355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Александр Королев » Водолазание в России от древних времен до наших дней » Текст книги (страница 7)
Водолазание в России от древних времен до наших дней
  • Текст добавлен: 29 сентября 2016, 01:51

Текст книги "Водолазание в России от древних времен до наших дней"


Автор книги: Александр Королев



сообщить о нарушении

Текущая страница: 7 (всего у книги 14 страниц)

После войны, с появлением и широким распространением современного легководолазного снаряжения, возникла потребность и в подводном транспорте. Его существующие конструкции можно разделить на две большие группы: буксируемые и автономные. К первым относятся беседки, рули и носители, широко используемые при обследовании дна водоемов. Эти средства просты в эксплуатации, но ограничены в маневрировании. Вторая группа имеет собственный движитель и приводится в движение мускульной силой водолаза или имеет двигательную установку и источники питания. К последним относятся наиболее распространенные средства передвижения, используемые подводными пловцами с различными практическими и спортивными целями.

По расположению водолаза буксировщики подразделяются на подводные скутеры, которые подводник удерживает руками, и носители, на которых водолаз располагается либо лежа, либо сидя. Большие носители с обтекателями для водолазов, запасом воздуха и электроэнергии образуют еще одну группу подводных транспортных средств – проницаемые подводные лодки.

Именно подводные скутеры и малые носители в силу относительной дешевизны и простоты конструкции широко применяются в спорте, туризме, в подводной археологии, геологических, биологических и других научных исследованиях.

Много лет мне и моим коллегам приходилось решать задачи, поставленные морской наукой. Значительная часть работ проводилась (и проводится) учеными-водолазами в прибрежной части морей России и так или иначе связана с обследованием больших акваторий. Будь то ландшафтное картирование, т. е. описание дна и его обитателей и их количественный учет, мониторинг прибрежной части на предмет выявления влияния человека или выбор места для подводных плантаций, а потом их периодический осмотр – все это требует длительных подводных заплывов по маршрутам, составляющим в сумме десятки километров. В этом отношении работа ученых-водолазов сходна с деятельностью подводных туристов. Правда, взгляд ученого более целенаправлен, а в результате «прогулок» возникает не только куча эмоций, но и серьезный научный отчет. Но и тем и другим приходится часами работать ластами, чтобы проплыть под водой по проложенному маршруту. Поэтому и туристы, и ученые с удовольствием применяют подводные средства передвижения. Поначалу мы конструировали и изготавливали буксировщики сами, позднее закупали образцы скутеров, предлагаемые отечественными и зарубежными фирмами. О двух конструкциях, которые используются нами до настоящего времени я и хочу рассказать.

Транспортировщик ВНИРО (рис. 79) по техническим характеристикам можно отнести к малым носителям водолазов. Построен он во ВНИРО для эксплуатации на подводных фермах. Носитель может быть использован в качестве страховочного и аварийно-спасательного средства. Состоит из корпуса, блока аккумуляторов, движительного комплекса и пульта управления. Корпус негерметичен, изготовлен из пенополиуретана холодного отвердения по матрице. В корпус вклеена рама из нержавеющей стали, оканчивающаяся в носовой и кормовой частях защитными дугами. В средней части корпуса установлен сменный блок аккумуляторных батарей (14 В, 145 Ач), состоящий (ноу-хау!) из отдельных негерметичных банок, соединенных между собой. Клеммы и перемычки покрыты защитным составом для изоляции от воды. Батарея с помощью герморазъемов соединена с блоком управления, размещенным в герметичном корпусе двигателя. Движитель – четырехлопастной винт, расположенный в насадке. Винты сменные, их два – буксирный и скоростной. Длина носителя 1,5 м, ширина 1,3 м (с рулями), высота 0,5 м. Масса 68 кг. Скорость от 0,5 до 4 уз., время работы до 4 ч.

Аквалангист располагается лежа на аппарате, опираясь руками на ручки управления. Благодаря кормовой дуге, за которую могут удерживаться два пассажира, носитель может транспортировать к месту работ водолазную бригаду для работы на удаленной от берега плантации. На носовой дуге крепится навигационный узел, либо бокс с фото-видеоаппаратурой.

Производственное объединение «Компрессор» из Санкт-Петербурга освоило серийный выпуск аппарата для подводного передвижения пловца «Скутер подводный» (рис. 80). По замыслу разработчиков буксировщик предназначен для подводно-технических работ и туризма. Скорость от 1 до 2,5 уз. Автономность 1–3 ч. Корпус изготовлен из стойкого в морской воде алюминиевого сплава. Глубина погружения 40 м, однако нами выполнялись кратковременные спуски на значительно большие глубины. В отличие от зарубежных моделей, пластмассовые корпуса которых стареют вместе с другими элементами конструкции, корпус скутера практически вечен. В одном из самых первых образцов владельцы уже сменили несколько комплектов аккумуляторных батарей и сальники, корпус же еще сохранил заводскую окраску.

К недостаткам «Скутера подводного», допущенным при конструировании, следует отнести длительную и неудобную зарядку, а также положение водолаза относительно аппарата, не позволяющее расслабиться и вызывающее быструю утомляемость при продолжительной работе.

Несколько лет мы используем описанные выше буксировщики как в индивидуальных заплывах, так и в групповых. Наиболее типичные работы – обследование акваторий и подводный поиск. Если погружения проводятся в малознакомом месте, обязательно используем компас. Обычно применяем французский прибор, выполненный в виде прозрачной сферы. Вместо штатного наручного ремня крепим к нему присоску, что позволяет устанавливать компас на корпус буксировщика в любом удобном для водолаза месте.

Возникали сложности в обеспечении техники безопасности водолазов на транспортных средствах, особенно при продолжительных и дальних заплывах. Попытки применения беспроводной связи разных типов и производителей дали отрицательный результат. Устойчивой связи не получалось, так как и сам буксировщик, и движение пловца в воде, и быстрое перемещение водолаза относительно препятствий создавали непреодолимые помехи для сигнала.

Работы в паре, на двух буксировщиках, особенно в условиях ограниченной видимости, приводили к тому, что обоим водолазам приходилось основное внимание уделять контролю за напарником, а не обозрению подводных красот. Малейшая несогласованность – и подопечный терялся в голубой дымке. При определенной тренировке осуществить взаимную страховку группы водолазов на буксировщиках удавалось при дальности видимости не менее 12–15 м.

Многолетний опыт обеспечения безопасности водолазов на подводных транспортных средствах позволяет нам рекомендовать следующие варианты.

Наиболее безопасным, по нашему мнению, является спуск с пассажиром. Пассажир обычно держится за ласты или акваланг водителя. Это позволяет подводникам контролировать друг друга, осуществлять тактильную связь по заранее условленным сигналам. При этом и пассажир, и водитель участвуют в работе: обследуют дно, либо совместно обозревают окружающие ландшафты.

Страховку одного водолаза на буксировщике, работающего в определенной, заранее оговоренной зоне, нам удавалось осуществить с моторного катера по пузырям. К сожалению, это возможно только при отсутствии волнения и при наличии достаточного опыта у страхующего.

При продолжительных заплывах на большие расстояния рекомендуем применять легкий контрольный буй гидродинамической формы с буйрепом длиной, не менее чем в полтора раза превышающей максимальную глубину спуска. Буй, конечно, мешает водолазу, однако при определенном навыке эту помеху можно свести к приемлемому минимуму.

Опробована нами очень надежная связь для водолаза на скутере. Мы использовали обыкновенную малогабаритную ультракоротковолновую радиостанцию, размещенную на предплечье водолаза в герметизированной жгутом водолазной перчатке. К радиостанции мы подключили гарнитуру от подводной телефонной станции и тонкий коаксиальный кабель с небольшой антенной на гидродинамическом буйке. Качество связи было великолепным. В перерывах между разговорами хорошо прослушивались шумы от работы легочного автомата и двигателя буксировщика, причем как со страхующего катера, так и с базы или судна. Это позволяло следить не только за местоположением водолаза, но и за его самочувствием.

Недавно в одном из московских бассейнов состоялись испытания нового подводного буксировщика – ЛПБ-1 «Наутилус», рекламируемого разработчиками как самый легкий аппарат для передвижения под водой (рис. 81). Изготовлен он на заводах «оборонки» по линии Международного фонда конверсии. Масса 10 кг, глубина погружения 40 м. Длина корпуса 0,68 м, автономность около 1 ч.

На испытаниях буксировщик показал неплохие результаты. Некоторые замечания по расположению органов управления конструкторы обещали учесть при его серийном производстве. Теперь главное довести «Наутилус» до магазинных полок, ведь сколько замечательных изделий, родившихся в недрах ВПК, так и остались в виде выставочных образцов.

Энтузиасты из Севастопольского НПП «Мортехстрой» под руководством Валерия Краснова разработали и построили оригинальный двухместный носитель водолазов СМП-07 (рис. 82). Глубина погружения 60 м, скорость до 9 км/ч. Автономность по запасам воздуха 2 ч, масса 800 кг. Основу конструкции аппарата составляет силовая рама из алюминиево-магниевого сплава, на которой смонтировано все оборудование. Для придания гидродинамических обводов поверх рамы установлен легкий корпус из армированного стеклопластика. Его внутренний объем при помощи съемных панелей разделен на технологический отсек и транспортную кабину. В последней оборудованы места для двух водолазов и установлены органы управления системами и механизмами аппарата. Воздух для дыхания поступает к каждому члену экипажа по гибкому шлангу из бортовой системы. В нижней части кабины, под сиденьем водолазов, расположена балластная цистерна объемом 62 л, обеспечивающая погружение и всплытие аппарата. Управление процессом погружения ручное, от общего манипулятора. В спинке сиденья первого водолаза установлена уравнительная цистерна. По своим характеристикам и возможностям СМП-07 следует отнести, скорее, к малым подводным лодкам с проницаемым корпусом. Съемный колпак-обтекатель, закрывающий водолазов (на фото отсутствует), бортовые системы для дыхания и обогрева водолазов, системы навигации позволяют использовать носитель не только для туризма, но и для выполнения различных подводно-технических и поисковых работ.

С 60-х годов минувшего века в Московском авиационном институте строят, испытывают и эксплуатируют автономные проницаемые носители для водолазов.

Носитель МАИ-2 выполнен в виде крыла обтекаемой формы с корпусом и несущими поверхностями из стеклопластика. Управляется лодка с помощью двух рукояток, расположенных под обтекателем впереди водолаза. В носовой части – приборная доска с компасом, глубиномером и часами. Аккумуляторная батарея обеспечивает работу двигателей и всех систем носителя.

Аппарат использовался для картирования прибрежной части Японского моря и выбора мест для морских подводных хозяйств по заданию "Дальрыбморепродукта".

В разные годы было изготовлено несколько носителей различных конструкций (рис. 83). Наиболее интересен последний – «Акванта» (рис. 110). Аппарат длиной 3,5 и шириной 1,8 м имеет массу на воздухе 350 кг. Два двигателя мощностью 350 Вт благодаря прекрасным обводам корпуса обеспечивают скорость до 5 км/ч. Дальность действия до 30 км. Испытания «Акванты» прошли в Объединенных Арабских Эмиратах, близ города Корфакан. Конструкция оправдала себя. Особенно эффектными получались фигуры высшего пилотажа. Планируется построить несколько таких лодок, если найдутся заказчики.

Око в бездну

Когда водолазу или гидронавту на подводном аппарате необходимо обследовать внутренние отсеки затонувшего судна или подводной лодки, заглянуть в узкую пещеру, применяются подводные передвижные телеустановки (минироверы, ROV). Во многих странах мира они пользуются большой популярностью. Построено несколько сотен таких аппаратов.

Одни из них дополняют или заменяют водолаза в местах, недоступных для человека. Такие минироверы управляются с поверхности по кабелю. Чтобы исключить воздействие течений на кабель, установка погружается к месту работ в тяжелом «гараже», опускаемом на дно на прочном тросе.

Оператор на судне наблюдает по телевизору за обстановкой и управляет с помощью джойстика движением аппарата, выводит его из «гаража» и подводит к объекту осмотра. Полученная информация записывается на видеомагнитофон.

Другие мобильные телеустановки являются «глазами» гидронавтов. Они устанавливаются на малые подводные лодки – подводные аппараты и по сигналу гидронавтов, также контролирующих их движение по телевизору, «забираются» в отсеки подводной лодки через люк или в затонувшее судно через пробоину. Именно таким способом были осмотрены внутренние помещения «Титаника» и отсеки погибшей атомной подводной лодки «Комсомолец».

Минироверы имеют несколько (от 3-х до 8-ми) движителей – винтов в насадках, позволяющих им перемещаться по курсу, вверх и вниз, в стороны. При работе из подводного аппарата телеустановки имеют обычно нейтральную плавучесть, при погружении с поверхности на небольшие глубины – положительную, при работе у грунта, на большой глубине – отрицательную. Вертикальный двигатель при этом, постоянно работая на малых оборотах, компенсирует избыточную или недостаточную плавучесть, приводя ее к нейтральной.

Все минироверы имеют одну или несколько чувствительных телевизионных камер. Иногда телекамеры могут перемещаться относительно корпуса установки. Для получения качественных фотографий параллельно с видеокамерами устанавливают автоматический фотоаппарат, управляемый с поверхности, и конечно, светильники, обеспечивающие качественную видео– и фотосъемку в цвете.

К сожалению, все существующие минироверы работают только на кабеле. Оперативно передавать по акустическому каналу картинку с хорошим разрешением еще не научились.

По мере приобретения опыта эксплуатации мобильных подводных телеустановок они «обросли» манипуляторами, сварочными установками, приборами для измерения толщины стенок подводных металлоконструкций и т. п. Их называют необитаемыми подводными аппаратами (НПА) и используют для обеспечения буровых работ в море, инспекции подводных сооружений и для поддержки работы водолазов.

Есть минироверы и в России. Малогабаритные мобильные подводные телеустановки изготавливает и поставляет инженерный центр «Глубина» (г. Москва). Во ВНИРО построен минировер (рис. 84) для осмотра подводных плантаций. Его отличительная особенность – возможность работать на сильном течении. Мощные двигатели позволяют аппарату «выгребать» против течения, а в случае необходимости буксировать двух водолазов.

Вообще, эти установки достаточно просты по конструкции. Когда гидронавтам подводных аппаратов «Мир» в одном из рейсов судна «Академик Мстислав Келдыш», понадобился минировер, они изготовили его прямо в рейсе из подручных материалов. Необходимые комплектующие закупили в ближайшем порту. Телеустановка была испытана в бассейне на судне и тут же применена по назначению – для работы с подводных аппаратов «Мир». Знай наших!

Люди и аппараты

Без преувеличения можно сказать, что созданием и эксплуатацией подводных аппаратов в нашей стране занимались десятки тысяч специалистов: инженеров, конструкторов, технологов, рабочих и ученых всех направлений науки о море. Всех перечислить просто невозможно, поэтому назовем только людей, оказавших решительное влияние на развитие гидронавтики XX века.

Первым необходимо назвать А.З. Каплановского. На гидростатах его конструкции гидронавты ЭПРОНа, ВМФ и ученые многих НИИ погружались под воду с 1927 по 1960(!) г. Фотографию этого талантливого инженера читатель найдет на (рис. 54).

В 1958 г. вывел в море переоборудованную боевую подводную лодку «Северянка» талантливейший организатор, инженер и подводник Владимир Ажажа [2] (рис. 85, 86).

На фотографии (рис. 87) – момент испытаний первого в нашей стране глубоководного обитаемого подводного аппарата «Север-2». В носовой части прочного корпуса члены приемной комиссии. Случай свел вместе людей, которые определили лицо советской гидронавтики минувшего века.

К концу 50-х годов в стране был накоплен определенный опыт подводных исследований как в водолазном снаряжении, так и с помощью гидростатов. Уже вышла в море «Северянка». Однако все это не устраивало ученых. Им нужно было увеличить глубину погружения, избавиться от кабель-троса, связывающего гидростаты и батисферы с поверхностью, научить аппарат двигаться вдоль грунта.

В начале 60-х были сформулированы требования к такому аппарату. Инициаторами идеи были лаборатория техники подводных исследований ПИНРО во главе с Олегом Николаевичем Киселевым (на фотографии крайний слева) и Общественное конструкторское бюро Гипрорыбфлота во главе с Александром Николаевичем Дмитриевым (на фотографии на переднем плане, справа). Через 10 лет идея была воплощена в металле, тогда и сделана эта фотография.

«Север-2» не имел аналогов в стране, а за рубежом подобные аппараты еще только строились.

Через несколько лет после спуска на воду первого аппарата в эксплуатацию был сдан второй аппарат – «Север-2» бис. Первые спуски проводились в Баренцевом море под руководством О.Н. Киселева, имевшего огромный опыт подводных исследований с помощью различной подводной техники. Потом были подводные аппараты «ТИНРО-2», «Тетис», подводная лаборатория «Бентос-300». В основу их конструкций легли идеи А.Н. Дмитриева. Отцом российской гидронавтики называли его между собой гидронавты. Многие из них «выросли» на его книгах. Четыре издания "Покорения глубин" стали учебниками для нескольких поколений любителей моря и профессионалов.

Заведующий лабораторией подводных исследований ВНИРО, водолаз и гидронавт Марлен Аронов (рис. 88) не только составлял технические требования к исследовательским аппаратам, но и руководил их работой в море.

О двух замечательных российских ученых И. Михальцеве (рис. 89) и А. Сагалевиче (рис. 90) мы уже писали в разделе о подводных аппаратах «Пайсис» и «Мир». Они не только непосредственно участвовали в разработке проектов и постройке этих аппаратов, но и руководили исследовательскими программами с их применением. Сами участвовали во многих спусках под воду.

Но основная их заслуга в том, что в весьма непростое время они сумели доказать, что современный аппарат и дешевле, и лучше построить за рубежом. Сравните сами: аналогичные по возможностям аппараты «Север-2» и «Пайсис» имеют массу 40 и 10 т соответственно! Если для первого необходимо было построить специальное судно-носитель с нестандартным, сверхмощным спускоподъемным устройством, то второй можно разместить на любом современном исследовательском судне. А наши «Миры» по весогабаритным характеристикам и по энергетике превосходят не только все отечественные, но и большинство зарубежных подводных аппаратов.

Будущее отечественной гидронавтики отнюдь не безоблачно. О работе подводных аппаратов, построенных для Минрыбхоза, к сожалению, приходится говорить в основном в прошедшем времени. Отправлены на свалку двухкилометровые аппараты «Север-2», их носители – целые плавучие научно-исследовательские институты – проданы на металл. Полузатоплены уникальные подводные лаборатории «Бентос-300». Невежественные, но богатые покупатели бросили их, как только узнали стоимость восстановления. Один из «Бентосов» планируется поднять и поставить на вечную стоянку в Балаклаве, в музее, который создается при клубе водолазов и гидронавтов.

Из шестнадцати подводных аппаратов так или иначе продолжают работать «Риф», «Катран», «Лангуст», «Омар» и «Тетис», но их работы уже не связаны с рыбным хозяйством.

Нет океана или крупного моря, в которых не работали бы подводные аппараты под синим флагом с семью звездами созвездия Персей – флагом исследователей моря. С 80-х годов прошлого века по наши дни гидронавты совершили около пяти тысяч погружений, проведя под водой свыше двадцати пяти тысяч часов. Анализируя проведенные работы, можно с сожалением заметить, что отечественному судостроению так и не удалось создать современный подводный аппарат. Что бы ни конструировали – «Рубин», «Малахит» или «Лазурит», получается подводная лодка в миниатюре. Тогда как современный подводный аппарат – скорее, космический корабль, нежели маленькая подводная лодка.


    Ваша оценка произведения:

Популярные книги за неделю