Текст книги "Диалоги (июнь 2003 г.)"
Автор книги: Александр Гордон
сообщить о нарушении
Текущая страница: 3 (всего у книги 17 страниц)
А.Г. Это тот же интерферометр только таких размеров, что…
В.Б. Это то же самое, в принципе: 5 миллионов километров вместо четырех километров. Всё.
М.С. По сути, по идейной стороне он ничем не отличается от того интерферометра, про который рассказывал Вадим Борисович, за одним только исключением, что размеры его гораздо больше. Примерно в миллион раз. Соответственно, и планируемая чувствительность тоже больше. Наверняка можно сказать, что эти группы встретят очень большие технологические трудности. Но будем надеяться, что они их преодолеют. Пожалуйста, следующую картинку.
Какие могут быть источники в ранней Вселенной? Вы видите здесь нарисованную модель так называемого рождения гравитонов из вакуума. В ранней Вселенной у нас могло быть так называемое параметрическое усиление гравитонов, и те гравитационные волны, которые существовали в виде вакуумных колебаний, могли усиливаться и превращаться во вполне зримые и ощутимые гравитационные колебания, которые мы можем зарегистрировать сейчас.
Отличие от такого изображения только в том, что спектр гравитационных волн очень широкий. Самые высокие частоты – это 100 мегагерц, самые низкие частоты составляют величину порядка 10 в минус 18-й герц, или порядка современной постоянной Хаббла. Следующую картинку, пожалуйста. Здесь ещё раз показан прибор, который называется интерферометр «LISA», который, в принципе, может регистрировать гравитационные волны от ранней Вселенной.
Давайте мы пройдёмся по всему диапазону, который могут представлять гравитационные волны. Вадим Борисович рассказал об интерферометре «ЛАЙГО», который рассчитан, в основном, на диапазон обычных волн, это от 1 килогерца до ста герц. Другими словами, на тот диапазон, который мы можем слышать.
Интерферометр типа «LISA» предназначен для гораздо более низкочастотных гравитационных волн, период их от нескольких сотен секунд до нескольких часов. Электромагнитных волн такого диапазона просто нет, они не распространяются в нашем пространстве. Любая достаточно мягкая плазма их поглотит и не позволит им распространятся. Гравитационные волны чрезвычайно слабо взаимодействуют с веществом, и поэтому могут распространяться. Надо сказать, что трудность детектирования гравитационных волн связана именно с тем, что они слабо взаимодействуют с веществом, но в этом же и их прелесть. Они доходят до нас от самых ранних стадий эволюции Вселенной. Следующую картинку, пожалуйста.
Вот вы видите, схему интерферометра «LISA» на орбите. Жёлтый кружок в центре – это Солнце, белый круг – это орбита Земли, и вокруг штриховой линией показано положение трех интерферометров. Здесь будет бегать лазерный луч, который будет подвергаться действию гравитационной волны и который будет показывать экспериментаторам, насколько сильно действует на них гравитационная волна. Следующую, пожалуйста, картинку.
Эти три спутника будут двигаться вдоль орбиты Земли и совершать вот такие движения в течение нескольких лет, что позволит накапливать гравитационный сигнал от далёких источников – не только от двойных тёмных дыр или ещё от каких-то источников двойного типа, но, в частности, попробовать зарегистрировать гравитационно-волновой шум от ранней Вселенной. Это те гравитоны, которые были порождены в самые ранние моменты времени. Следующую картинку, пожалуйста.
Что мы можем сказать о другом диапазоне? Здесь представлен ещё один способ детектирования гравитационных волн. Надо сказать, что идейно он ничем не отличается от интерферометра. Здесь тоже у нас есть приёмник, но здесь приёмником выступает приёмная система радиотелескоп-пульсар. Это аналог лазера. Пульсар – это космический объект, который излучает очень высокостабильные импульсы электромагнитного излучения. Эти импульсы электромагнитного излучения обладают не намного худшей стабильностью, чем у хороших лазеров. И если на распространяющиеся электромагнитные волны от пульсара до радиотелескопа действуют гравитационные волны, как здесь показано, то они будут чуть-чуть менять фазу этих импульсов, и на радиотелескопе мы будем это видеть, как если бы они чуть-чуть запаздывали или шли с опережением. Поэтому, в сущности, здесь тоже реализуется интерферометр, но только с гигантскими размерами, поскольку расстояние от ближайшего пульсара до Земли, это сотни парсек. Это уже даже не 5 миллионов километров, это уже чисто астрономические расстояния.
У нас есть и другие способы детектирования очень низкочастотных гравитационных волн. Следующую, пожалуйста, картинку. Эти гравитационные волны имеют частоту, сравнимую с горизонтом нашей Вселенной, частоту порядка 10 в минус 18 герц. В данном случае они изменяют так называемую поверхность последнего рассеяния. То есть, ту поверхность, откуда до нас доходит реликтовое излучение, которое было рождено в ранней Вселенной. И мы можем наблюдать действие гравитационных волн в виде анизотропии этого реликтового излучения. Здесь я должен два слова сказать о том, что такое реликтовое излучение.
Надо сказать, что все тела при расширении охлаждаются, а при сжатии нагреваются. Наша Вселенная расширяется, и она охлаждается. В прошлом она была гораздо горячей, и в ней была так называемая первичная плазма. Эта первичная плазма состояла из нескольких сортов частиц, в частности, одними из таких частиц были фотоны. После того как плазма остыла достаточно для того, чтобы электроны рекомбинировались протонами, у нас образовалось нейтральное вещество, и фотоны начали распространяться свободно. Эти фотоны сейчас астрономы и наблюдают в виде реликтового излучения. Это реликтовое излучение пошло с так называемой поверхности последнего рассеяния. Представьте себе, что вот здесь у нас температура упала настолько, что фотоны смогли излучаться, распространяться оттуда свободно. При этом они распространяются во всех направлениях, но только в одном направлении – к телескопу – мы их увидим. И такие фотоны формируют то, что называется «поверхность последнего рассеяния», и мы видим источник во Вселенной, внутри которого мы находимся. Это гигантский источник, самый далёкий из известных во Вселенной, и называется он «поверхность последнего рассеяния».
Эта поверхность последнего рассеяния под воздействием гравитационных волн тоже немножко колышется, точно так же, как два плеча интерферометра. И мы наблюдаем это в виде горячих и холодных пятен реликтового излучения. Пожалуйста, следующую картинку.
Надо сказать, что анизотропия реликтового излучения была открыта примерно 10 лет назад, и в течение этих лет астрономы очень активно исследовали анизотропию реликтового излучения. Но новый этап этого изучения наступил с выводом спутника «WMAP», который расшифровывается так «Вилкинсон майкровейв анизотропи проуб». Этот спутник был запущен в точку Лагранжа L2 и служит для того, чтобы записать всю информацию об анизотропии реликтового излучения со всей сферы. Пожалуйста, следующую картинку. Вы видите карту, которую сделал этот спутник. Красные пятна на этой карте означают повышенное значение температуры в данном направлении, синие – пониженное. Итак, мы видим всю сферу вокруг нас в виде такой пятнистой поверхности. Гравитационные волны и формируют эту поверхность, они являются стохастическими волнами, но в отличие от тех волн, которые мы можем дать в проекте «ЛАЙГО», мы видим не изменения их во времени, а изменение их в пространстве, поскольку сама гравитационная волна – очень низкочастотная. Конечно, наблюдать, как она эволюционирует во времени, мы не можем. Тем не менее, мы можем наблюдать, как она эволюционирует в пространстве, как меняется она по сфере «последнего рассеяния».
Вот эта карта была сформирована буквально месяц назад. Американские астрономы, которые наблюдали на спутнике WMAP, опубликовали свои результаты в начале февраля. Надо сказать, что этот спутник будет работать ещё год, и будем надеяться, что они получат ещё более точные данные.
Теперь немножко о гравитационных волнах. Анизотропия, которая сейчас наблюдается, вызвана так называемыми флуктуациями плотности. Это те флуктуации плотности, которые тоже были порождены в ранней Вселенной, и которые сейчас сформировали крупномасштабную структуру (галактики, звёзды), и благодаря чему возникли и мы с вами. Совершенно точно можно сказать, что флуктуации, которые наблюдают сейчас астрономы, это не гравитационные волны, но, тем не менее, есть основание думать, что мы уже очень близки к тому пределу, когда гравитационные волны можно будет наблюдать и в таком диапазоне частот тоже. Почему? Дело в том, что общие теоретические предсказания указывают на то, что гравитационные волны должны вызывать анизотропию примерно в 10, может быть, в 20, в 30 раз меньше, чем то, что уже зарегистрировано. Надо сказать, что чувствительность таких экспериментов очень быстро растёт со временем. Само реликтовое излучение было открыто в 66-м году, температура этого излучения – 3 градуса Кельвина. Оно, надо сказать, было открыто случайно, в результате испытания нового радиометра. Понадобилось 10 лет, чтобы открыть дипольную гармонику в анизотропии реликтового излучения, связанную с тем, что наша Земля, Солнечная система движется сквозь реликт, и из-за этого равновесное излучение кажется, с одной стороны, более ярким, с другой стороны более тусклым. Понадобилось ещё 20 лет, чтобы открыть другие гармоники в анизотропии реликтового излучения.
Теперь мы уже подошли к тому, что полностью промерен спектр этого реликтового излучения, и уже наблюдается поляризация этого излучения. Давайте я два слова скажу о том, почему это так важно. Дело в том, что гравитационные волны и скалярные возмущения, возмущения плотности, совместно производят вот эту картинку, эту рябь на поверхности последнего рассеяния, и для того, чтобы разделить вклад гравитационных волн от скалярных возмущений, от возмущений плотности, мы должны наблюдать ещё некоторые параметры этого излучения, а именно, два параметра Стокса. Вся интенсивность, все электромагнитное излучение характеризуется несколькими параметрами Стокса, это интенсивность и два дополнительных параметра, которые характеризуют поляризацию реликтового излучения. Вот поляризация реликтового излучения однозначно даст вывод о том, что гравитационные волны зарегистрированы.
И ещё два слова я скажу о том, что поляризация реликтового излучения уже открыта. Она открыта в результате проведения эксперимента, который называется «DASI», в сентябре прошлого года. Группа астрономов, которые проводили этот эксперимент, опубликовали данные о том, что они наблюдают поляризацию реликтового излучения, а на спутнике WMAP даже построили спектр, поскольку спутник – гораздо более чувствительный прибор, чем тот эксперимент, который делали астрономы с Земли. Надо сказать, что, несмотря на то, что поляризация открыта, это всё-таки поляризация, вызванная не гравитационными волнами, а опять-таки возмущениями плотности. Но это уже близко к тому пределу, когда должна наблюдаться поляризация, вызванная гравитационными волнами.
Итак, мы кратко посмотрели на все диапазоны, в которых может быть гравитационное излучение – от диапазона 1 килогерц (это звуковой диапазон) до диапазона 10 в минус пятой герц, что соответствует одному дню или нескольким часам. Потом мы посмотрели на другой способ детектирования гравитационного излучения, с помощью пульсаров, это диапазон в несколько лет. И наконец, перешли к гравитационным волнам, которые являются самыми длинными гравитационными волнами во Вселенной, которые имеют длину волны, сравнимую с горизонтом Вселенной – несколько десятков гигапарсек. Все эти волны должны нести очень интересную информацию о ранней Вселенной.
Вадим Борисович сказал уже, что очень интересная информация будет о нейтронных звёздах. Но нейтронные звёзды – это всё-таки нечто уже известное физикам. Нейтроны – это объект, который достаточно хорошо изучен. То, что пойдёт из ранней Вселенной, те гравитационные волны, которые будут нести информацию о самых ранних стадиях, это то, что физиками совершенно не изучено. Есть достаточно много теоретических предположений о том, какова должна быть физика в ранней Вселенной, но никаких экспериментальных указаний на это.
Мне хочется показать ещё одну картинку, покажите её, пожалуйста. Что будет исследоваться в дальнейшем? Поляризация, которая будет исследоваться, поляризация реликтового излучения, её исследование будет осуществляться в нескольких экспериментах. В частности, она будет исследоваться на международной научной стации «Альфа». Вы видите станцию «Альфа», она уже выведена на орбиту и летает уже несколько лет, на ней будет проводиться очень много научных экспериментов. И в частности, будет проводиться российско-итальянский эксперимент «SPORT», который специально посвящён исследованию поляризации реликтового излучения. Будем надеяться, что в этом эксперименте удастся зарегистрировать так называемую b-моду поляризации, которая прямо укажет на амплитуду гравитационных волн, на то, какая была физика ранней Вселенной.
Помимо этого эксперимента будет ещё проводится эксперимент «ПЛАНК». Это гигантский эксперимент, в который вовлечены все европейские страны (пожалуй, за исключением России) и помимо этого ещё и Соединённые Штаты. В этом эксперименте астрономы хотят промерить полностью и анизотропию реликтового излучения, и поляризацию. И узнать, какой у нас спектр от флуктуаций плотности и какие у нас гравитационные волны идут от ранней Вселенной. Зарегистрировав волны от ранней Вселенной, мы сможем восстановить физику ранней Вселенной, и посмотреть на то, какие законы там могли быть.
А.Г. У вас есть теоретические предположения о том, что это может быть за физика?
М.С. Конечно. Предположений очень много. Но предположения могут быть и ошибочными. Пожалуйста, покажите следующую картинку.
Здесь изображены те знания, которые есть сейчас у нас. Астрономические наблюдения в оптическом диапазоне охватывают ближайшую к нам Вселенную – мир галактик. Радионаблюдения, выполненные, в частности, на спутнике WMAP, охватывают сферу последнего рассеяния. Та картинка, которая формируется на сфере последнего рассеяния, идёт из так называемой ранней Вселенной, со стадии инфляции. Стадия инфляции с теоретической точки зрения достаточно хорошо изучена. Надо сказать, что многие из её предсказаний оправдались, в частности, оправдался так называемый спектр Харрисона-Зельдовича, который сейчас наблюдают в виде флуктуации реликтового излучения.
Но есть ещё одна часть, которая говорит о том, что и до инфляции что-то было. И условно этот момент времени называется «сингулярностью». Надо сказать, что сингулярность – это неотъемлемая черта, которая появляется в общей теории относительности, и до сих пор это ассоциировалось просто с некоторой особой точкой. Ещё одну картинку, пожалуйста.
В.Б. Надо пояснить, сингулярность – это то, что внутри чёрной дыры.
А.Г. Понятно, всё стремится к бесконечности.
В.Б. Если хотите. Но есть и другая точка зрения.
М.С. Вот на этой картинке показано, как представлял себе средневековый астроном, что увидит человек, заглянувший за небесную твердь. Когда Галилей изобрёл свой телескоп, та картинка, которую увидели астрономы, довольно существенно отличалась от этого изображения. Надо сказать, что когда астрономы будут обладать гравитационно-волновыми приборами и смогу заглянуть внутрь чёрной дыры или в раннюю Вселенную, не исключено, что та картинка, которую они увидят, будет довольно сильно отличаться от этой.
А.Г. От той, которую мы сегодня имеем. Ну, что ж, сколько нам ждать осталось и в том и в другом случае? Я имею в виду, когда эксперимент будет проведён?
В.Б. Оптимистически – если вы говорите о наземных антеннах…
А.Г. И о наземных, и о…
В.Б. Когда они дадут положительные результаты?
А.Г. Результат.
В.Б. Да, результаты – положительный.
А.Г. Результат.
В.Б. Результат – это значит, что вздрогнули четыре пары зеркал. Две под Сиэтлом и две под Новым Орлеаном. Я думаю – 2008 год. Может быть, я ошибаюсь на два года. Может быть. 0,95 я даю. Могу поспорить.
Коммуникация у птиц
5.06.03
(хр.00:50:23)
Участник:
Владимир Викторович Иваницкий – доктор биологических наук.
Александр Гордон: …большинство птиц начинает петь с рассветом или чуть-чуть после заката. В тёмное время суток они молчат. Почему?
Владимир Иваницкий: Большинство птиц действительно поют на рассвете, хотя далеко не все. На этот счёт существуют разные точки зрения. И одна из них сводится к тому, что предутренние часы, когда освещение ещё не полное, разумнее тратить именно на пение. А не на какие-то конкурирующие виды активности, которые требуют как раз наиболее яркого освещения и сопряжены с тем, что птицы должны наиболее полно включать свои зрительные возможности.
Это одна из гипотез, которая объясняет приуроченность пения птиц именно к ранним утренним часам. Это, в общем, довольно короткий период, который примерно на 40-45 минут предвосхищает рассвет. То есть астрономический рассвет в данном месте.
Но есть, как это ни удивительно, и другие виды птиц, очень известные, в том числе, например, соловей, которого знают практически все. Вот эта птица как раз поёт глубокой ночью, в абсолютной мгле, когда ничего не видно. Не видно и человеку, естественно, не видно и соловью, это, в общем, тоже достаточно очевидно. Почему существует такая странная ночная активность у соловьёв и некоторых других птиц, скажем, садовых камышевок, этот вопрос, к сожалению, пока изучен недостаточно.
То есть мы не можем предложить для этого феномена легко понимаемую гипотезу, вроде той, о которой я только что говорил применительно к тем птицам, которые поют перед рассветом.
Есть птицы, которые поют не рано утром, тоже в сумерках, но вечерних. Это так называемый «предзакатный миг пения». Дрозды, например, часто фигурирующие и в стихах, и в песнях, птицы, действительно имеющие очень яркое и звучное пение, почему-то поют наиболее азартно, наиболее ярко именно в предзакатные часы.
Или такая птичка, как зарянка, или малиновка, как её называют, очень красивая, очень симпатичная птаха. Тоже поёт, когда спускаются предзакатные сумерки.
Так что изменчивость, вариативность этих суточных ритмов пения, она очень велика. Можно взглянуть на картинку, которая изображает эти суточные ритмы пения в виде довольно простых графиков. И на них хорошо видно, что это действительно очень вариативный вид поведения.
Говоря о суточных ритмах пения, о том, как разные виды птиц приноравливаются к разному времени суток, как они строят свои выступления, свои концерты, как они строят свои сольные выступления по отношению к тому или иному времени суток, приходится иметь в виду ещё один момент, очень важный. Дело в том, что если вы заходите в лес, то не надо быть специалистом-орнитологом для того, чтобы понять, что одновременно звучат, одновременно поют самые разные виды птиц. Зачастую их очень много. Если вы зайдёте в наш обычный европейский лес, или в наш большой парк, скажем, Битцевский или Измайловский, не говоря уже о нашем Лосином Острове, который в сущности лес, а не парк, то, не сходя с места, можете насчитать буквально 10-12, а если постоять подольше, то, может быть, даже до двух десятков разных видов птиц. И все они поют одновременно. И существует такое понятие, как частотный диапазон. Да, каждый звук имеет свой частотный диапазон. И все птицы, большинство, по крайней мере, птиц, которые поют вместе, поют бок о бок, друг с другом, образуют единый хор, пользуются одним частотным диапазоном.
Это значит, что они каким-то образом перекрываются, как-то накладываются друг на друга и используют один канал связи. Они выходят в эфир одновременно, используют один канал связи и перекрикивают друг друга. И вот чтобы не создавать такого переуплотнения в эфире, не слишком забивать эфир своими голосами, возможно, поэтому они и стремятся как-то наиболее полно использовать этот доступный им суточный интервал времени. Для того чтобы как-то избежать этой акустической конкуренции, которую можно назвать, скажем, конкуренцией за эфирное время. А для того чтобы не совсем уж плотно забивать этот эфир, они используют разное время суток. Разные виды поют в разное время.
А.Г. По этому графику суточных ритмов пения я вижу, что все птицы вместе имеют свой прайм-тайм, когда им приходится перекрикивать друг друга. Это пик, который приходится на 4-5 часов утра, если я не ошибаюсь?
В.И. Да, это как раз время, соответствующее рассветному, предрассветному или сразу послерассветному времени, где число певцов бывает максимально, и количество отдельных птичек данного вида, количество особей, как мы говорим, бывает максимально. В это время акустическая интерференция, возможная акустическая конкуренция наиболее велика. Есть, скажем, такой график, который всех птиц вместе, поющих в данном месте, суммирует, скажем, поющих на данном участке леса, или на данном участке луга. И здесь, конечно, некоторые элементы конкуренции налицо.
Но это довольно грубая картинка, которая имеет дело с интервалами времени, сопоставимыми, скажем, со временем суток. Но существует довольно прихотливая мозаика пения на более коротких интервалах времени. Для того чтобы её установить, нужно проделать довольно кропотливую работу. Нужно взять микрофон, который пишет всё вокруг, достаточно широкого спектра записи, и записать всё, что слышится в данном месте, разные виды птиц.
А потом на специальных приборах, осциллографах или спектрографах, кропотливо прослеживать распределение отдельных песен друг за другом. И оказывается, что даже на этих коротких отрезках времени птицы тоже избегают того, чтобы их песни как-то накладывались друг на друга. Как это получается? Давайте, если это возможно, послушаем песню зяблика, чтобы понять, как, собственно говоря, строится песня. Зяблик, он хорош прежде всего тем, что многие узнают эту песню, поскольку эта птица хоть и лесная, она живёт и в наших парках. В наших московских парках или даже на бульварах её можно слышать.
А.Г. Да, вполне узнаваема.
В.И. Да, вполне узнаваема, я думаю, что её все слышали, то есть я уверен, что все слышали. Вот это очень распространённый тип песни. Если вы обратите внимание, он пропел сначала один куплет, потом последовала пауза, затем следует как бы другой куплет. Но куплеты совершенно одинаковые, потому что песни стереотипные.
Это такой пунктирный тип, если можно так выразиться. А вот теперь давайте послушаем совершенно иной тип песни. Скажем, давайте болотную камышевку.
А.Г. А это что за птица?
В.И. Эту птица почти всегда можно услышать где-нибудь в глухом углу парка, возле какой-нибудь речки или возле водоёма, где есть густая трава, высокая – крапива, конкретно. Она очень крапиву любит. Вот видите, совершенно иной тип пения, это сплошной поток звуков, довольно плотно упакованных во времени. И она может так петь часами, в общем-то, без перерыва.
Теперь о том, как птицы избегают акустической конкуренции на коротких отрезках времени. Если вспомните ещё раз песню зяблика, то там звук, потом пауза, звук, потом пауза. И разные виды птиц подстраиваются друг под друга. То есть они избегают того, чтобы их песни накладывались, звучали одновременно. Они обязательно выстраивают свой акустический ряд так, чтобы заполнять паузы между пением других исполнителей.
Причём тут важен один момент. Но здесь нужно сказать несколько слов о том, что же собой представляет песня? Для чего она, собственно говоря, нужна?
А.Г. Да, я хотел спросить, зачем поют-то?
В.И. Да, для чего они, собственно, поют, и, причём, поют ведь очень много. Ведь, скажем, тот же зяблик (он удобен, прежде всего, потому, что его песни легко считать) исполняет за день несколько тысяч песен. Причём, если он хорошо разойдётся, то поёт примерно 5-6, иногда 7, даже 8 песен в минуту. Он поёт практически целый день, у него суточный ритм довольно равномерный. Он принадлежит к тем птицам, которые поют относительно равномерно в течение всего дня. Вы можете, как сейчас говорят, прикинуть, сколько он должен спеть за день песен.
А.Г. И сколько энергии должен потратить.
В.И. Да, сколько энергии должен потратить. Ради чего? Предназначение песни, в общем-то, довольно простое, это такой универсальный маяк, обозначающий присутствие самца данного вида в данном месте на данной территории.
Большинство видов певчих птиц, фактически все певчие птицы, – собственники, ярко выраженные собственники в отношении владения землёй. Каждый самец ранней весной, прилетая на места гнездования, возвращаясь с зимовки, прежде всего озабочен тем, чтобы занять территорию. Территория эта размером, где-то, скажем, около гектара, то есть сто на сто метров – это в среднем, очень в среднем. Но почти для всех видов мелких воробьиных, певчих птиц – это стандартный размер территории. Очень стандартный.
Территория очень рьяно охраняется, с драками, со всевозможными ритуальными действия и т.д. Но я сейчас об этом говорить не буду, важно то, что когда самец поёт, он как бы делает заявку на эту территорию.
А.Г. Но при этом если самец другого вида занимает ту же самую территорию, он…
В.И. Я, собственно, к тому и веду: самцы одного и того же вида, скажем, разные зяблики, оказываются рассредоточены в пространстве на достаточно приличное расстояние, порядка, скажем, 100-150 метров, 80 метров, вот в таких плотных поселениях.
А территории разных видов, они свободно перекрываются. И певцы разных видов, они вольны петь неограниченно близко друг от друга. И поэтому, собственно говоря, именно для межвидовых акустических отношений как раз наиболее важна эта возможность межвидовой интерференции, акустической интерференции. Возможность конкуренции за эфир.
И здесь, собственно говоря, возникают разные механизмы, с помощью которых певцы разных видов этой конкуренции избегают. Один из таких механизмов, как я говорил, это стремление заполнять паузы. Когда один вид спел, исполнил свою песню, поёт другой вид, если остаётся время, поёт третий, четвёртый и т.д. На этой основе даже возникает некая иерархия, потому что виды, которые обладают громким голосом… Зяблик, это, например, ярко выраженный доминант. Почему? Во-первых, потому что у него очень громкий, бодрый, задорный, азартный голос. Во-вторых, это птица очень многочисленная, которая создаёт сплошные поселения, где звучание их голосов создаёт мощный акустический фон.
И другие птицы, вынуждены приспосабливаться к ним. Поэтому тон, ритм этого ансамбля, хора задают зяблики. К ним подстраиваются, допустим, какие-нибудь пеночки. Кстати, давайте пеночку-весничку послушаем, она того же типа пения птичка, тоже такой порционный пунктирный тип пения с коротенькими стереотипными песнями, разделёнными ярко обозначенными паузами. Когда собираются в одном месте птички с таким типом пения, с порционным типом, то звучание хора становится наиболее упорядоченным, поскольку здесь хорошо выражены паузы, и в них легко можно вставиться.
А когда поют птицы с непрерывным типом пения, типа камышевок, которых мы тоже слышали, то здесь, конечно, возможность для их краткосрочного разделения по времени уже меньше, потому что песня непрерывная, там просто не встроишься никуда. Они вынуждены петь одновременно. И они используют тогда несколько иной механизм, они делят уже не время, они делят пространство.
Как они это делают? Давайте посмотрим 9-й рисунок, я пытаюсь объяснить на его примере, как это происходит. Там, собственно говоря, изображена дистанция, разделяющая одновременно поющих самцов – которые поют дуэтом. Сверху – это дистанция, разделяющая самцов садовой камышевки. В серединке – картинка, изображающая самцов болотной камышевки, а самая нижняя картинка – это дистанция между самцами разных видов.
Чёрным там изображены дистанции, которых мы можем ожидать в том смысле, если эти самцы будут петь, не обращая внимания друг на друга, некое случайное распределение. Достаточно отчётливо можно видеть, что всё-таки существует некоторый провал на малых дистанциях. Это значит, что самцы разных видов (в данном случае, самцы садовой и болотной камышевки, территории которых, я повторю, перекрываются совершенно свободно), ещё раз повторю, свободно могут выбирать, где им петь. Они всё-таки избегают петь рядом друг с другом – они просто выбирают то место на своей территории, где в данный момент не поёт самец другого вида.
Причём, здесь активной акустической доминантой является садовая камышевка, а видом, который подстраивается (который является такой что-ли суб-доминантой, как ещё можно сказать, вторым в иерархии) является болотная камышевка. И вот эта иерархия, их субординация, если можно так выразиться, проявляется в разных ипостасях, разных аспектах их жизни. Садовая камышевка прилетает раньше почти на две недели. Болотная, она заявляется, так сказать, с зимовок уже тогда, когда садовые заняли участки, они освоились, они чувствуют себя хозяевами. И болотные вынуждены как-то строить свою жизнь, свою активность сообразно тому, как ведёт себя доминант, хозяин данной территории.
Мне хотелось бы показать рисунок, который изображает эти два вида, они очень похожи друг на друга. Рисунок, если можно, покажите. Видите, они очень похожи внешне и, в общем-то, практически не различимы, если говорить откровенно. Но очень хорошо отличаются по пению. Песни у них разные. Давайте ещё раз послушаем болотную и садовую следом за ней, чтобы можно было сравнить. Это вот знакомая нам песня болотной камышевки, очень торопливая.
А вот это садовая камышевка. Совершенно иной ритм. Чётко расставлены акценты. Она как бы выкладывает свою акустическую программу. Не спеша, с расстановкой, с чувством, она никуда не торопится. Песни очень разные, на слух они легко различаются – и даже человеком. Естественно, они друг друга тоже различают.
И вот возникает вопрос. А, в сущности, может, они не реагируют друг на друга? Может быть, они безразличны, может быть, они хорошо различают друг друга, но не обращают друг на друга внимания? Как это можно установить. Для этого существует такой метод, который широко очень применяется в биоакустике, это так называемый «метод звуковой ловушки». Называется он так потому, что иногда с его помощью подманивают, скажем, птичку в сеть. Он предельно прост – записывается на магнитофон песня, затем она через какой-нибудь динамик проигрывается самцу, который занял территорию в данном месте. Как я уже говорил, птицы территорию очень азартно и рьяно охраняют, и поэтому хозяин территории чувствует себя в праве, он тут же кидается на поиски нарушителя. Подлетает к динамику и пытается как-то вот…