Текст книги "Российская Академия Наук"
Автор книги: Алексей Турчин
Жанр:
Публицистика
сообщить о нарушении
Текущая страница: 12 (всего у книги 36 страниц)
Для формирования разумной жизни на Земле должно было сложиться уникальное сочетание условий, которые действовали в течение длительного времени (равномерная светимость Солнца, отсутствие близких сверхновых, отсутствие столкновений с очень большими астероидами и т. д.). Однако из этого нисколько не следует, что они будут продолжать действовать вечно. Соответственно, в будущем мы можем ожидать, что постепенно эти условия исчезнут. Скорость этого процесса зависит от того, насколько невероятным и уникальным было сочетание условий, позволивших сформироваться разумной жизни на Земле (как в примере с рулеткой: чем уникальнее ситуация выигрыша три раза подряд, тем с большей вероятностью игрок проиграет в четвёртом туре – то есть будь в той рулетке 100 делений на колесе, то шансы выхода в четвёртый тур упали бы до 1 к 100). Чем невероятнее такое сочетание, тем быстрее оно может закончиться. Это объясняется эффектом отсева – если в начале были, допустим, миллиарды планет у миллиардов звёзд, где могла бы начать развиваться разумная жизнь, то в результате отсева только на одной Земле образовалась разумная жизнь, а остальные планеты сошли с дистанции, как Марс и Венера. Однако нам неизвестна интенсивность этого отсева, и узнать нам это мешает эффект наблюдательной селекции – так как мы можем обнаружить себя только на той планете, где жизнь уцелела, и разум смог развиться. Но отсев продолжается с той же скоростью.
Для внешнего наблюдателя этот процесс будет выглядеть как внезапное и беспричинное ухудшение многих жизненно важных параметров, поддерживающих жизнь на Земле. Рассматривая этот и подобные примеры, можно предположить, что данный эффект может увеличить вероятность внезапных природных катастроф, способных оборвать жизнь на Земле, но не более, чем в 10 раз. (Не более, так как затем вступают в действия ограничения, подобные описанным в статье Бострома и Тегмарка , которые рассматривают эту ж проблему в отношении космологических катастроф. Однако реальное значение этих ограничений для геологических катастроф нуждается в более точном исследовании.) Например, если отсутствие сверхгигантских извержений вулканов на Земле, затопляющих всю поверхность, является счастливой случайностью, и в норме они должны были бы происходить раз в 500 млн. лет, то шанс Земли оказаться в её уникальном положении был бы 1 к 256, а ожидаемое время существования жизни – 500 млн. лет.
Мы ещё вернёмся к обсуждению этого эффекта в главе о вычислении непрямых оценок вероятности глобальной катастрофы в конце книги. Важным методологическим следствием является то, что мы не можем в отношении глобальных катастроф использовать никакие рассуждения в духе: этого не будет в будущем, потому что этого не было в прошлом. С другой стороны, ухудшение в 10 раз шансов природных катастроф уменьшает ожидаемое время существования условий для жизни на Земле с миллиарда до ста миллионов, что даёт очень малый вклад в вероятность вымирания в XXI веке.
Ослабление устойчивости и человеческие вмешательства
Вклад вероятностного сдвига из-за прекращения действия антропного принципа в суммарную вероятность, казалось бы, мал. А именно, если Солнце будет поддерживать комфортную температуру на Земле не 4 млрд. лет, а только 400 млн., то в XXI веке это всё равно даёт десятитысячные доли процента вероятности катастрофы. (0,0004%). Однако ослабление устойчивости, которую нам давал антропный принцип, означает, что сами процессы станут менее устойчивыми и более склонными к колебаниям (что вполне известно относительно Солнца, которое будет гореть, по мере исчерпания водорода, всё более ярко и неравномерно), а во-вторых, что кажется более важным, – они станут более чувствительным к возможным малым человеческим воздействиям. То есть одно дело дёргать за висящую резинку, а другое – за резинку, натянутую до предела.
Например, если некое извержение сверхвулкана назрело, то могут пройти ещё многие тысячи лет, пока оно произойдёт, но достаточно скважины в несколько километров глубиной, чтобы нарушить устойчивость крышки магматической камеры. Поскольку масштабы человеческой деятельности растут во всех направлениях, возрастают шансы наткнуться на такую неустойчивость. Это может быть и неустойчивость вакуума, и земной литосферы, и чего-то ещё, о чём мы даже не думаем.
2.13. Видовые риски, не связанные с новыми технологиями
Исчерпание ресурсов
Проблема исчерпания ресурсов, роста населения и загрязнения среды является системной, и в этом качестве мы рассмотрим ей далее. Здесь же мы рассмотрим только, может ли каждый из этих факторов по отдельности привести к человеческому вымиранию.
Широко распространено мнение о том, что цивилизация обречена из-за исчерпания легкодоступных углеводородов. В любом случае, это само по себе не приведёт к вымиранию всего человечества, поскольку многие племена аборигенов до сих пор живут без нефти. Однако это создаст существенные проблемы, если нефть закончится раньше, чем общество успеет к этому адаптироваться – то есть закончится быстро. Однако запасы каменного угля значительны, а технология производства жидкого топлива из него активно применялась ещё в гитлеровской Германии. Огромные запасы гидрата метана находятся на морском дне, и эффективные роботы могли бы его добывать. И существующих технологий ветроэнергетики, преобразования солнечной энергии и подобных в целом достаточно, чтобы сохранить развитие цивилизации, хотя возможно определённое снижение жизненного уровня, а худшем случае – и значительное снижение популяции, но не полное вымирание.
Иначе говоря, Солнце и ветер содержат энергию, которая в тысячи раз превосходит потребности человечества, и мы в целом понимаем, как её извлекать. Вопрос не в том, хватит ли нам энергии, а в том, успеем ли мы ввести в строй необходимые мощности по её извлечению до того, как нехватка энергии подорвёт технологические возможности цивилизации при неблагоприятном сценарии.
Читателю может показаться, что я недооцениваю проблему исчерпания ресурсов, которой посвящено множество книг (Медоуз, Пархоменко), исследований и интернет сайтов (в духе www.theoildrum.com). Действительно, я не согласен со многими из этих авторов, так как они исходят из предпосылки, что технический прогресс прекратился. Обратим внимание на последние исследования в области обеспечения энергоресурсами: В 2007 году в США начался промышленный выпуск солнечных батарей стоимостью меньше чем 1 доллар за ватт, что в два раза меньше, чем стоимость энергии на угольной электростанции, не считая топлива . Количество ветроэнергии, которую можно извлекать с океанского мелководья в США составляет 900 гигаватт, что покрывает все потребности США в электроэнергии . Такая система давала бы равномерный поток энергии за счёт своих больших размеров. Проблема накопления излишков электроэнергии решена за счёт применения обратной закачки воды в гидроэлектростанции и развития мощных аккумуляторов и распространения, например, в электромобилях. Массу энергии можно извлекать из морских течений, особенно Гольфстрима , и из подводных залежей метангидратов . И есть много других перспективных источников энергии. Вопрос не в том, что нет энергии, или технологий по её добыче – вопрос в том, успеем ли мы вовремя развернуть необходимые электростанции.
Кроме того, завершение исчерпания ресурсов находится за горизонтом прогноза, который устанавливается темпом научно-технического прогресса. (Но момент изменения тенденции – Peak Oil – находится внутри этого горизонта.) Только предположив полную остановку прогресса в области робототехники и нанотехнологий, можно строить точные прогнозы о том, когда и какие ресурсы исчерпаются. Вопрос в том, может ли начало исчерпания ресурсов и сопутствующий кризис настолько подорвать развитие технологий – и этот вопрос мы обсудим в главе про системный кризис.
Ещё один вариант глобальной катастрофы, случающейся с разными видами – это отравление продуктами своей жизнедеятельности, например, так дрожжи в бутылке с вином растут по экспоненте, а потом отравляются продуктами своего распада и все до одной гибнут. Этот процесс имеет место и в отношении людей, но неизвестно, могут ли они настолько загрязнить и истощить свою среду обитания, чтобы одно только это привело к их окончательному вымиранию. Помимо энергии, людям нужны следующие ресурсы:
• Материалы для производства – металлы, редкоземельные вещества и т д. Многие важные руды могут закончиться к 2050 году. Однако материалы, в отличие от энергии, не исчезают, и при развитии нанотехнологии станет возможной полная переработка отходов, добыча нужных материалов из морской воды, где растворено огромное количество, например, урана, и даже транспортировка нужных веществ из космоса.
• Еда. По некоторым данным пик производства еды уже пройден: почвы выветриваются, урбанизация захватывает плодородные земли, население растёт, рыба заканчивается, окружающая среда загрязняется отходами и ядами, воды не хватает, вредители распространяются. С другой стороны, возможен переход на принципиально новый промышленный тип производства пищевых растений, основанный на гидропонике – то есть выращивание растений в воде, без почвы в замкнутых теплицах, что защищает от загрязнения и паразитов и полностью автоматизировано. См. статью Дмитрия Верхотурова и Ильи Кирилловского «Агротехнологии будущего: от пашни к заводу» . Наконец, маргарин, как, вероятно, и многие другие необходимые составляющие продуктов питания, можно вырабатывать из нефти на химических производствах.
• Вода. Питьевую воду можно обеспечить за счёт опреснения морской воды, что сейчас стоит около доллара на тонну, но основная масса воды идёт на выращивание урожая – до тысячи тонн воды на тонну пшеницы, что делает невыгодным опреснение. Но при переходе на гидропонику резко снизятся потери воды на испарение, и опреснение может стать рентабельно.
• Место для жизни. Несмотря на огромное количество населения на Земле, до теоретического предела ещё далеко.
• Чистый воздух. Уже сейчас есть кондиционеры, очищающие воздух от пыли и повышающие в нём содержание кислорода.
Перенаселение
Очевидно, что перенаселение само не может никого истребить, но может создать условия, при которых будет наблюдаться нехватка любых ресурсов и обострятся любые конфликты. При этом нам нужно учитывать не только людей, но и их машины и уровень жизни. Автомобиль ест кислород и биотопливо и также нагружает биосферу, как несколько человек. Поэтому даже приостановка роста населения людей не будет означать окончание проблемы перенаселения, так как по мере развития технологий у каждого появятся свои машины, дома, домашние роботы и т д. Теоретически существует проблема, состоящая в том, что рост населения рано или поздно перекроет любые ресурсы, даже если человечество заселит всю галактику (за несколько тысяч лет при сохранении теперешней скорости роста населения), а значит, должна наступить некая точка, за которой неограниченная материальная экспансия прекратится. С.П.Капица вывел формулу, из которой следует гиперболический рост населения с уходом в бесконечность в районе 2027 года. (Хотя и полагает, что действие этой формулы прекратилось.) И хотя реальный рост населения отстаёт от этого графика, мы можем приблизиться к нему снова, если добавим к населению число установленных компьютеров.
Технологическая революция даст следующие вклады в рост населения:
• Увеличение числа существ, которым мы приписываем права, равные человеческим: обезьяны, дельфины, кошки, собаки.
• Упрощение рождения и воспитания детей. Возможности репродуктивного клонирования, искусственных мам, роботов-помощников по домашнему хозяйству и т.д.
• Появление новых механизмов, претендующих на человеческие права и/или потребляющих ресурсы: машин, роботов, систем ИИ.
• Возможности продления жизни и даже воскрешения умерших (например, путём клонирования по сохранившейся ДНК).
• Рост «нормального» уровня потребления.
Кроме того, рост человеческого населения увеличивает вероятность самозарождения опасных инфекционных заболеваний – а также число людей, которые решат стать террористами, а для уничтожения цивилизации важно не относительное, а абсолютное число террористов. С другой стороны, чем больше население, тем больше шанс, что кто-то выживет в ходе огромной катастрофы.
Выводы: самое главное, что даёт нам кривая роста населения – это понимание того, что так вечно продолжаться не может, а значит должна быть некая точка перегиба или перелома, за которой следует та или иная стабилизация. Это может быть и качественный переход на уровень сверхцивилизации, и стабилизация на текущем уровне, и откат в некое стабильное прошлое состояние, и полное уничтожение.
Крах биосферы
Если мы овладеем генетическими технологиями, мы сможем как устроить крах биосферы невероятных масштабов, так и найти ресурсы для её защиты и ремонта. Можно представить себе сценарий, при котором вся биосфера настолько заражена радиацией, генетически модифицированными организмами и токсинами, что она будет не способна восполнять потребности человечества в продовольствии. Если это произойдёт внезапно, это поставит цивилизацию на грань экономического краха. Однако достаточно продвинутая цивилизация сможет наладить производство продуктов питания в некой искусственной биосфере, вроде теплиц. Следовательно, крах биосферы опасен только при последующем откате цивилизации на предыдущую ступень – или если сам крах биосферы вызывает этот откат.
Социально-экономический кризис. Война
Более подробно этот вопрос будет рассмотрен далее, в главе о различных системных кризисах, поскольку в современном обществе такой кризис не может не опираться на разные новые технологии. Без таких технологий война или общественно-политический кризис не могут происходить одновременно на всей территории Земли и таким образом создавать глобальный риск.
Генетическая деградация и ослабление фертильности (способности к размножению)
Очевидно, что генетическая деградация может проявиться только в течение многих поколений. Если при этом будет существовать высокоразвитая цивилизация, то уже через поколение мы сможем управлять развитием эмбрионов и отбирать наиболее здоровых из них, а также лечить генетические заболевания разными способами. Если же человечество ждёт деградация на более низкий уровень развития, тот текущая популяция пройдёт через «бутылочное горлышко», что резко увеличит давление естественного отбора и улучшит качество генов. Подобные же рассуждения верны и для проблем с фертильностью.
Если экстраполировать модель «одна семья – один ребёнок», то она привела бы к полному вымиранию человечества менее чем за 1000 лет, что выходит за рассматриваемый промежуток времени (и достаточно уязвимо для критики, так как здесь был бы отбор в сторону наиболее плодовитых семейств). Однако если бы некий вирус привёл к тотальному бесплодию человечества, и при этом технический прогресс бы остановился, то люди бы вымерли к XXII веку. Опять же, это мало вероятно, так как уже почти готовы технологии репродуктивного клонирования.
Выводы: названные факторы не угрожают выживанию человечества в рассматриваемый период.
Старение вида
Есть концепция, что виды могут стареть. Майкл Фут и др. в статье «Взлет и падение видов: новые данные подтверждают старую идею «эволюционного цикла» пишут: «После появления вида его «распространенность» (площадь ареала и частота встречаемости) постепенно растет в течение нескольких миллионов лет, ненадолго достигает максимума и затем постепенно снижается. Виды редко вымирают внезапно, находясь на пике численности; вымиранию обычно предшествует длительный период упадка… Это значит, что палеонтологическая история вида позволяет судить о вероятности его вымирания в наши дни: наибольшей опасности подвергаются те виды, которые уже миновали пик своего развития и находятся в фазе упадка. Полученные данные противоречат также распространенному мнению о том, что в эволюции должны чередоваться короткие периоды «становления» и долгие периоды «стазиса». В действительности виды, по-видимому, почти не задерживаются на максимальном достигнутом уровне и практически сразу переходят от роста к упадку».
Стареть могут также государства и культуры, делаясь всё более застывшими и зарегламентированными, и, в конечном счёте, – хрупкими. Возможно, могут стареть и цивилизации планетарного масштаба, постепенно утрачивая интерес к жизни. Всё же вряд ли это угрожает Земле на нынешнем этапе. С другой стороны, рост числа пенсионеров и «бессмертных», если таковые будут когда-нибудь созданы, может когда-нибудь поднять эту проблему.
Вытеснение другим видом
Многие виды животных кончили тем, что были вытеснены более эффективными видами, или мутировали в них. Возникновение такого вида путём естественной эволюции в ближайшие 100 лет невозможно. Даже рост и сокращение численности разных рас и народов не являются процессами, которые успеют завершиться в XXI веке. Кроме того, изменение этнического состава не является угрозой выживанию человечества как вида, хотя на эту тему завязано очень много эмоций, и этнические конфликты могут стать глобальными рисками второго рода – то есть ситуациями, снижающими выживаемость человечества.
Вытеснение другим видом возможно как частный случай генетических экспериментов или развития симбиоза человек-компьютер. Однако чтобы вытеснить человека, новый вид, вероятно, должен быть умнее. Здесь можно вспомнить много фантастических сюжетов о создании химер из людей и животных и о войне между двумя видами.
2.14. Неизвестные нам сейчас причины катастроф
Можно сформулировать своего рода «Закон Мура» в отношении глобальных катастроф. Каждые N лет (примерно оцениваемое мной в 30 лет) удваивается известное нам число природных катастроф, которые могут угрожать человечеству. Каждые M лет (примерно оцениваемое мной в 15 лет) технические возможности по организации глобальной катастрофы – то есть способности человечества к саморазрушению тоже удваиваются. Цифры эти взяты, конечно, с потолка, но суть в том, что в середине ХХ века идеи глобальной катастрофы практически ещё не было, а теперь мы легко можем назвать десяток искусственных способов истребить род людской.
И это позволят нам оценить объём неведомого в смысле глобальных катастроф. Мы можем сказать, что через 50 лет не только созреют некие понятные нам технологии, но могут появиться принципиально новые идеи о том, какие возможны ещё угрозы существованию. По мере овладения разными всё более мощными источникам энергии, всё более точным знаниями о мире и способами управлять материей, по мере открытия всё новых физических законов и всё новых идей – появляется всё больше возможностей создать абсолютное оружие. Поэтому мы ни в каком случае не должны считать приведённый здесь список исчерпанным.
Более того, большинство случившихся в последнее время катастроф были неожиданными. Не в том смысле, что никто никогда не предсказывал ничего подобного – всегда можно найти апостериори книжку, где какой-нибудь фантаст описал что-либо подобное. А в том, что большинство населения и руководителей вообще не знали о возможности такого сценария, и в связи с этим ничего не предпринималось. Чернобыль, 11 сентября, сход ледника Колка, цунами в Индийском океане, болезнь пчёл CCD, сель в Долине Гейзеров – вот некоторые примеры.
Даже некоторые комбинации известных факторов, которые могут привести к глобальной катастрофе, не очевидны – например, мне понадобился почти год, чтобы предположить, что пассивное SETI содержит в себе глобальный риск, хотя я располагал всеми необходимыми данными. Соответственно, мы можем заключить, что раз даже к обычным катастрофам мы не готовы, и список известных их возможностей далеко не исчерпан, то тем более наш список глобальных катастроф несовершенен. Более того, неизвестные риски представляют большую опасность, чем известные, так как мы не можем их измерить, не можем к ним подготовится, и они всегда застают нас врасплох.
2.15. Способы обнаружения однофакторный сценариев глобальной катастрофы
Проанализировав множество разных сценариев глобальных катастроф, мы можем выделить общие признаки таких сценариев, которые помогут нам в будущем обнаруживать или «конструировать» новые опасные сценарии.
Общие признаки любого опасного агента
По определению, в однофакторных сценариях всегда присутствует некий один фактор, который действует на всех людей. Про этот фактор можно сказать следующее: он зарождается в некой точке, распространяется по всей поверхности Земли и действует на каждого человека. Соответственно, различия могут быть в том, как он в этой точке возник, как он её покинул, как распространялся по Земле и как действовал на каждого человека. В каждом из этих пунктов есть несколько вариантов, в достаточной мере независимых друг от друга, что позволяет «конструировать сценарии», набирая разные цепочки из этих вариантов и приписывая им разную вероятность. Этот набор качеств может служить своего рода картой при проверке на безопасность каждой новой технологии или природного явления. А именно, мы должны проверять следующий набор свойств:
1. Может ли новая технология применяться для уничтожения людей или приводить к ней?
2. Если да, то каким образом она может выйти из-под контроля?
3. Может ли она распространиться по всей планете таким образом, чтобы воздействовать на каждого человека?
4. Может ли это произойти настолько быстро, что мы не успеем этому противостоять?
5. Как она может взаимодействовать с другими технологиями, усиливая при этом свой риск?
6. Насколько легко будет построить защиту от опасностей этой технологии?
7. Насколько точными и достоверными могут быть наши предсказания о рисках этой технологии?
Способы возникновения
Опасный фактор, угрожающий глобальной катастрофой, может возникнуть следующим образом:
А) Случайное природное возникновение. Например, подлёт астероида или извержение сверхвулканов.
Б) Создание человеком. В этом случае, скорее всего, речь идёт о некой исследовательской лаборатории. Это создание может быть или случайным, или сознательным. Возможна и комбинация того и другого – когда нечто, что должно было иметь ограниченный радиус поражения (или вообще рассматривалось как безопасное и полезное), приобрело всемирный радиус поражения. (Примеры: Изначально ядерное оружие рассматривалось как оружие локального действия, однако потом возникли представления, что оно может угрожать всей земной цивилизации; ИИ, который запрограммирован быть дружественным и любить людей, может проявить такую «Дружественность», как «медвежья услуга».)
Выход из точки и начало распространения
Очевидно, что это происходит или по команде некого человека, или случайно. Сразу следует сказать, что возможно совмещение этих сценариев: человек отдаёт некую команду, полный смысл которой не понимает, или она выполняется неправильно. Или некий человек со стороны совершает террористический акт, приводящий к разрушению лаборатории, в которой находится супервирус. Точка, в которой находится опасное изделие – это или лаборатория, где его создали, и тогда речь скорее идёт о случайном инциденте, или стартовая площадка, если эта технология превращена в некое изделии, которое стало оружием. Так же эта точка может быть где-то на пространственно-временном пути от лаборатории до стартовой площадки – на полигоне, на транспорте, на производстве. При этом важно отметить существенную разницу между мотивами того, кто создавал оружие судного дня, и того, кто затем решил его применить. Например, атомную бомбу создавали для защиты от иностранного агрессора, а террористы могут её захватить для требования отделения неких территорий. Такой двухфазовый целевой сценарий может быть вероятнее однофазового. Виды выхода из точки:
1. Утечка. Утечка начинается тихо и незаметно, без чьей-либо воли. Это относится к ситуациям, вроде утечки опасного вируса, которую нельзя заметить до того, как будут заболевшие снаружи. Утечка опасного химического вещества или ядерных материалов будет сразу заметна, и, скорее всего, будет сопровождаться взрывом.
2. Прорыв. Это силовой прорыв чего-то, что было заперто, но хотело вырваться наружу. Может относиться только к ИИ или генетически модифицированным живым существам с зачатками интеллекта.
3. Взрыв – катастрофический сценарий происходит в самой точке, распространяются его последствия. Скорее всего, это относится к опасным физическим экспериментам.
4. Запуск – кто-то принимает решение о распространении опасного агента или применении оружия судного дня.
Очевидно, что возможны некоторые комбинации этих базовых сценариев. Например, взрыв лаборатории, приводящий к утечке опасного вируса.
Распространение важнее разрушения
Анализируя любое явление или изобретение в качестве возможного фактора глобального риска, нам следует уделять больше внимания тому, может ли этот фактор за конечное время воздействовать на абсолютно всех людей, чем тому, может ли он убивать людей или нет. Для того чтобы некоторый фактор стал глобальным риском, есть два необходимых условия:
А) он убивает каждого человека, на которого воздействует
Б) он действует на всех людей за конечное время (За время, меньшее, чем способность людей к самовоспроизводству.)
Однако если выполнения первого условия достичь относительно легко, так как существует бесконечное число способов причинения смерти, и они всё время на кого-то действуют, то второе условие – гораздо более редкое. Поэтому, как только мы обнаруживаем даже безобидный фактор, способный действовать на всех без исключения людей, это должно нас обеспокоить больше, чем обнаружение некого крайне опасного фактора, который действует только на некоторых. Потому что любой универсальный фактор может стать носителем для некого опасного воздействия. Например, как только мы осознаём, что Солнце освещает каждого человека на Земле, мы можем задаться вопросом – а не может ли с Солнцем случиться чего-то такого, что будет воздействовать на каждого? Тоже касается атмосферы Земли, её коры, и особенно космоса, который окружает всю Землю, а также глобальных информационных сетей.
Способ распространения
Собственно, именно способность к всемирному распространению делает оружие сверхоружием. Эта всемирность означает не только всю поверхность земного шара, но и способность проникать через все укрытия и средства защиты, а также скорость этого процесса, которая делает невозможным противостоять ему с помощью новых открытий. (Скажем, оледенение может быть всемирным, но, скорее всего, будет достаточно медленным, чтобы к нему можно было приспособиться.) Способы и факторы, влияющие на способность агента к распространению повсюду таковы:
1) По ветру в атмосфере; отдельно надо выделять быстрое движение верхних слоёв атмосферы (где скорости могут быть 100 м/с, а значит, время всемирного распространения – несколько дней), а также склонность вещества выпадать в необратимые осадки, что уменьшает его количество.
2) Агенты, распространяющиеся своим ходом – бактерии, самонацеливающие нанороботы, ракеты.
3) От человека к человеку – вирусы.
4) С помощью специальных распылителей. Например, можно представить себе следующий катастрофический сценарий: на низкой полярной орбите летает спутник и непрерывно сбрасывает капсулы с радиоактивным веществом или другим опасным реагентом. За несколько дней он может пройти над всеми точками земного шара.
5) Взрыв – сам создаёт огромное движение. Ударная волна помогает протолкнуть агент во все щели.
6) Сетевое распространение. Так мог бы распространяться ИИ по Интернету.
7) Смешанные способы. Например, на начальном этапе взрыв бомбы распыляет радиоактивные вещества, а потом их разносит ветром. Или некую плесень переносит ветер, а на местах она размножается. Понятно, что смешанные способы распространения гораздо опаснее.
8) Агенты, обладающие элементами разума, чтобы обходить препятствия (компьютерные вирусы, ИИ, микророботы, агрессивные животные).
9) Внезапность и скрытность распространения помогает агенту проникнуть повсюду.
10) Высокая способность к переносу, «липучесть» и мелкодисперсность (как у лунной пыли).
11) Способность саморазножаться, как в природе, так и на человеке или на промежуточных носителях.
12) Многофакторность – если имеется достаточно много разнородных агентов, например, при мультипандемии.
13) Существенным в распространении является концентрация. Чем выше градиент концентрации, тем больше способность реагента проникать «во все щели». Иначе говоря, если концентрация в атмосфере составляет 1 смертельный уровень, то всегда найдутся участки, где из-за разных флюктуаций этот уровень будет значительно ниже, и люди там выживут, даже без всяких бункеров. Но если концентрация очень велика, то помогут только полностью герметичные, заранее оборудованные бункеры. Концентрация также увеличивает скорость распространения.
14) Затем важна длительность действия агента. Коротко действующий агент (гамма-всплеск) может опалить значительную часть биосферы, но всегда найдутся убежища, на которые он не подействовал. Однако длительное заражение, например, кобальтом-60, делает невозможным выживание в небольших убежищах.
15) Наконец, надо учесть лёгкость фильтрации и дезактивации – чем легче фильтрация воздуха и дезактивация выходивших на поверхность людей, тем безопаснее агент. Биологические агенты можно было легко стерилизовать в системах вентиляции, но выходы на поверхность были бы исключены, так как человека не стерилизуешь.
Способ причинения смерти
Основной элемент глобальной катастрофы, который мы называем «агент», может вообще не убивать людей, а только разъединять их и лишать способности к размножению, как например, супернаркотик, или вирус, стерилизующий всех людей. Или загнать их всех в бункеры, где они обречены на деградацию.
Агент может быть однофакторным в смысле способа воздействия на человека – например, это может быть некая инфекция или радиация. При этом есть разница между мгновенной смертью и продолжительным умиранием.
Агент может обладать многофакторным поражающим воздействием, как атомная бомба. Однако должен быть главный фактор, обладающий универсальным действием на весь мир, или достаточная плотность разных факторов.
Агент может вызвать также не прямое действие, а равномерное разрушение всей среды обитания. (Астероид, разрушение биосферы.)
Вымирание может также принять форму медленного вытеснения во второсортные экологические ниши (варианты: «зоопарк», тотальная безработица в духе статьи Билла Джоя «Почему мы не нужны будущему?»)