении и функционирований всего живого вообще.
Ситуация, описанная в примере с летучими мышами, иллюстрирует принцип мультифункциональности любого органа или структуры – заведомого наличия множества функций у каждого органа или части тела в организме любого существа. Но раз это множество никогда не будет исчерпано нашим познанием, не ошибочным ли (точнее, нужным ли) является требование предварительно выяснить адаптивное значение того или иного фена и лишь после этого использовать такой признак в исследованиях?
Для изучения природных совокупностей особей с помощью дискретных признаков-фенов нам достаточно общего знания того, что любой признак организма – и фен в том числе – должен иметь то или иное непосредственное или опосредованное адаптивное значение.
* * *
Теперь, когда читатель знаком и с примерами фенов, и с основными свойствами фенов как дискретных, наследственно обусловленных признаков, и с особенностями выделения фенов, нужно, наконец, рассказать о том, что же можно выяснить в природе с помощью фенов.
Глава IV. Пути изучения фенофонда
Понятие «фенофонд» родилось в нашей стране. В московской школе генетиков, возглавляемой Н. К. Кольцовым, и в ленинградской школе, возглавляемой Ю. А. Филипченко, в 20-х годах интенсивно шло обсуждение популяционно-генетических вопросов. В этих группах генетиков, как вспоминает Н. В. Тимофеев-Ресовский, и появилось впервые слово «фенофонд». Возможно, что решающую роль в этом сыграл А. С. Серебровский, который в 1927 г. ввел понятие «генофонд».
Фенофонд – сумма фенов какой-либо совокупности особей. Число аллелей – конечная величина, она зависит от числа генов, число же признаков практически бесконечно (всегда можно увеличить это число – оно зависит от желания и настойчивости исследователя). Поэтому всякое изучение фенофонда будет всегда лишь приближением к установлению аллелофонда как суммы всех аллелей.
В этой главе будут рассмотрены способы выражения фенофонда и два главных Направления фенофонда: изучение пространственной структуры и динамики генетического состава популяции. Другими словами, речь пойдет об изучении элементарной эволюционной структуры и действия различных элементарных эволюционных факторов. В заключение будет сказано о различных способах описания фенофонда.
Изучение структуры популяции
Выше неоднократно подчеркивалась важность точной характеристики элементарной эволюционной единицы – популяции. Одна из самых важных популяционных характеристик – пространственная структура популяции. От того, на какие группы особей делится все популяционное население, в каких отношениях находятся между собой эти группы особей, зависит в значительной степени распространение генетической информации в пределах всей популяции, скорость эволюционных изменений и все остальные микроэволюционные события.
До появления фенетического подхода о структуре популяции судили в основном по экологическим наблюдениям – характеру распределения особей в пространстве. (Он определялся либо мечением и отловом меченых животных, либо длительным наблюдением за определенными животными, либо совсем уж косвенными методами вроде анализа содержимого желудков особей, добытых в разных биотопах.) Фенетика путем использования признаков-маркеров генотипического состава позволяет выяснить структуру популяции с неизмеримо большей точностью при, как правило, значительно меньшей затрате усилий. Рассмотрим несколько характерных примеров.
Изучение строения кисти белух позволило автору этих строк описать несколько десятков вариантов расположения запястных косточек. Некоторые варианты были очень похожими, другие – резко отличались. Совершенно случайно, просматривая свои зарисовки в полевом дневнике, я обнаружил, что у белух, пойманных в одном стаде, строение кисти имеет гораздо больше сходных черт, чем у особей из разных стад. Специальный анализ подтвердил это наблюдение: небольшие стада белух, включавшие в основном самок и молодежь всех возрастов с одиночными взрослыми самцами, оказались удивительно сходными по этому признаку группировками. Строение запястья белухи с фенетической точки зрения не менее точно, чем, например, сросшийся палец, передающийся по наследству. Нет никакого сомнения, что все основные варианты строения запястья строго генетически детерминированы. Значит, группа белух со сходным строением кисти представляет собой что-то вроде семейного объединения. Только так можно понять выявленное фенетическое сходство. Изучение кисти белух стало первой в мире работой по китообразным, показавшей семейный характер организации стад дельфинов. В такую большую семью входят все дочери одной старой самки и их дети. С наступлением половой зрелости самцы уходят из семьи и объединяются в отдельные самцовые косяки, большую часть года держащиеся отдельно от семейных стад. Самцы приходят в такую семью только на период размножения. Семья, видимо, возглавляется старой самкой, так что у этого вида дельфинов существует настоящий матриархат.
Хотя выделенные морфологические типы строения кисти, конечно же, не могут быть названы фенами (это сложные признаки), но фенетический подход здесь проявился в полной мере и дал возможность сделать выводы, которые были бы невозможны с применением любых других методов (разве что длительное мечение и наблюдения за этими животными на протяжении десятков лет дало бы такой же результат).
Другой пример описан американским биологом Р. Силандером в 1970 г. и связан с обыкновенными домовыми мышами. На старой птичьей ферме в Техасе в большом сарае размером 20X60 м, заваленном птичьим пометом, живет более 3000 мышей. С помощью электрофореза исследовалось наличие в крови каждой из 826 пойманных особей наследственных вариантов четырех различных белков (энзимов). Надо сказать, что изучалось около 30 энзимов, но большая часть не показала каких-либо различий внутри популяции этого сарая (хотя многие из них при сравнении популяций мышей из разных районов США обнаружили согласованную географическую изменчивость).
В результате исследования выяснилось, что все мышиное население в помещении одного сарая, где, казалось бы, животные должны свободно перемещаться, совершенно четко подразделяется на ряд фенетических группировок. Выделенные фенетические группы указывают на генетическую неоднородность населения мышей всего сарая и генетическое родство мышей внутри выделенных мелких групп. Эти мелкие однородные группы обладают сходными генетическими особенностями, и внутри них осуществляется высокая степень панмиксии. В каждой такой группе оказалось от 6 до 80 особей мышей.
В работах саратовского исследователя Н. И. Лариной показано, что по концентрации и наборам фенов черепа различается население полевок двух стоящих рядом на поле стогов. Видимо, это тоже группировки, состоящие из немногих вместе обитающих родственных семей.
Сейчас подобных работ появилось уже немало. По концентрации фенов черепа различаются группы рыжих ролевой, живущие в сплошном лесу на расстоянии в несколько десятков метров друг от друга. По такому же признаку различаются группы мышей, живущие в разных частях больших зданий; группы черных крыс из соседних домов в некоторых городах Индии хорошо различались по частоте встреч пятнистых особей и т. д.
Рис. 10. Индивидуальные участки десяти желтогорлых мышей с разными фенетическими формулами в горном буковом лесу в окрестностях г. Дилижана (пояснение в тексте)
Можно сказать, что у всех изученных млекопитающих в состав популяции входят сравнительно немногочисленные группы особей, состоящие из немногих вместе обитающих родственных «семей», объединенные генетическим родством. Для таких групп у разных видов предлагались самые различные названия, но чаще используется термин «дем».
На этих примерах видно, что фенетика позволяет раскрыть генетическую структуру популяции, показывает, на какие группы делится все население.
В некоторых случаях фенетическое исследование позволяет спуститься еще ниже по иерархической лестнице внутрипопуляционных объединений и уловить характеристики типа «брат – сестра» или «родители – дети». Одно из таких исследований проведено Н. И. Лариной. На рис. 10 показано положение в момент поимки в ловушки десяти желтогорлых мышей, живущих на участке горного букового леса в окрестностях Дилижана (Армения) и фонетические формулы (фенокомплексы) зубной системы. По характеру индивидуальных фенокомплексов можно выделить среди этих животных группу из семи зверьков, с большой степенью вероятности представляющих собой семью – родителей и детей.
Яркий пример выяснения генетических отношений близких «родственников» в природных популяциях приведен в предыдущей главе. Он касается фенов окраски кашалотов, что позволило выделить двух сестер в одном «гареме» (см. рис. 8). В других главах этой книги читатель найдет ряд примеров такой структуры популяции с помощью выделения и описания отдельных фенов и фенокомплексов.
Возможности для индивидуального фенетического опознавания животных гораздо шире, чем это принято думать. В Слимбридже (Англия) – центре по изучению водоплавающих птиц – по рисункам на клюве удается различать «в лицо» более тысячи малых лебедей, собирающихся здесь на зимовку! Благодаря такому опознанию удалось выяснить, что на небольшой территории этого заповедника обитает не менее семи родственных групп зимующих птиц.
Изучая более крупные, чем демы, объединения особей, фенетика позволяет выявлять генетически связанные между собой группы демов, вплоть до выделения популяции. В Институте биологии развития им. Н. К. Кольцова получен материал по фенетике прыткой ящерицы, представляющий собой пока еще редкий пример проведенного с самого начала последовательного фенетического исследования, направленного на изучение типичных микроэволюционных ситуаций в природе. В одной из популяций на Западном Алтае нами было просмотрено по 40 фенам окраски несколько тысяч ящериц (с точной привязкой каждого животного к определенному месту поимки). Были найдены фены, распространенность которых характеризовала две-три соседние норки (видимо, объединения типа «брат – сестра»). Были найдены фены, характеризующие отдельные небольшие ложбинки с населением в несколько десятков или немного сотен особей (видимо, демы), и фены, позволившие выделить три-четыре таких дема.
Все эти примеры показывают, о какой структуре популяции позволяет говорить фенетический подход: он выявляет ее пространственно-генетическую структуру. Принципиально важно и то, что фенетика дает уникальную возможность исследования генетической структуры природных популяций (в дополнение к давно и успешно исследуемой экологами пространственной структуре).
Однако было бы неправильно как-либо разрывать экологию и фенетику в изучении структуры популяции: одно лишь фенетическое исследование не даст достаточно полного представления о популяционной структуре. Так, например, экология показывает, что выделяемые фенетически демы у мелких позвоночных существуют одно-два поколения – до сезона массового осеннего размножения в наших широтах. Затем волна молодых мигрирующих особей заполняет всю территорию популяции, и формируются новые демы, которые будут существовать до следующей волны численности. В изучении структуры популяции фенетика идет рука об руку с экологией.
Тем не менее не надо забывать, что конечная цель такого исследования – понимание генетических процессов в природных группировках особей, выяснение тех реальных потоков генов, которые соединяют разные генофонды отдельных групп в единый, устойчивый на протяжении множества поколений популяционный генофонд – главный объект микроэволюционных изменений.
Изучение динамики генетического состава популяции
В начале этой книги подчеркивалось, что одна из важнейших задач современного популяционного исследования – получение материалов по самым разнообразным эволюционным ситуациям в природных популяциях, в частности, данных по действию и взаимодействию элементарных эволюционных факторов. При выявлении особенности и интенсивности действия этих факторов фенетика может быть очень полезной.
Первый путь – выяснение действия естественного отбора методом сравнения концентрации каких-то фенов в разные моменты жизни одного и того же поколения. Если особь родится с каким-то признаком, который далее в течение онтогенеза не меняется (число и расположение чешуй, жилкование крыльев у насекомых, кожный узор у приматов и т. п.), то можно сравнивать распределение этого признака у различных особей на разных стадиях онтогенеза (например, у взрослых и новорожденных). В ряде случаев удается уловить заметный сдвиг в частоте встречаемости этого признака.
Несколько лет назад свердловский зоолог В. Г. Ищенко изучал частоту встреч разного рода отверстий для выхода кровеносных сосудов и нервов в черепе песцов, добытых на п-ове Ямал. Из изученных десяти фенов у трех (касающихся вариантов расположения предглазничного отверстия) обнаружены статистически значимые изменения частоты разных фенов между сеголетками и годовалыми песцами внутри одного поколения. Сходные возрастные изменения в ряде других признаков черепа найдены тем же исследователем и у горностая.
По таким сдвигам можно уловить естественный отбор. В самом деле, как мог возникнуть такой сдвиг? Только в результате устранения части особей, которые могли быть уничтожены врагами, погибнуть от болезней и т. д. Если бы число погибших было относительно одинаково у всех особей с разными характеристиками, никакого сдвига в частоте признаков не обнаружилось бы. Сдвиг же указывает на действие естественного отбора. (Хотя, конечно, он не может выявить конкретную причину гибели тех или иных особей.) Этот пример – как раз такое уравнение с одним неизвестным, о котором должен мечтать каждый биолог-исследователь в своей работе, когда из множества фактов и действий можно вычленить одно-единственное объяснение[18]18
Отступая от хода изложения, следует сказать, что самая обычная методическая ошибка в любом творческом процессе состоит в том, что исследователи размышляют над «уравнением со многими неизвестными». Такие уравнения не имеют однозначных решений, поэтому попытки их точного решения бессмысленны. В любом исследовании надо стараться составить уравнение с одним или двумя неизвестными (уравнение с двумя неизвестными имеет ограниченное число решений, и над этим ограниченным числом решений иногда интересно подумать). Практический вывод из этого рассуждения прост: если в наших биологических конструкциях и гипотезах получается более чем два неизвестных, их необходимо упрощать и делать более строгими, доводя число неизвестных до одного-двух. Иначе вся работа будет напрасна и определенный ответ получить будет невозможно.
[Закрыть].
Приведенный выше пример с изменением встречаемости фенов на протяжении жизни одного поколения не единичен. Интересен анализ различий в частоте фенов полосатости и пятнистости в одном и том же поколении остромордых лягушек. Этот анализ, проведенный несколько лет назад в Институте экологии растений и животных АН СССР под руководством С. С. Шварца, показал на существование дифференцированной смертности особей – носителей разных фенов. Экологический анализ необычной природной обстановки на протяжении двух лет исследования позволил определить направление естественного отбора – создание скорости развития и понижения чувствительности к заморам.
Таков один из путей изучения естественного отбора фенетическими методами: сопоставление фенетических характеристик разных фаз онтогенеза внутри одного поколения.
Один из возможных путей изучения действия естественного отбора открывается при условии выяснения определенного адаптивного значения того или иного фена. Конечно, полностью все адаптации даже одной структуры нам никогда не станут известны, но в ряде случаев можно уверенно предполагать, что мы знаем главные адаптивные значения органа или структуры.
Примером такого анализа отбора может служить исследование, выполненное на одном из видов северо-американских мышевидных хомячков Peromyscus. Эти животные являются в Северной Америке экологическим аналогом наших полевок. Изучение полиморфизма покровов показало, что есть коричневые и палевые особи. Из генетического эксперимента следовало, что фен палевой окраски – рецессивный признак и он не должен бы присутствовать в природных популяциях в таких высоких концентрациях, в которых он встречается. Было выяснено, что фен палевой окраски связан с большей продолжительностью жизни и более успешным размножением. Поэтому, несмотря на то что фен палевой окраски рецессивный признак, он поддерживается в высокой концентрации естественным отбором. Зверьки, живущие на темной поверхности почвы, лучше защищены темной, покровительственной окраской, и светлые, палевые формы истребляются хищниками сильнее. Но светлые зверьки обладают большей продолжительностью жизни и поэтому оставляют больше потомства; поддерживается их концентрация на высоком уровне.
Еще более наглядным примером фенетического исследования действия отбора в природе является полуэкспериментальное исследование американского биолога Л. Брауна, проведенное на домовых мышах зернового склада в американском штате Миссури, результаты которого были опубликованы в 1965 г. Ученый обнаружил редкую мутацию – «желтая окраска + красные глаза» в удивительно высокой концентрации – до 30 %. Генетические исследования показали, что эти признаки характеризуют гомозиготное состояние одного из рецессивных генов. Затем на протяжении трех месяцев в это хранилище было запущено несколько кошек: они выловили всех до единой желтых мышей (такие светлые мыши были более заметными и скорее попадались к ним в лапы). Однако уже через семь месяцев после удаления кошек в популяции вновь были найдены желтые мыши. Без постоянного истребления светлых особей кошками рецессивные гомозиготы вновь выщепились из гетерозиготных серых особей. Это примеры того, как изучение лишь немногих фенов дало возможность сделать интересные заключения относительно направления естественного отбора.
Другой путь изучения действия отбора – сопоставление фенофонда разных поколений. При этом желанное уравнение с немногими неизвестными может возникнуть лишь в том случае, если удастся выделить признаки, меняющиеся в каком-либо определенном направлении на протяжении многих поколений. В самом деле, поскольку отбор единственный направленный эволюционный фактор, то любое направленное изменение в эволюции может показать действие отбора[19]19
Это ясное в общих чертах положение может осложниться одним обстоятельством: в направленности можно уловить действие не современного отбора, а проявление результатов отбора, действовавшего много-много поколений назад и сформировавшего определенные черты строения организмов. Эти черты неизбежно определяют некоторые возможные направления дальнейшего процесса отбора. Интенсивная разработка проблемы направленности эволюции показывает, что такое «последействие» отбора, зафиксированного в строении каждого живого существа, – одно из широко распространенных эволюционных явлений.
[Закрыть].
Зубы мелких мышевидных грызунов (рисунок эмалевых петель) представляют очень удобный материал для различных фенетических исследований. В серии работ, опубликованных в 1975–1978 гг. свердловской исследовательницей А. Г. Малеевой, удалось сопоставить строение третьего верхнего коренного зуба водяной полевки, живущей на территории Южного Зауралья (Курганская обл.), начиная с позднего плейстоцена до наших дней. Это сравнение показывает определенное изменение в характеристиках встречаемых комплексов фенов: исчезновение одних типичных фенов и появление новых.
Сравнение фенофонда разных поколений в масштабах всего лишь нескольких поколений представлено в работах целого ряда исследователей на разных насекомых, в первую очередь на дрозофиле. Классические работы американских ученых школы Ф. Г. Добржанского показали, что за 30 лет (около сотни поколений дрозофил) частота встречаемости главных фенотипов и генотипов не изменилась, тогда как концентрация редких фенов резко колебалась. Об этом же говорят данные по пенницам, опубликованные в 1970–1976 гг. в серии работ В. Е. Берегового. Концентрация главных морфотипов, или морф (комплексов фенов), в одной и той же популяции на северной окраине Свердловска на протяжении четырех лет колебалась незначительно (95–84 %), а концентрация редких фенов падала до нуля и изменялась в несколько раз.
При исследовании многочисленных музейных серий долгоживущих крупных животных возникает возможность сравнить фенофонды разных генераций (при условии точного знания возраста каждой особи, что теперь вполне осуществимо по шлифам костей с точностью до 0,5 года). Такое сравнение обычно показывает различие между генерациями по концентрации разных редких фенов.
Колебание концентрации редких фенов и устойчивость концентрации массовых фенов указывает на существование стабилизирующего отбора по главным признакам и свойствам. Устойчивость направлений отбора в ряде изученных примеров огромна. Так, за 20 тыс. лет частота фенов в некоторых популяциях виноградной улитки в Англии не изменилась. Это удалось выяснить, анализируя послойные четвертичные отложения, содержащие раковины.
Конечно, не во всех случаях исследователь сталкивается с постоянством фенотипа на протяжении нескольких поколений. Бывает и так, что частота почти всех фенов резко колеблется (например, в некоторых популяциях златоглазок, обыкновенной полевки, домовой мыши и др.). При более подробном изучении оказывалось, что в руки исследователей в этих случаях попадали не случайные выборки из популяций, а выборки из отдельных демов. В демах же стабильность концентрации фенов, как правило, резко нарушается от поколения к поколению, поскольку демы существуют сравнительно небольшой срок, всего несколько поколений. Часто исследователь, получая материал территориально из одного и того же места, фактически имеет дело уже с другими демами. Из этого факта (изменения частоты фенов в демах) можно сделать вывод: если при сравнении популяционных выборок обнаруживаются резкие различия, то необходимо проверить, не имеем ли мы дело с разными демами, т. е. достаточно ли представительна данная выборка для характеристики всей популяции.
Другим объяснением столь значительных колебаний в частоте встречаемости фенов в смежных поколениях может быть слабое Давление отбора на изученные признаки. Установить, с каким именно случаем сталкивается исследователь (слабый отбор или непредставительная выборка), можно только после дополнительного анализа.
Таковы некоторые возможные пути изучения действия естественного отбора на популяционный фенофонд. Другой элементарный эволюционный фактор, влияние которого можно выяснить посредством изучения фенофонда, – изоляция.
Перепады в концентрации отдельных фенов позволяют предполагать действие одной из форм изоляции, которых в природе достаточно много. Какая из них встретится в конкретном исследовании при выяснении различия в частоте фенов – нельзя сказать без специального анализа. (Это может быть и территориально-механическая, и экологическая, и этологическая, и фенологическая, и любая другая форма изоляции.) Выделить изоляционные барьеры в амбаре, населенном мышами, с помощью фенетики мы можем, но сказать, чем именно определяется эта изоляция, сумеем только привлекая данные этологии, экологии и т. д.
Выше речь часто шла о фенах-маркерах, которые характеризуют группу особей разного масштаба. Минимальный маркер – индивидуальный. Развитие техники звукозаписи дало возможность широко использовать характеристики звуков, издаваемых животными, для выделения отдельных особей в природе. Тут нет ничего удивительного: мы хорошо различаем голоса знакомых людей и редко их путаем; значит, они чем-то существенным отличаются, маркируются. То же позволяет сделать в отношении птиц современная техника.
Американские орнитологи провели интересную работу: получив индивидуальные характеристики пения (набор фенов и их сочетаний) некоторых птиц, они проследили миграции этих птиц от мест размножения на Аляске до мест зимовок в Калифорнии. Без кольцевания, без мечения, по фенам песни можно найти птицу среди сотен других на местах зимовки!
Рассмотрим возможности изучения путем анализа фенофонда другого элементарного эволюционного фактора – «волн жизни».
Эволюционный смысл «волн жизни» – резкое изменение концентрации редких мутаций, включение редких мутаций и их сочетаний в действие отбора непосредственно, а не в шлейфе автоматически соотбираемых генов. В результате «волн жизни» концентрация редких мутаций может увеличиться под действием новых направлений отбора либо, напротив, резко снизиться – вплоть до исчезновения из фенофонда популяции. Популяций без волн численности не бывает, и любое достаточно продолжительное популяционное исследование неизбежно сталкивается с этим ярким, хотя и очень по-разному выраженным феноменом жизни.
К сожалению, до сих пор имеется очень мало точных наблюдений по изменению фенофонда популяций на разных стадиях проявления таких волн. Вот некоторые из известных примеров. При изучении окраски ондатры в районе Нижней Тунгуски А. В. Комаров за период с 1964 по 1972 г. отметил депрессию численности (1968–1969 гг.) и период высокой численности (1971–1972 гг,). В годы депрессии среди взрослых особей в большом числе встречались животные с рыжими тонами в окраске, а в период подъема численности – животные серой окраски.
Английские исследователи – супруги X. Д. и Е. Б. Форд – в конце 30-х годов впервые начали детальное изучение колебаний наследственно обусловленных дискретных признаков в природных популяциях некоторых бабочек. Ими и последующими исследователями были получены очень интересные, хотя до конца и по сей день не объясненные результаты: в одних случаях изменение числа пятен на крыльях бабочек менялось соответственно резким изменениям численности, в других такой корреляции не наблюдалось. Никакими другими приемами, кроме фенетических, уловить изменения генотипического состава природных популяций на разных стадиях «волн жизни» невозможно.
Таким образом, изучение фенофонда дает в руки исследователя интересные, а порой и уникальные возможности исследования трех элементарных эволюционных факторов: естественного отбора, изоляции и «волн жизни».