412 000 произведений, 108 200 авторов.

Электронная библиотека книг » Алексей Анпилогов » Мир на пике – Мир в пике » Текст книги (страница 24)
Мир на пике – Мир в пике
  • Текст добавлен: 1 июля 2025, 16:20

Текст книги "Мир на пике – Мир в пике"


Автор книги: Алексей Анпилогов


Жанр:

   

Публицистика


сообщить о нарушении

Текущая страница: 24 (всего у книги 26 страниц)

Например, врачи и ученые долго возились с искусственным человеческим сердцем. Почти 40 лет люди пытались выдумать различные клапанные и пульсирующие системы, которые должны были досконально копировать сложный ритм работы человеческого сердца. Пока, наконец, в 2011 году не решились создать-таки «сердце без клапанов, человека без пульса».

Крейг Льюис (Craig Lewis) 55 лет, находился в предсмертном состоянии из-за амилоидоза, сердечного заболевания, вызванного нарушением белкового обмена, которое сопровождается скоплением в тканях специфического белка, разрушающего мышцы. Состояние мужчины было настолько серьезным, что даже электрокардиостимулятор не мог спасти его жизнь. Сердце Крейга перестало бы биться в течение месяца-двух, и он решился на эту смелую операцию.

До операции на Льюисе такие вспомогательные насосы, похожие на небольшие турбины, лишь помогали больным с сердечной недостаточностью, подталкивая кровь к больному сердцу и все. Хотя счет пациентов с такими насосами уже шел на тысячи и тысячи, но заменить двумя микротурбинками полное человеческое сердце решились только в апреле 2011 года. И – получилось!

Жена Льюиса была удивлена, когда она попыталась нащупать его пульс. «Я хотела почувствовать пульс Крейга, но услышала лишь странное жужжание», – сообщила она журналистам. «У него не было пульса», собственно и сердца как такового не стало, но появилась жизнь.

В общем, конечно, не термоядерный реактор рядом с сердцем, как у «Железного человека» Тони Старка-Дауни младшего, но зато – в реальности. И не как в Голливуде, где термоядерный реактор можно собрать в горах Афганистана из консервных банок, синей изоленты и коробки спичек. Ну а потом вставить себе в грудь рядом со своим шалящим и барахлящим биологическим сердцем.

Впрочем, мы ведь говорили о Солнце. И о том, что строить солнечный термоядерный реактор в земных условиях нам не стоит. Почему?

Да потому, что в Солнце идет очень специфическая ядерная реакция и стараться повторить ее на Земле – это пытаться прикрутить термоядерный реактор посередине грудной клетки с помощью синей изоленты, как в Голливуде.

Вот эта реакция. Я вначале нарисую ее в упрощенной форме, а потом покажу вам, где нам категорически не хватает магической синей изоленты, чтобы прикрутить где-нибудь на Земле этот природный термоядерный реактор к прочному бетонному фундаменту.



Рис. 175. Упрощенная схема ядерной реакции.

Два ядра атомов водорода, простые протоны, которые рано или поздно встречаются между собой где-нибудь в центре нашего Солнца, в результате этой реакции образуют… снова водород. Правда, уже не обычный, «легкий» водород, еще называемый протием, а «тяжелый» водород, дейтерий.

Самое интересное, что нейтрон, который образуется из одного из протонов в результате этой реакции, чуть тяжелее протона. Масса нейтрона – 939,57 МэВ, а масса протона –938,27 МэВ.

Один МэВ – это очень маленькая масса, 1 МэВ равен 1,7810−30 килограмма. Поэтому-то и получается, что в одном килограмме водорода собрана такая бездна атомов, которые и состоят, в основном, из своих ядер – протонов. Для того чтобы собрать килограмм комариных крылышек атомов водорода приходится оперировать числом с 26-ю нулями. Скажу лишь, что число людей на всей нашей Земле – это число с девятью нулями. Комаров по всей Земле я не считал, но думаю, что тоже не больше, чем протонов в килограмме водорода.

Но как же получается, что образовавшийся нейтрон тяжелее протона, вступившего в реакцию? Все дело в том, что это масса покоя нейтрона. И если взять «сферический нейтрон в вакууме», то он будет весить именно 939,56 МэВ. Точно так же, как и одинокий «сферический протон в вакууме» будет весить 938,27 МэВ. А вот вместе они будут весить меньше, чем по отдельности, в одиночестве друг от друга.

И да, одинокий нейтрон без протона – не жилец.

Время жизни свободного нейтрона без протона вблизи него – всего около 15 минут. За это время большая часть нейтронов успевает распасться обратно на протон, электрон и антинейтрино.

Но в рамках ядра дейтерия нейтрон «связан» с протоном силами сильного взаимодействия. Это взаимодействие и в самом деле очень сильное – настолько, что значительно меняет массу участвующих в нем частиц. И не просто меняет, а уменьшает их наблюдаемую массу.

Если брать «сферический» протон и «сферический» нейтрон, то для ядра дейтерия (дейтрона) у нас получится по математике вот такой формальный расчет:

938,27 + 939,57 = 1877,84 МэВ.

По факту же ядро дейтерия весит чуть меньше – 1875,61 МэВ. Разница между значениями массы, полученной путем механического сложения массы свободных протона и нейтрона и точным измерением реальной массы дейтрона и дает нам значение энергии связи или дефекта массы. Ее точное значение для дейтрона равно 2,22 МэВ. Это и есть масса (или энергия) магической синей изоленты, которая и прикручивает частицы в ядре друг к другу. Ну а поскольку энергия связи у нас понятие отрицательное (для того чтобы оторвать нейтрон от протона, надо затратить энергию), то правильно энергию связи дейтрона писать как –2,22 МэВ.

И вот тут у нас на арене появляется знаменитая формула: E=mc2.

Та самая, которую и придумал камрад Эйнштейн.

Что мы имеем? В начале реакции у нас два протона с массой по 938,27 МэВ каждый, а в конце – ядро-дейтрон, которое весит 1875,61 МэВ.

Нетрудно посчитать, что в чистом выходе по энергии мы имеем что-то около 0,93 МэВ в расчете на одно слияние.

Ура? Победа?

Нет, нам по-прежнему не хватает магической синей изоленты, чтобы привязать два протона друг к другу и заставить их, наконец-то, сделать для нас ядро дейтрона, которое отдаст нам лишнюю энергию, которую мы уже можем потратить на всякие разные приятные вещи.

Это связано с тем, что протон-протонный цикл в недрах нашего Солнца идет по более сложной схеме, чем нарисовано на первом рисунке. И она как раз и ставит для нас крест на всех наших попытках примотать протон-протонный цикл к нашим скромным нуждам где-нибудь на нашей скорлупке-Земле. Все дело в том, что два столкнувшихся протона образуют в начале реакции слияния не дейтрон, а очень экзотическое ядро – дипротон. Пока это просто два протона, слитых в единое целое. И, как и положено двум заряженным частицам, они не прочь оттолкнуться друг от друга.

В нашей Вселенной нет стабильных дипротонов. Это объясняется тем, что сила взаимного отталкивания двух положительно заряженных протонов чуть-чуть больше, чем энергия связи их гипотетического ядра, определяемая из формул сильного взаимодействия. Кстати, формально это ядро должно было бы называться гелий-2 или 2He в традиционной записи для изотопов.

В таком уникальном соотношении основных взаимодействий есть еще один интересный факт. Если бы сильное взаимодействие частиц было бы лишь чуть-чуть сильнее (наша синяя изолента была бы чуть попрочнее), то мы бы не увидели Тони Старка этого мира вообще. Расчеты показывают, что в таком мире сразу после Большого Взрыва все протоны объединяются в пары и во Вселенной не остается водорода, а значит, не будет ни воды, ни знакомой нам жизни. Только гелий-2, от которого потом и надо начинать цепочки синтеза ядер.

Гелий-2 был экспериментально найден в опытах, включающих в себя распад неона-18 в кислород-16 только в 2008 году. Поскольку получающийся в результате этой реакции дипротон был, как и положено дипротону, жутко нестабильным, его нашли исключительно по факту вылета двух протонов одновременно и в одном направлении из ядра распадающегося неона.

Конечно же, собрать килограмм ядер 2He в условиях их крайней нестабильности практически невозможно. Это как собирать «килограмм комариных крылышек». Как же наше Солнце умудряется нарабатывать энергию, заставляя упрямые протоны превращаться в дейтроны, и светит нам вот уже 4,5 млрд лет?

Все дело в том, что у дипротона есть еще один вариант дальнейшей судьбы, кроме тривиального «прощай, нам не жить вместе, я полетел дальше». У дипротона есть очень маленькая вероятность превратиться в дейтрон в результате действия уже третьего, слабого взаимодействия. В силу невозможности получения самого 2He или дипротона в сколь-либо значимых количествах, вопрос точного определения этой вероятности пока открыт. Скажем так – это не просто мало, а очень мало. Поскольку до сих пор все попытки воспроизвести протон-протонный синтез где-либо в земных лабораториях не увенчались успехом. Протоны просто отскакивают друг от друга, как горох, не образуя ни дипротонов, ни тем более дейтронов.

Кроме неприятного осадка в виде невозможности «зажечь звезду» прямо у себя в синхрофазотроне, ученые убедились, кстати, и еще во многих проблемах. Например, в 1960-е годы очень активно обсуждался так называемый прямоточный двигатель Бассарда, который представлял собой просто громадный черпак, движущийся с околосветовой скоростью. Такой черпак смог бы собирать водород прямо из межзвездного газа и позволил бы не беспокоиться о запасах топлива на борту корабля.

Однако впоследствии выяснилось, что межзвездный газ, как и наша вода, состоит в основном из протия, который хрен зажжешь просто так, «на коленке».

Как же умудряется это делать наше Солнце? В Солнце, судя по всему, все же часть дипротонов успевает превратиться в дейтроны в результате слабого взаимодействия. Связано это, в первую очередь, с громадным объемом нашего светила. Все дело в том, что превращение протона в нейтрон в результате слабого взаимодействия – вещь невероятная. Нейтрон немного тяжелее протона, поэтому на преобразование свободного протона в нейтрон надо затратить энергию. Скорее уж нейтрон превратится в протон в результате β-распада.

Однако то, что невыгодно для двух протонов по отдельности, выгодно для дипротона, поскольку дейтрон (ядро дейтерия), как мы посчитали выше, все же чуть легче двух протонов. Вероятность «мутации» одного из протонов в нейтрон внутри дипротона очень маленькая. Сейчас ее оценили как 1/10−30, однако это лишь оценка. Ибо лишь малая часть соударений протонов внутри Солнца приводит к образованию дейтерия. Однако синтез протия дает нашему Солнцу около 60 % всей энергии. Оставшиеся 40 % энергии Солнца дает цикл на ядрах углерода, азота и кислорода, или CNO-цикл, но о нем – чуть ниже. В общем, для того чтобы заставить этот упрямый протий все-таки отдать нам хоть чуть-чуть вожделенного E=mc2, приходится брать молоток побольше, а газовый шарик – помассивнее. В результате такого большого скопления протонов, которые сталкиваются и разлетаются снова, в результате β+-распада одного из протонов ядра превращается в нейтрон, дипротон – в дейтрон (ядро дейтерия), а из новорожденного, уже стабильного ядра «тяжелого» водорода вылетают антиэлектрон (или позитрон) и нейтрино. Короче, все не совсем и просто в этих реакциях.

Ожидаемо, по закону сохранения энергии, часть энергии такой реакции уносится с нейтрино, которое уже очень трудно поймать, а основная часть из E=mc2, полученного за счет дефекта массы, улетает вместе с позитроном.

После этого, обычно очень быстро, позитрон полностью аннигилирует с каким-нибудь соседним электроном, образуя два гамма-кванта с энергией в 0,51 МэВ.

Вот так. Основная начальная реакция, которая разогревает наше Солнце, наряду с другими, которые уже идут на основе полученного дейтерия, это аннигиляция.

Отсюда, если приматывать протон-протонный цикл где-нибудь синей изолентой к бетонному фундаменту у нас на матушке-Земле, то надо быть готовым к жесткому гамма-излучению от аннигиляции излучаемых позитронов. А она целебна (точнее не совсем вредна) только в очень-очень малых количествах. Например, позитронная томография использует именно β+-распад многих искусственных изотопов и позволяет детально рассмотреть многие мягкие ткани человека.

В общем, не получается собрать термоядерный реактор, как на Солнце, в наших убогих земных условиях. То ли мы не Тони Старки, то ли синяя изолента у нас слабовата.

Ну и пусть слабовата. Зато мы живы и с нормальной «легкой» водой. А не с гелием-2 в какой-то непонятной, безжизненной Вселенной.

Ладно, звезду не зажгли. Ну а что там можно сделать дальше, с дейтерием?

Многие из читателей слышали о токамаках и о том, что ими пытаются «зажечь» термоядерную энергию у нас, на Земле. К сожалению, понимание проблем токамакостроения и плазмоудержания у современных обывателей, находится на весьма убогом уровне. Те светлые времена, когда журнал «Наука и Жизнь» выходил тиражом в 3 миллиона экземпляров и нес просвещение в массы, уже позади. Сейчас тираж «Науки и Жизни» скатился до жалких 40 000 экземпляров, а сам журнал представляет собой убогую тень своего славного прошлого – с «юбилейными» статьями и колонкой «на заметку домохозяйке».

Я попробую рассказать вам об инженерных проблемах термоядерной энергетики максимально доступно, но в то же время – с сохранением всего объема технической информации, необходимого для понимания того, во что и где уперлись ученые, инженеры и строители в деле создания «рукотворного Солнца» на Земле.

Вначале о понятном простым людям – о размерах. Вот сравнение (чисто в рамках геометрии установок!) того пути, который уже был пройден и который еще предстоит пройти термоядерной энергетике.




Рис. 176. Данные для компаративного анализа размеров термоядерных установок.

Блоха в левом нижнем углу рисунка – это первый настоящий токамак Т-3, созданный в СССР в 1960-е годы и продемонстрировавший миру принципиальную возможность создания электростанции, основанной на магнитном удержании высокотемпературной плазмы для создания термоядерной реакции. Маленькая палочка под трубой большого ITERa (справа), который сейчас строит весь мир, это человек. Вот он же в сравнении с токамаком Т-3 на старом архивном фото для понимания размеров ITERa.



Рис. 177. Архивная фотография работы человека на установке Т-3.

Как видите, наши отцы даже и не представляли, насколько трудная и масштабная задача предстоит им в деле будущего покорения термоядерной энергии.

Причем если кто-либо думает, что путь прогресса от Т-3 до ITERа – это лишь вопрос нахождения молотка побольше и организации рабов на заливку бетонного основания токамака, то он глубоко ошибается.

ITER гораздо технологичнее самого последнего и самого большого современного токамака JET во столько же раз, во сколько раз и сам JET технологичнее старого, доброго, «лампового» Т-3.

Надо сказать, что даже ITER еще будет, несмотря на всю свою технологичность, всего лишь «наскоро сделанным на коленке» прототипом. Конечно, не на коленке, конечно не наскоро, но именно прототипом. Например, охлаждение первой стенки реактора в нем будет вестись с помощью обычной воды, в то время как в серийной термоядерной станции DEMO, строительство которой начнут сразу же после постройки и успешного пуска ITERа, первая стенка плазменной камеры будет охлаждаться уже жидким гелием. То есть ученые спешат. Ученые очень спешат, пытаясь сделать реакторы на термоядерной энергии, но это отнюдь не так просто, как это представляется многим.

Надо сказать, что и с Т-3 ситуация была тоже не в виде «сегодня решили, завтра построили». Первое постановление о начале работ по мирной термоядерной энергии подписал еще Иосиф Сталин в 1952 году. А рекордные 10 миллионов градусов температуры, которые удивили весь мир, советские ученые получили на токамаке Т-3 только в 1968 году.

И вот тут мы подходим к одному интересному моменту, который часто не осознается многими людьми, которые слышали о термоядерной энергии только в рамках школьного курса физики.

Поясню, в чем состоит тонкий момент термоядерной реакции, которую сейчас хотят запустить в экспериментальном реакторе ITER.

Как вы поняли, напрямую повторить реакции по слиянию ядер протия, которые идут в недрах нашего Солнца, или же сложный CNO-цикл, который тоже понемногу превращает «легкий» водород в гелий, в земных условиях невозможно. Хотя бы потому, что размеры реактора для таких циклов и реакций необходимы просто безумные – речь идет о том, что термоядерные реакции на легком водороде нуждаются в реакторе размером с наше Солнце.




Рис. 178. Схема CNO-цикл, который тоже греет наше Солнце вместе с вездесущим протием.

А в целом, если мы начнем в известном нам космосе искать варианты минимальных условий для создания самоподдерживающейся ядерной реакции на легких элементах (так, чтобы ничего не строить, а только смотреть на готовое, созданное самой природой), то мы упремся в такие необычные объекты, как коричневые карлики.

Коричневый карлик – это звездоподобный объект, размеры которого будут сравнимы с размерами нашего Юпитера, но масса будет уже в 10–30 раз больше, что позволит коричневому карлику ненадолго зажечь в своих недрах эрзац-реакцию на легких элементах.

По размеру небольшой коричневый карлик лишь немногим больше Юпитера. Основное его отличие – это плотность и масса. Большая масса коричневого карлика создает более сильное гравитационное поле, гравитация сжимает карлик, плотность и температура внутри него растут, и voilà – в нем начинается термоядерная реакция.

Если красные карлики – это все еще полноценные звезды (хоть и очень маленькие), то коричневые карлики – это что-то среднее между планетами типа Юпитера и настоящими светилами. Из-за своей наружной температуры около 1200 К (900 °С) коричневые карлики светятся темно-вишневым светом. Самые яркие и самые массивные из них могут даже разгореться до темно-красного свечения, набрав на пике своей «мощности» температуру до 3000 К (или около 2700 °С).

Отличаются от настоящих звезд главной последовательности и реакции, которые идут в коричневых карликах. В нашем Солнце реакции «протий+протий» и CNO-цикл вносят где-то по 60 и 40 % в общее энерговыделение нашего светила. Но проблема в том, что реакция «протий+протий» стартует в звездах где-то от температуры в 4 млн К, а CNO-цикл и при того более высоких температурах – при 12 млн К.



Рис. 179. График, отражающий условия «запуска» реакций «протий+протий» и CNO-цикла.

При температурах же, характерных для коричневых карликов, ни реакцию «протий-протий» ни тем более CNO-цикл не зажечь. Совершенно так же невозможно для коричневого карлика зажечь и реакцию синтеза углерода из ядер гелия-4, которую предстоит пройти и нашему Солнцу где-то через 3,5 млрд лет, в момент его превращения в красный гигант. Для реакции синтеза гелия в углерод надо поднять температуру внутри звезды «всего лишь» до 100 миллионов градусов Кельвина, чем даже наше Солнце пока, к счастью, похвастаться не может. И слава Богу. Иначе бы граница Солнца начиналась бы где-то на орбите Марса. Отсюда промежуточный вывод – лучше пока подождать еще где-то 3,5 млрд лет.

Что же жгут в своих недрах коричневые карлики? Ведь их уже нашли больше трех десятков, в основном, по понятным причинам, у ближайших к нам звезд. А жечь протий или что-то другое у себя в недрах они физически не могут.

Для того чтобы понять, что жгут коричневые карлики, посмотрим на несколько диаграмм. Первая – это энергия связи ядер различных химических элементов в расчете на один нуклон – нейтрон или протон.




Рис. 180. График энергии связи ядер в расчете на 1 нуклон.

График начинается с ядра дейтерия, нелегкое образование которого из протия мы рассмотрели чуть выше. Сам протий – это ядро 1H, или одиночный протон. На этом графике он не показан по понятной причине – энергия связи одиночного протона по определению равна нулю.

Энергия связи ядра «тяжелого водорода» – дейтрона составляет около 1 МэВ на нуклон. А уже для следующего химического преображения гелия, энергия связи в расчете на один нуклон резко возрастает до 7,03 МэВ. Такая энергия связи характерна для «магической частицы» всей ядерной физики – ядра гелия-4 или 4He, часто называемого еще и альфа-частицей (α-частица).

Альфа-частица – это сверхустойчивый ядерный организм. Как я уже сказал, превращаться во что-либо иное она согласна только при температурах более 100 млн градусов, в недрах достаточно массивных звезд. Кроме того, альфа-частица – это постоянный спутник многих радиоактивных распадов тяжелых ядер.

Почему? Это тоже очень легко наблюдать на графике. Энергия связи атома урана, например, составляет всего 7,6 МэВ на один нуклон. Разница между энергией связи нуклонов в уране и в альфа-частице – всего около 0,57 МэВ. Рано или поздно ядро урана не выдерживает ужасов социалистического общежития и скученности 238 нуклонов на ограниченной жилплощади – и выталкивает из себя альфа-частицу. Альфа-частица, со своим «блэкджеком и поэтессами», успешно улетает, ну а 238U превращается через пару быстрых β-распадов… в тот же уран, изотопа 234U. В то же самое социалистическое общежитие, но уже с 234 жителями.

Исходя из такой мощной энергии связи альфа-частицы, мы можем теперь по-настоящему понять график распространенности химических элементов во Вселенной.




Рис. 181. Графики распространенности химических элементов во Вселенной.

Как видите, «магистральное шоссе» синтеза ядер у нас четкое и однозначное.

Водород горит в гелий, гелий горит в углерод и кислород, кислород и углерод горят в кремний, а кремний горит в железо.

Железо – это термоядерные угли, которые уже не могут гореть сами по себе, поскольку имеют максимально возможную для ядер энергию связи.

Практически все элементы группы железа и все, что тяжелее этого химического элемента, попадает во внешний мир только при взрывах сверхновых звезд. Если это вас утешит, то каждый атом углерода, кислорода или азота в вашем теле уже как минимум один раз побывал в звезде, ну а вся Земля в целом – это звездный пепел. По большей части, конечно.

И в этом звездном пепле можно все-таки отыскать немного недогоревших головешек. Именно эти головешки и жгут коричневые карлики и собираются поджечь хитрые ученые.

Это атомы, которые притаились в первой части таблицы, но которые имеют энергию связи меньшую, чем наша магическая альфа-частица.

Вот, поименно, весь этот список: дейтерий и тритий (это у нас изотопы водорода), литий, бериллий, бор.

Все.

Всего пять головешек оставила нам природа для того, чтобы поджигать наш земной костер из легких ядер. Причем это именно что «огарки», по сравнению с легким водородом – протием или по сравнению с гелием-4 таких элементов и изотопов у нас до обидного мало.

Но людишки бы не были Homo Sapiens, если бы не нашли интересный выход из сложившейся ситуации с недостатком легких ядер в составе Земли.

[103]103
  Aquila non captat muscas – Орел не ловит мух.


[Закрыть]

Энергия связи ядра протия, как мы помним, равна нулю. При встрече двух протонов должно произойти невероятное событие: один из протонов должен виртуально превратиться в нейтрон (за счет слабого взаимодействия) и тут же образовать устойчивое ядро дейтерия – дейтрон, энергия связи в котором чуть больше, чем разница в массах протона и нейтрона.

По сути, конечно, окончательное состояние двух протонов в ядре дейтрона энергетически более выгодно. Но вот в начале процесса вопрос того, кто превратится в нейтрон, отнюдь не столь очевиден.

А что будет, если протону подсунуть под нос уже готовый нейтрон?

Любой протон, который окажется достаточно близко с тепловым (то есть медленно идущим) нейтроном, тут же быстро захватит его и образует устойчивое ядро дейтерия – дейтрон.

Ну а дейтрон уже, в принципе, может захватить и еще один нейтрон и образовать ядро трития.

В общем, был бы у нас годный источник тепловых нейтронов – то задача наработки термоядерного горючего из обычной воды не стояла бы в принципе. Хочешь – дейтерий получай, хочешь – тритий, а хочешь – подожди 12,5 лет полураспада трития – и гелий-3 тоже получишь.

Что же у нас является самым мощным источником тепловых нейтронов, который был создан человечеством? Да он же, любимый, и является. Наш старый добрый «атомный самовар». С балалайкой и ручным медведем. Наш ядерный реактор на распаде тяжелых ядер – урана, тория и плутония. На каждое деление он выдает по два-три нейтрона, плюс еще немножко – от осколков деления урана.

Значит, на каждый атом урана можно легко получить атом дейтерия. Просто из воды охлаждающей водяной рубашки первого контура, в которой у нас будет «коктейль» из дейтерия, трития и гелия-3. Доставку термоядерного топлива заказывали? Как в рассказке: «Ты вчера просил ковер? – Ну, так я его припер….»

С топливом разобрались? А теперь ответим на прозвучавший в начале рассказа о токамакостроении вопрос. А зачем охлаждают переднюю стенку камеры токамака? Как же ученые собираются забрать тепло от плазменного шнура в реакторе ITER?

А никак. Не будут снимать тепло прямо со шнура – не для этого с таким трудом и с такими мучениями грели плазму. «Не для тебе ця квітка розцвіла», как говорят на Украине.

Энергию будут снимать с нейтронов, которые в изобилии будет давать термоядерная реакция синтеза дейтерия и трития в гелий, которую и хотят запустить в термоядерном реакторе. Вот эта реакция.



Рис. 182. Упрощенная схема термоядерной реакции D-T.

Еще раз, что важно. Энергия при реакции синтеза не выделяется просто так. Часть энергии остается в плазме в виде заряженной частицы гелия-4, а часть энергии неизбежно покидает плазму в виде быстрого нейтрона. Нейтрон – частица незаряженная, девушка вольная и улетает со своим «приданым», куда ей импульс велит.

А приданого – почти что 80 % от всего выхода термоядерной реакции. Только 3,5 МэВ энергии от реакции синтеза остается в плазме, а 14,1 МэВ улетает куда подальше в виде высокоэнергетического нейтрона, которому это ваше магнитное поле – что слону дробина.

14,1 МэВ – это много или мало?

Это не просто много – это супермного. Такими высокоэнергетическими частицами можно делать все что угодно. Например, дробить неделимый торий, который слабенькими нейтронами распада делиться не хочет в принципе. Того, что большой слон. Или – получать из урана плутоний. Который – Джокер. Или – делить упрямый 238U, который, как и торий, делится нейтронами от распада 235U очень неохотно. Ну тот, толстый парень в тапках рядом с девушкой «ядерной спичкой».

Ну или опять-таки окружить токамак за первой тонкой и охлаждаемой стенкой вакуумной камеры с плазмой, которая для нейтронов все равно что бумага, снова-таки водяной рубашкой.

Из протиевой воды, которой у нас – целые океаны по всей Земле. И снова, за счет нейтронов синтеза, нарабатывать из протия дейтерий, тритий и гелий-3.

Короче, если кто смотрел фильм «Обливион» с Томом Крузом, то мегакипятильники, которые «воровали» с Земли дейтерий и которые Круз смело и героически охранял, это бред.

Кипятильник не нужен. Если у тебя есть термоядерный реактор на реакции D+T, то ты наработаешь себе и немножко трития, и «трошечки, тільки для себе» дейтерия на будущее. И плутония. И тория. И урана. Да и вообще – всю таблицу Менделеева.

Такой химерный реактор на реакции деления тяжелых ядер и на реакции синтеза ядер легких и будет тем философским камнем, который позволит получить энергию из всего того, из чего энергию можно в принципе получить.

[104]104
  Clarium est – Ясно, понятно.


[Закрыть]

Философский камень и рог изобилия заказывали?

Да, я тут нашел… в головешках от термоядерного пожара последней сверхновой и Большого Взрыва.

Дейтерия же, которого у нас 1013 тонн только в гидросфере (0,015 % от легкой воды составляет тяжелая вода), нам хватит на то, чтобы снабжать человечество энергией в течение многих миллионов лет. Поэтому вначале мы должны зажечь реакцию дейтерий+тритий (D+T), а потом, при первой же возможности, перейти на так называемое «монотопливо», то есть на реакцию на чистом дейтерии (D+D), которая и должна стать основной термоядерной реакцией будущего.

Хорошо, скажут читатели, изотопы для реакции вроде есть, термоядерные чайники хоть и большие, но в общем-то – физически понятные. Но вот почему у нас нет до сих пор мирного термояда?

Рассказываю. Дело не в физике. Дело в нас самих – в психологической инерции нашего мышления и в наших современных социальных системах.

Все финансирование проекта ITER сейчас – всего около 15 млрд долларов. На фоне мировых расходов на нефть, газ или на уголь – это мизер. Это мизер даже по сравнению с солнечной и ветряной энергетикой, на которые уже тратят по всему миру триллионы долларов.

Если читатели в свое время смогли ознакомиться циклом уроженца Гомельской губернии, а теперь – Смоленской области, писателя-фантаста Исаака Озимова «Основание», то они, конечно, помнят историю о поисках Второго Основания. Для тех же, кто пока не прочитал данное произведение Айзека Азимова, – краткий конспект. Без спойлеров, понятное дело.

Во время крушения Старой Империи ее ученые, предвидя скорый крах цивилизации, основывают на краю Галактики «спасательную шлюпку», которая должна сохранить технологии и знания для людей будущего. Шлюпку называют «Основание» и размещают на захолустной планете на краю Галактики, лишенной каких-либо значимых природных ресурсов. Однако именно такое уединенное и безнадежное положение заставляет жителей Основания сохранять и умножать технологии Империи, которые позволяют им выжить на их бедной планетке. Империя рушится, и Основание понемногу начинает собирать планеты Старой Империи в кучу. И со времен Старой Империи остались обрывки записей, что «где-то на другом конце Галактики находится Второе Основание». Вся третья книга цикла Азимова посвящена именно безуспешным поискам Второго Основания, которое производят все главные герои. На роль «другого конца Галактики» претендуют самые разные планеты, но в итоге все поиски заканчиваются ничем.

И главная причина, по которой никакой член Первого Основания не может обнаружить истинное местоположение Второго, – это иной склад ума. Ведь Первое Основание жило и развивалось под руководством физических ученых, а не психологов. Ну а физики отнюдь не привыкли видеть все с социальной точки зрения и просто искали Второе Основание совсем не там, где оно располагалось по факту.

Похожая проблема есть у нас и с термоядерной энергией.

Я не открою для многих «физиков» великой тайны, если скажу, что проблема термоядерной энергии – это проблема социальная. Ведь и в самом деле, вопрос термоядерной реакции и ее принципиальной осуществимости не лежит в плоскости «доказано / не доказано». И доказано, и показано, и взорвано. Более того – сейчас термоядерный заряд можно сделать очень маленьким и очень компактным, мощностью всего в несколько десятков килотонн.

В нашем представлении термоядерные заряды обычно ассоциируются с громадными мощностями, заданными гигантами вроде «Царь-бомбы» (более 57 мегатонн) или «Кастл Браво» и «Майк» (более 10 мегатонн каждый). Это именно так и было – в начале развития термоядерного оружия. Связан такой гигантизм термоядерных изделий с тем неприятным фактом, что все межконтинентальные баллистические ракеты и другие средства доставки тогда были немного «подслеповаты», и недостаток точности попадания первых ракет конструкторы компенсировали вот такими здоровенными молотками, как знаменитая «Кузькина мать» – она же «Царь-бомба».


    Ваша оценка произведения:

Популярные книги за неделю