Текст книги "Фенетика"
Автор книги: Алексей Яблоков
Жанры:
Биология
,сообщить о нарушении
Текущая страница: 2 (всего у книги 10 страниц)
Колебания численности – второй поставщик материала для эволюции
Один из важнейших эволюционных факторов – периодические изменения численности особей, популяционные волны. В данном случае речь идет о колебаниях в положительную и отрицательную сторону, сменяющих друг друга более или менее регулярно, а не о постоянном, направленном процессе увеличения или сокращения численности популяции.
В природе нет ни одного вида животных или растений, у которого численность особей из года в год, из поколения в поколение оставалась бы постоянной. Во всех популяциях происходят изменения численности, резкие в одних случаях или менее заметные в других. Масштаб таких изменений может быть огромен. Например, в разные годы численность вылетающих майских жуков может колебаться в несколько миллионов раз. Аналогичные колебания численности известны у таких массовых видов животных, как поденки, комары, мышевидные грызуны (так называемые годы мышиной напасти).
Механизм изменения численности в одних случаях известен и объясним, в других – менее изучен. Иногда снижение численности оказывается связанным с наступлением условий, препятствующих выживанию (например, период холодов в нашем климате для насекомых, амфибий, рептилий). В других случаях существенное значение в периодическом изменении численности имеют хищники.
Каков бы ни был механизм колебания численности, ясно, что на число особей популяции могут влиять многие факторы. Они неизбежно приводят к периодическим или непериодическим, сезонным или суточным, годовым или многолетним изменениям численности репродуктивной (вступающей в размножение) части особей любого из известных видов животных и растений на Земле.
Значение таких популяционных волн, или «волн жизни», для эволюции очень велико. Впервые это подчеркнул С. С. Четвериков (1905), который и ввел в науку этот термин. Четвериков обратил внимание на то, что при изменении численности особей в популяции меняется интенсивность естественного отбора. Впрочем, оказалось, что это только одно из эволюционных последствий «волн жизни». Другое, более важное последствие – возможность резкого изменения генотипической структуры популяции и выведение редких прежде мутаций в иную среду. Это является своего рода апробацией для редких генотипов, определением степени их жизненности.
Популяционные волны, как и мутационный процесс, – фактор-поставщик эволюционного материала, выводящий ряд генотипов случайно и ненаправленно на эволюционную арену. Давление этого фактора может быть весьма различно и, вероятно, обычно превышает таковое мутационного процесса.
Изоляция – фактор-усилитель различий в эволюции
Важный элементарный эволюционный фактор – изоляция, возникновение барьеров, нарушающих свободное скрещивание – панмиксию. Изоляция, нарушая панмиксию, закрепляет возникшие случайно (в результате работы мутационного процесса и «волн жизни») и под влиянием отбора различия в наборах генотипов в разных частях популяции. Иначе говоря, изоляция – фактор ускорения и закрепления возникающих дифференцировок. В результате действия изоляции из одной исходной популяции образуются две и более генотипически отличающихся друг от друга популяций.
В природе можно обнаружить множество различных случаев и форм изоляции. Они поддаются достаточно четкой классификации. Прежде всего можно отметить два основных типа изоляции: территориально-механическую (пространственную, географическую), при которой популяция разделяется на две или несколько частей барьерами, лежащими вне ее (т. е. не связанными с биологическими различиями между входящими в ее состав индивидами), и биологическую, при которой та или иная степень изоляции в пределах популяции основывается на возникновении соответствующих биологических различий. Биологическую же изоляцию можно достаточно ясно и точно подразделить на три основные формы: эколого-этологическую, морфофизиологическую и собственно генетическую.
По результату действия все формы изоляции принципиально сходны: они вызывают и закрепляют групповые различия в результате нарушения панмиксии (всегда ведущей к сглаживанию различий путем скрещивания). Изоляция, конечно, сама по себе не может создать новые формы. Для этого необходимо наличие генетической разнокачественности. Иными словами, изоляция, осуществляя начальные стадии и усиливая дивергенцию, всегда взаимодействует с факторами-поставщиками элементарного эволюционного материала (мутационным процессом и популяционными волнами). Изоляцию нельзя считать, несмотря на длительность ее действия, направляющим фактором эволюции; она только способствует расчленению исходной популяции и усиливает ее.
Значение изоляционных барьеров может быть любым – от очень малого до приводящего к стопроцентной изоляции. Воздействие изоляции в большинстве случаев, так же как и большинства популяционных волн, по-видимому, превышает давление мутационного процесса.
Естественный отбор – единственный направленный фактор эволюции
Несомненно, важнейшим эволюционным фактором является естественный отбор. При определении естественного отбора Ч. Дарвин использовал понятие «выживание наиболее приспособленного». При этом имелось, конечно, в виду не просто выживание, а выживание и дальнейшее размножение; именно в этом состоит основное значение выживания особи для эволюции.
Естественный отбор – процесс, направленный к повышению, (или понижению) вероятности оставления потомства одной формой организмов по сравнению с другими. В основе отбора лежит суммарная относительная жизнеспособность индивидов определенного генотипа на всех стадиях жизни, определяющая достижение репродукционного возраста и возможность оставления потомства. Отбор прежде всего действует в пределах каждой популяции, отбирая (или отметая) те или иные входящие в ее состав генотипы. Объекты отбора – определенные индивиды или группы индивидов – носители определенных признаков или свойств.
Каждая природная популяция всегда представляет собой некую смесь разных генотипов. Различные генотипы в популяции обычно представлены в разных концентрациях и могут отличаться друг от друга морфофизиологически. При относительной стабильности внешних условий преобладающие генотипы все время будут сохранять свое доминирующее положение. Напротив, все уклонения от этой группы будут уничтожаться. Такая форма отбора названа «центростремительным», или «стабилизирующим», отбором. Большой вклад в изучение этой формы внес наш соотечественник, один из крупнейших эволюционистов И. И. Шмальгаузен.
Однако при изменении условий существования может протекать отбор, ведущий к изменению среднего типа популяции – к замене одних количественно преобладающих генотипов другими. Эта форма отбора названа «движущей», или «ведущей», и составляет существо классического, дарвинского понимания отбора.
Нужно подчеркнуть, что отбором всегда как подхватывается, так и отметается определенная группа генотипов – носителей основного отбираемого признака или свойства. При этом может автоматически образоваться группа так называемых генов-модификаторов, т. е. генов, изменяющих селективное значение отбираемого признака: усиливающих или ослабляющих действие основного гена.
Надо заметить, что этот шлейф автоматически соотбираемых генов (при достаточно сильном влиянии отбора на главный признак) может вызвать распространение в популяции признаков и свойств, коррелятивно связанных с главным отбираемым признаком. Разнообразие складывающихся в природе ситуаций настолько велико, что рано или поздно и эти второстепенные признаки могут стать главными объектами отбора.
Эффективность отбора зависит в первую очередь от его давления и от длительности действия в определенном направлении. Давлением отбора называется степень различия в относительной жизнеспособности конкурирующих форм, которую можно выразить количественно, например в процентах. Под направлением отбора понимают положительный (или отрицательный) отбор определенных генотипов.
Давление отбора теоретически может варьировать от нуля до стопроцентного преимущества отбираемой формы за поколение. Но в действительности отсутствие отбора (его давление равно нулю) невозможно ни в природе, ни в эксперименте; какие-то генотипы всегда будут несколько отличаться по вероятности оставления потомства.
В природных популяциях, где всегда разнородная смесь индивидов и где одновременно идут процессы отбора в разных направлениях и с разным давлением, часто наблюдаются случаи отбора не одного определенного генотипа, а нескольких отличающихся друг от друга различных генотипов. Кроме того, не следует забывать, что в каждый данный момент отбором оценивается не генотип сам по себе, а его внешнее выражение в данных конкретных условиях – фенотип. Однако, когда речь идет о направлении отбора, подразумевается не одно поколение, а целая их череда; при этом механизм изменения фенотипов может быть понят лишь как следствие соответствующих изменений определяющих их систем – генотипов.
В природе давление отбора обычно перекрывает давление мутационного процесса популяционных волн. Давление изоляции лишь усиливает эффективность отбора.
Естественный отбор – единственный (и достаточный) направляющий эволюцию элементарный фактор; его действие всегда направлено складывающимися условиями существования.
Взаимодействие эволюционных сил – механизм эволюции
Пусковой механизм эволюции функционирует в результате совместного действия эволюционных факторов в пределах популяции как эволюционной единицы. Всякая популяция у любого вида подвержена тому или иному давлению всех элементарных эволюционных факторов.
Действительно, у всех организмов постоянно идет мутационный процесс. Во всех популяциях происходят колебания численности особей. Определенное давление изоляции входит в определение понятия «популяция», всегда присутствует в природе и естественный отбор. Влияние всех этих факторов может меняться независимо друг от друга, часто очень резко.
Давление мутационного процесса, вероятно, менялось на протяжении различных геологических эр и периодов и, несомненно, может меняться в наше время в связи с резкими местными повышениями фона химических и физических мутагенов (например, в связи с радиоактивным загрязнением районов, использованием сильнодействующих химических препаратов и т. д.). В истории каждого вида, несомненно, изменялся диапазон колебаний численности, возникали резкие изоляционные барьеры или снижалось значение прежде существовавших барьеров. Наконец, постоянно меняется в зависимости от меняющихся сочетаний различных условий значение естественного отбора: он может менять направление, а его интенсивность может повышаться или резко падать.
В результате действия эволюционных сил в каждой популяции тысячекратно возникали элементарные эволюционные изменения. Со временем некоторые из них суммируются и ведут к возникновению новых приспособлений, что и лежит в начале видообразования.
Важность изучения природных популяций
В предыдущем разделе были кратко изложены основы современного учения о микроэволюции. Сам факт создания этого учения знаменует собой выдающееся достижение эволюционной мысли первой половины XX в. Но нужно отметить, что это учение все же находится на уровне теоретического описания происходящих событий и формулировок исходных определений.
Начиная с фундаментальных работ Н. В. Тимофеева-Ресовского (1938–1940), Ф. Г. Добржанского (1937) и ряда других исследователей, создавших современное учение о микроэволюции, в течение последующих 25–30 лет принципиально новых крупных открытий в этой области сделано не было. Конечно, наука в своем движении не останавливалась – вскрыт целый ряд фактов, имеющих важное значение для развития отдельных глав учения о микроэволюции и популяционной генетики. Так, важнейшим достижением стало исследование особенностей белкового полиморфизма, приведшее к выяснению степени генетического разнообразия природных популяций. Оказалось, что для достаточно широкого круга изученных видов – от дрозофилы до человека – характерен очень близкий уровень генетического разнообразия в популяциях: в среднем около 1/3 всех генов имеют несколько форм (аллелей), т. е. они полиморфны, а каждая особь гетерозиготна (несет разные наследственные зачатки) по примерно 10–20 % мест расположения определенных генов в хромосоме (локусам). Этот вывод в общей форме подтвердил аналогичные результаты, полученные еще в 30—40-х годах на основании анализа распространенности отдельных мутаций в природных популяциях прекрасно изученного в этом отношении семейства плодовых мушек дрозофилид.
Интересными оказались многочисленные работы последних десятилетий по внутривидовой систематике разных групп животных, показавшие существование удивительно большого числа видов-двойников в, казалось бы, детально изученных прежде группах. По оценке Н. Н. Воронцова, число видов млекопитающих, в фауне СССР занижено примерно на 20 % в результате объединения морфологически сходных, но генетически и эволюционно различных форм под одним видовым названием. Крайне обычный и населяющий значительную часть территории СССР вид «обыкновенная полевка» в результате детальных исследований разделен на три самостоятельных вида. Считавшийся последние столетия одним видом «малярийный комар» оказался комплексом видов, содержащим (по разным оценкам) от 7 до 15 различных эволюционно-генетических форм (некоторые из этих видов внешне различаются лишь по микроструктуре поверхности яиц, видимой в сканирующем микроскопе).
Неожиданное богатство разных групп такими скрытыми видами было выявлено в основном благодаря широкому внедрению в практику исследований кариологического анализа – учета числа, характера и общего строения хромосом. Но и эти замечательные сами по себе исследования также не внесли ничего принципиально нового в учение о микроэволюции.
Можно было бы назвать еще несколько крупных и важных работ, связанных с изучением внутривидовых особенностей в разных группах растений и животных (изучение роли полиплоидии в видообразовании у растений, вскрытие гибридогенного характера некоторых видов, показавшее более широкое, чем это предполагалось в 30-х годах, распространение явлений так называемой ретикулярной, или сетчатой, эволюции и т. п.), но общий вывод о теоретическом застое в области познания микроэволюционного процесса и теории популяционной генетики от этого не изменится. Это обстоятельство на первый взгляд вызывает удивление. Ведь одновременно с развитием и формулировкой учения о микроэволюции шло интенсивнейшее развитие популяционной биологии в различных ее аспектах. Казалось бы, многочисленные данные по изучению природных популяций должны были бы дать новый интересный материал для развития эволюционно-генетических представлений. Но этого не случилось. В настоящее время, по-видимому, можно вскрыть причины этого кажущегося противоречия.
В наши дни вряд ли у кого-нибудь вызывает сомнение, что генетико-эволюционная трактовка в конечном итоге помогает понять механизмы и пути развития как отдельных популяций, так и целых видов и видовых комплексов в природе. Более того, вне генетической трактовки понять процесс эволюции невозможно.
В то же время вне эволюционного освещения изучение популяционной экологии, популяционной физиологии или этологии оказывается обедненным и теряет общебиологический смысл. А как раз эволюционное содержание и не вкладывалось долгое время в большинство исследований в этих областях популяционной биологии. Таким образом, в 30—40-х годах произошел как бы разрыв между эволюционно-генетическим и эколого-физиологическим направлениями популяционной биологии.
Сейчас имеются все основания говорить о необходимости «нового синтеза» – синтеза учения о микроэволюции (или вообще генетико-эволюционного направления в популяционной биологии) с широким фронтом популяционных исследований в экологии, морфологии, физиологии, ботанике, зоологии и других биологических науках, связанных с изучением популяций. Необходимость такого синтеза ощущается как со стороны учения о микроэволюции, так и со стороны «негенетической» популяционной биологии.
Выше уже говорилось о заметном застое в учении о микроэволюции за последние десятилетия. Однако одна из главных причин этого (если не самая главная) – недостаточное количество данных об особенностях протекания в природе процесса микроэволюции. В самом деле, на каком материале построено современное учение о микроэволюции? В основном на данных по хорошо изученным генетически видам животных и растений. Таких изученных генетически видов сравнительно немного. Это в первую очередь 8—10 видов из рода дрозофила – идеального объекта для популяционно-генетических исследований и вообще лучше всего генетически изученной группы видов среди всех остальных организмов, населяющих нашу планету.
В этой, группе генетически изучено, т. е. изучено с точки зрения наследования разных признаков при скрещивании, видимо, не меньше миллиарда особей. Относительно других беспозвоночных есть данные по генетике нескольких видов моллюсков, одного вида тараканов, шелковичного червя, непарного шелкопряда, мучнистой и мельничной огневок, мучного хрущака, медоносной пчелы и некоторых ос, нескольких видов комаров, мух, хищных и растительноядных божьих коровок. У простейших изучена генетика только некоторых инфузорий; из низших позвоночных – ряда видов разводимых рыб и двух-трех видов бесхвостых амфибий; среди птиц – домашней курицы, индейки, кряковой утки и (в меньшей степени) фазанов, голубей, перепелов, попугайчиков и канареек. Среди млекопитающих самым генетически изученным видом надо считать домовую мышь (известно более 500 генов), а затем идут черная крыса, кролик, морская свинка, мышевидный и сирийский хомячки. Сравнительно хорошо изучена генетика домашних млекопитающих: крупного рогатого скота, овцы, козы, лошади, кошки, собаки, а также пушных зверей, разводимых в неволе: лисицы, норки, песца, нутрии, соболя. Есть довольно много данных по генетике человека и двух-трех видов обезьян, в последнее время разводимых в неволе.
В общей сложности не будет преуменьшением сказать, что с генетической точки зрения изученными оказываются, видимо, не более 50–60 видов животных, при этом глубоко изученными, с анализом нескольких сотен генов, можно считать лишь три-четыре вида.
Аналогичное положение и с генетическим изучением растений. Лучше генетически изучены культурные растения (прежде всего кукуруза, горох, фасоль, томаты, ячмень, пшеница, овес, рожь, рис, клевер, турнепс, сахарная свекла, брюква, капуста, горчица, редька, картофель, сахарный тростник, подсолнечник, огурцы, дыни, тыква и некоторые другие). Генетически изучен также ряд видов растений, удобных для экспериментов по разным причинам, и среди них – львиный зев, хризантемы, табаки, душистый горошек, примулы, ослинник, чернушка, фиалки, анютины глазки и некоторые другие декоративные растения. В последнее время генетика нашла свою «ботаническую дрозофилу» – очень удобное для генетических исследований крестоцветное Arabidopsis thaliana. Однако в целом и для растений опять-таки будет справедлив вывод, что генетика растений основана на изучении всего лишь нескольких десятков видов.
Из всего огромного царства бактерий изучена генетика в основном только кишечной палочки, бактерии мышиного тифа, ряда пневмококков и стрептококков, нескольких видов рода Hemophilus. Из четвертого царства (современных организмов – грибов – генетически изучено всего несколько видов актиномицетов, дрожжей, а также Aspergillus, Ophistoma, Penicillium, Micrococcus. Подавляющее же большинство видов живых организмов (а их остается не менее полутора миллионов) оказывается генетически неизученным. В одних случаях так получается потому, что для ряда видов это невозможно технически (пока нельзя разводить в неволе, скажем, моржей или китов), в других – из-за длительности смены поколений и растягивания экспериментов по скрещиванию на десятилетия (многие древесные растения, рептилии и др.).
Складывается своеобразное положение. Для вскрытия общих закономерностей микроэволюции надо получить данные о сходстве и различии процесса микроэволюции у представителей всех крупных групп организмов, хотя бы, например, у нескольких процентов всех живых организмов. Но пока известны некоторые основные генетические особенности не более чем у 250–350 видов. Популяционная генетика в сколько-нибудь заметной степени изучена, видимо, менее чем для сотни видов. Генетически изученные виды составляют не более 0,02 % общего числа существующих видов (соответственно популяционно-генетически изученных видов в первом приближении около 0,007 %!). Ясно, что такая ничтожная выборка из общего числа видов может оказаться весьма непредставительной.
Таким образом, установление всеобщности явлений, вскрытых на немногих генетически изученных видах, формулирование эволюционных закономерностей оказываются невозможными без многократного увеличения наших знаний в области генетико-эволюционных событий. Даже при самом оптимистическом подходе и при желании изучить генетику ученые не смогут многократно увеличить спектр генетически изученных видов. Можно в ближайшие десятилетия увеличить число изученных генетиками видов вдвое, втрое, наконец, в пять раз, но не в сто или не в тысячу раз! Однако именно тысячекратное увеличение знаний требуется для подлинного выяснения закономерностей микроэволюции.
Но выход из этого положения есть: негенетическим разделам популяционной биологии необходимо «надеть генетические очки». Такие очки существуют, это – фенетика природных популяций.








