Текст книги "Диалоги (июнь 2003 г.)"
Автор книги: Александр Гордон
сообщить о нарушении
Текущая страница: 8 (всего у книги 17 страниц)
С магнитной памятью дело обстоит совершенно по-другому. Как устроена ячейка магнитной памяти? Это такая же трехслойная структура, и в простейшем случае, единица или ноль хранится в форме взаимной ориентации векторов намагниченности. То есть при отключении питания битовое состояние, естественно, сохраняется. И потом, если мы представим, что из таких элементов мы строим матрицу, то есть, таким образом мы можем считывать информацию с каждого элемента.
А.Г. А вот эта кластерная структура записи информации, насколько важно её сохранить при новых технологиях или есть другие пути записи?
К.З. То есть вы имеете в виду жёсткие диски?
А.Г. Да.
К.З. Нет, то, что я говорю, это просто уменьшение битового размера. То есть технология записи остаётся в нашем случае та же самая.
А.Г. Понятно.
К.З. Но буквально в последние годы открыты некоторые новые эффекты, которые оставляют далеко позади эффект гигантского магнитного сопротивления. В том числе магнитное сопротивление в нано-проволоках и нано-мостиках. Что такое нано-мостик? В 2000-м, если я не ошибаюсь году, в Испании были проведены эксперименты, состыковывались две нано-проволоки с атомарной толщины наконечниками, до тех пор пока не получали электрический контакт. А затем перемагничивали одну из нано-проволок. И величина магнитосопротивления получалась фантастическая – сотни и тысячи процентов.
А.З. Даже недавно получено 100 тысяч.
К.З. 100 тысяч процентов – то есть это фактически бесконечность.
А.З. Здесь квантовые эффекты проявляются…
А.Г. По теории вы сейчас нас подтянете. Я хочу дослушать, что у нас по технологии.
К.З. С некоторой точки зрения, это может стать началом новой революции в спинтронике.
И ещё я хотел бы остановиться на методах изучения таких объектов. Спинтронные структуры обладают огромным количеством параметров. То есть экспериментальное их изучение – это очень трудоёмкий процесс, дорогостоящий, занимает много времени и так далее. И здесь на помощь приходит, как обычно сейчас, компьютерное моделирование. И очень активно используется в настоящее время так называемый микромагнитный подход.
Магнитный слой разбивается, грубо говоря, на кирпичики, на маленькие прямоугольники. И каждый из них обладает своим собственным магнитным моментом. И причём каждый из этих кирпичиков магнитостатически взаимодействует со всеми кирпичиками, которые формирует система. И модель позволяет варьировать и физические параметры, и геометрию. То есть из таких кирпичиков можем составлять любую магнитную структуру с необходимыми физическими свойствами. И мы можем моделировать реально процесс перемагничивания. Фактически мы строим виртуальный прототип элемента, подбираем оптимальные параметры. И только после этого образец подаётся уже в лабораторию.
А.Г. С неё начинают строительство непосредственно…
К.З. Да, то есть строится виртуальный прототип, изучается его поведение. Причём, что интересно, часто обнаруживаются некие новые эффекты, которые трудно предсказать теоретически. И их экспериментально было бы достаточно сложно обнаружить. И они вот таким образом обнаруживаются, и потом можно уже это экспериментально их получить.
Где ещё используются магнитные нано-структуры? Очень широко они используются в сенсорах всевозможных. Сейчас очень быстро развивается технология так называемая MEMS, то есть микромеханические системы, микроэлектромеханические системы. Это то, что мы видели в фантастических фильмах, это маленькие жучки, паучки, маленькие роботы каких-то миллиметровых размеров, которые используются во всех областях человеческой деятельности. И для управления точной механикой этих систем активно используются также магнитные сенсоры. Также такие сенсоры используются в автомобильной промышленности, очень активно, как датчики скорости, в медицине, в аэрокосмической области, то есть поле применения их очень широкое.
А.Г. Теперь подтяните нас по теории. Почему эти нано-мостики обладают таким потрясающим эффектом?
А.З. Вообще-то вопрос в стадии исследования. Но один из ответов, один из возможных ответов, может быть основан на эффекте квантового сопротивления нано-мостиков. Известно, что сопротивление нано-контакта квантуется, имеется квант сопротивления. И вот тогда, когда диаметр мостика меньше некоторого критического, то мостик практически закрыт. И мы можем его закрыть, скажем, сделав так, что спины в берегах мостика направлены навстречу друг другу. Тогда он закрыт. Полностью закрыт. Это квантовый эффект. Это, если хотите, бесконечное сопротивление. Когда мы делаем их параллельными, он открывается. То есть фактически он то закрыт, то открыт – это реальный факт. Значит, вопрос заключается в том, действительно ли он реализуется в тех экспериментах, которые сейчас сделаны. Здесь пока вопрос открыт.
К.З. Но сотни тысяч процентов наблюдались.
А.З. Это наблюдалось, да.
Мне хотелось бы сейчас действительно вернуться к физике. Вот в области магнитных нано-структур, в области суперпарамагнетизма имеется много интересных квантовых эффектов, где встречаются квантовые и классические закономерности, как мы сказали. И я, по ограниченности времени, конечно, могу говорить только об одном эффекте. Таким интересным эффектом является явление магнитной релаксации магнитных материалов. Давайте начнём с классики. Если мы возьмём обычный постоянный магнит, который мы в нашей обыденной жизни привыкли видеть, и намагнитим его вдоль определённого направления, например, вдоль лёгкой оси, то он практически постоянно будет находиться в этом состоянии равновесия. Хотя имеется другое состояние равновесия, противоположное ему.
Но ситуация меняется, когда мы уменьшаем размер элемента, объём элемента. Первым обратил на это внимание Луи Неель, знаменитый французский физик. Он изучал магнетизм земных пород и обратил внимание, что действительно, когда частички становятся маленькими, то они могут спонтанно размагничиваться, благодаря тепловым флуктуациям, как Костя нам об этом уже рассказал. И он вывел формулу для скорости спонтанного размагничивания, она выглядит как некая экспонента знаменитой формулы Аррениуса и показывает, что скорость спонтанного размагничивания, т.е. скорость релаксации, уменьшается, когда температура стремится к нулю, и она обращается в нуль, когда температура идёт в ноль. Но это с точки зрения здравого смысла это естественно. Тепловые флуктуации идут в ноль, и, значит, естественно, никакого перемагничивания спонтанного нет.
Когда начали делать эксперименты, обнаружили, что, в общем-то, всё укладывается хорошо в теорию Луи Нееля. Но когда начали экспериментировать с ещё более мелкими, нанометровыми частицами, обнаружили интересный факт. Оказалось, что действительно, она идёт по Неелю, но когда мы приходим к низким температурам, порядка Кельвина, оказывается, что скорость становится постоянной и при дальнейшем понижении температуры не меняется. Это удивительный факт. Довольно быстро была выдвинута идея, что здесь мы имеем дело с макроскопическим квантовым туннелированием намагниченности частицы.
А.Г. Макроскопическим?
А.З. Да, магнитный момент всей частицы, макроскопический, он туннелирует как целое. Это напоминает, помните, кота Шрёдингера. Так вот эта частица, этот магнитный момент как целое, он переходит в другое состояние. Удивительный факт.
А.Г. То есть этот туннельный эффект, по сути дела – макроскопический?
А.З. Макроскопический, да. Конечно, это колоссально интересная штука, но не все физики согласились с этой идеей. Возражали, что частицы очень различны по размерам, дисперсия размеров есть. Поэтому скорости, размагничивая в разных частицах, тоже будут сильно различаться. И тут, в общем, можно всё что угодно получить. То есть возник тупик некий.
Но оказалось так, что параллельно с этим экспериментом появился новый интересный объект в суперпарамагнетизме. Это магнитные молекулы. Вот они здесь показаны. Магнитные молекулы – это органические молекулы, в которых имеются магнитные ионы. То есть это тоже, можно сказать, магнит, но на молекулярном уровне. И в отличие от магнитных частиц, тут они все калиброваны, так сказать, от Бога размер задан. И поэтому, если работать с такими объектами, уже никаких проблем с размером не возникает.
Итальянцы из Флоренции под руководством профессора Гаттески, они такие материалы синтезировали, ну, и конечно, физики их сразу подхватили, Mn-12, вот это нижняя левая молекула. И её взяли как основную и модельную, и на ней провели эксперименты. Эти эксперименты буквально несколько лет тому назад были сделаны. Сделаны они были в Гренобле и Нью-Йорке. И они, эти эксперименты, полностью доказали, что, действительно, здесь мы имеем дело с макроскопическим тунеллированием намагниченности. Вот это ответ на ваш вопрос. Электроны там только квантовыми свойствами обладают или в целом весь кластер? Вот здесь оказывается, что весь кластер проявляет квантовые свойства.
А.Г. А какими свойствами в данном случае обладает барьер?
А.З. Это хороший вопрос. Барьер, это фактически магнитная анизотропия, но в молекуле. И вот, молекула марганец-12, это действительно молекулярный магнит, она обладает петлёй гистерезиса, то есть у неё имеется анизотропия. То есть это магнит на молекулярном уровне. И вот это интересно и с практической точки зрения. Поскольку это магнит на молекулярном уровне, то мы можем использовать его для записи информации, т.е. одну молекулу. Конечно, эта идея очень простая, она появилась совсем недавно в «Нью-Йорк таймс», американские физики, её запустили. Сумасшедшая плотность, конечно. Она на четыре порядка больше, чем плотности современных магнитных дисков и так далее. Но идея, честно говоря, слишком сырая, слишком много трудностей, проблем на этом пути.
К.З. То есть управление.
А.З. Не только управление. Это хранение информации, низкая температура нужна и так далее. Но в целом идея здравая и она, конечно, не только у американцев, она и во всех лабораториях обсуждалась. Только американцы её смело подали в газету.
Но понятно сейчас, что нужно делать крупные молекулы для того, чтобы организовать эту систему. А для того чтобы сделать крупную молекулу, надо знать, как устроены молекулы внутри, какие там взаимодействия и так далее.
А.Г. То есть речь идёт уже не о синтезе органических молекул, которые обладают этими свойствами, а о создании некой молекулы.
А.З. О создании новых молекул, да. То есть надо разобраться с этими взаимодействиями. И вот я вам сейчас могу рассказать про эксперименты, которые мы провели сравнительно недавно с этими молекулами. Основная идея их была – полностью намагнитить эту молекулу. Она так сложно устроена, что для этого нужны поля порядка миллионов гаусс. Это большая проблема. Но оказалось, в России такие поля есть. И они есть в Арзамасе-16, в Сарове – это федеральный ядерный центр. Они были созданы тогда, когда Сахаров ещё там работал. Он был создателем этих полей. Потом академик Павловский подхватил это дело, и сейчас они сохранились.
И вот несколько лет тому назад меня пригласили туда на чашку чая обсудить возможности использования их полей для магнитных физических измерений. И одно из предложений, которое мы обсуждали, это вот намагничивание этих больших молекул. Вернувшись оттуда, мы с моим другом, профессором Поповым Александром Ивановичем из Зеленограда, рассчитали этот процесс намагничивания. И обнаружили одну интересную штуку, что процесс действительно идёт в мегагауссных полях, но идёт квантовым образом, квантовые скачки возникают. И после этого расчёта мы достали эти материалы, французы, итальянцы помогли с этим делом, и начали эксперименты. Несколько лет вели, у нас в России, в Арзамасе-16, в Сарове, в Америке, в Лос-Аламосе, американцы тоже к этой работе подключились. И в результате действительно измерили процесс намагничивания, получили петлю намагничивания, то есть полностью намагнитили молекулу. И действительно увидели, что процесс намагничивания идёт путём квантовых скачков. Вот сейчас эту картинку хорошо было бы показать.
То есть процесс намагничивания молекулы идёт путём квантовых скачков. Это был важный момент. И вот эта нижняя кривая, она как раз показывает, как ведёт себя восприимчивость этой молекулы, виден пик восприимчивости, он находится при полях примерно 600 Тесла, то есть это 6 миллионов Эрстед. Это реально было всё сделано. И я эту картинку очень люблю и горжусь этой картинкой. Какой результат? То есть фактически мы сейчас, после того как включились теоретики и раздраконили эту молекулу, мы знаем все взаимодействия. Конечно, работы ещё довольно много с этой молекулой и с другими. Но это путь к измерению того, как внутри устроены эти молекулы, это нужно для синтеза новых молекул. Вот это самый последний и новый результат. И это тоже проявление квантового поведения этих объектов.
А.Г. А синтез нужен для создания новых технологий, которые приведут в том числе и к созданию новых макрообъектов, которые будут работать на нанопринципах. Например, компьютеров.
А.З. Именно так. То есть обнаружение макроскопического квантового поведения магнитных молекул – это интересно с физической точки зрения. Но здесь есть и шаг к квантовому компьютеру. И такие компьютеры квантовые на вот этом принципе использования магнитных нанокластеров, они предложены. Они предложены и европейскими физиками, американскими, и у нас есть свои идеи в этом направлении. Но, нужно сказать, всё ещё впереди, вся работа впереди.
А.Г. Понятно. Говоря об этих компьютерах, всё-таки в чём будет принципиальное, кроме способа хранения информации, различие между классическими компьютерами и квантовыми компьютерами? Это что, скорость обработки информации или это попытка решения задач, которые принципиально не могут быть решены на классических компьютерах?
А.З. Я думаю, второе. То есть фактически здесь речь идёт о задачах, которые принципиально трудны для классических компьютеров, сила квантового компьютера в том, что он позволяет проводить параллельные вычисления. Ну, представляете это, что бит классический – это два состояния. А кьюбит квантовый, т.е. бит квантового компьютера, это фактически все состояния на сфере. И, конечно, поэтому и эффективность квантового компьютера намного сильнее.
Но сейчас в наше время на этом пути сделаны только двухкубитные системы, из двух битов.
А.Г. Я так понимаю, что отказ от бинарной системы записи влечёт за собой отказ и от формальной логики, которая буквально преследует компьютерную технику и компьютерные программы сегодня. То есть, грубо говоря, современный компьютер, как бы ни была написана программа, не может решить вопрос: кто красивее – женщина или паровоз? – обладая только этим набором данным. А квантовый компьютер может попытаться ответить на этот вопрос – со своей точки зрения, разумеется.
А.З. Если мы в него что-то сможем внести. Но сейчас пока реализованы только двухкьюбитные системы.
А.Г. А уже есть прототипы такие?
А.З. А вот буквально за последние годы, за последний год даже, два я примера знаю. На кремнии с фосфором – есть такой квантово-компьютерный центр в Австралии. Они сделали двухкубитную систему. И буквально недавно сделали на джозефсоновских элементах двухкубитную систему. Это тоже интернациональная группа, состоящая из наших, российских физиков, из японских, из американцев, два таких варианта сейчас есть.
А.Г. Но всё-таки, прогнозируя революционные изменения (это очень, кстати, похоже на график намагничивания вашего) – должен быть какой-то взлёт по развитию технологии, за достаточно короткое время. Когда вы его прогнозируете, этот взлёт?
А.З. Вы имеете в виду технологию квантовых компьютеров?
А.Г. Не обязательно квантовых компьютеров. Как это точнее сказать-то… Квантовые матрицы больше сейчас, чем двухкюбитные.
А.З. Как говорят специалисты, что для того чтобы квантовый компьютер мог конкурировать с современными бинарными компьютерами, нужно чтобы компьютер состоял примерно из тысячи кюбитов, тогда они могут конкурировать. Но сейчас два. Если опереться опять же на тот закон Мура и считать, что за полтора года его интеграция удвоится, где-то через 15-20 лет до тысячи дойдём. Если, конечно, в этой области этот закон будет работать.
А.Г. Да. Ну, хорошо, я всё время вспоминаю Симона Шноля, который любому теоретику говорит: «А что от этого нашему колхозу?» Кроме компьютерных технологий, о которых вы уже упоминали, нанотехнологии могут работать буквально везде. В ближайшее время каких нам здесь прорывов ждать?
А.З. Костя, по-моему, хотел об этом сказать, но не сказал почему-то. Вот магнитные нано-кластеры, нано-частицы, они не только в спинтронике интересны. Из ультрадисперсной системы, – грубо говоря, это органика, и пластмасса, и в неё погружаются эти малые частицы – можно делать массу всяких интересных вещей.
А.Г. А именно?
А.З. Постоянный магнит, это всем известно сейчас.
К.З. Мягкие магниты фактически.
А.З. Да. Причём в Штатах сейчас это очень здорово развивается. Они делают, скажем, магнитную рекламу. Она как лента – на автомобиле, где угодно крепится. И хотя эта работа требует использования очень мелкодисперсного порошка, но его можно покупать. Пластмасса тоже, так сказать, не Бог весть какая технология. Это могут делать малые предприятия, малые фирмы – и делают. Вот у нас в университете я знаю команду, они активно в это дело влезли, они, например, изобрели магнитную пену для того, чтобы всякое масло, нефть с поверхности моря снимать. Другая интересная штука – магнитный клей. Вот это то, что колхоз может использовать, если колхозом назвать малую фирму.
А.Г. Малое предприятие.
А.З. Малое предприятие, да.
К.З. Или, например, MRAM, который появится, буквально, это может быть, в следующем году. С её помощью переносной компьютер, ноутбук сможет без подзарядки работать несколько месяцев. Сейчас огромное количество энергии тратится на обновление информации в оперативной памяти, эта энергия будет сохраняться. То есть фактически энергия будет тратиться только во время обработки операции.
А.Г. То есть на той же самой литиевой батарее, только срок жизни компьютера возрастёт необычайно.
К.З. Или, например, мобильный телефон, которым можно без подзарядки пользоваться месяцами.
А.З. Но это малое предприятие не потянет.
А.Г. Но что-то же мы должны отдать из этой технологии большим.
А.З. Но на самом деле то, о чём мы сейчас говорим, это из области прогнозов. А 20-й век показал нам, что прогнозы – очень неблагодарное дело. И многие, ещё после войны, когда началась микроэлектроника, многие прогнозировали на ближайшие 20-30 лет, и их прогнозы оказались намного более робкими, чем действительность.
К.З. Кроме прогнозов Фейнмана, наверное.
А.З. Да, конечно.
А.Г. Это даже не прогноз, это установка к действию. Это как рассказ о том самом лондонце, который представлял себе Лондон конца 21 века погрязшем в навозе, потому что будет столько лошадей, что убирать за ними… Ну, что? Вот видите, хоть вы вселяете оптимизм какой-то.
Нейробиологические механизмы агрессии
18.06.03
(00:49:36)
Участник:
Наталия Николаевна Кудрявцева – доктор биологических наук
Наталия Кудрявцева: Хорошо известно, что внутривидовая агрессия – это базовая форма поведения, которая встречается у животных, находящихся на различных ступенях эволюционной лестницы, от насекомых до приматов. Как правило, агрессия демонстрируется животными в угрожающих условиях, при защите территории доминирования, в борьбе за самку, пищу, среду обитания. Кроме того, с помощью агрессии устанавливаются доминантно-субординантные отношения, формирование которых является эволюционно адаптивным, поскольку доминирующее положение, как правило, занимают самые сильные и самые приспособленные особи. И именно они оставляют потомство. Таким образом, поддерживается рождение тех животных, которые выживут в данных условиях среды. Всё это свидетельствует о том, что агрессия играет позитивную роль в эволюции вообще и в жизни отдельной особи, в частности, позволяя ей сохранить жизнь и освоить жизненные пространства. И поэтому Конрад Лоренц, основатель науки этологии, много писавший об агрессии у животных, назвал свою книгу «Агрессия, так называемое зло». Это «зло», которое дано животному во благо, потому что с помощью агрессии животное может отстоять своё право на существование в окружающей среде. Однако внутривидовая агрессия встречается довольно редко, и встретить кровавые сцены агрессии у самцов в природе практически не представляется возможным, поскольку агрессия блокируется уже на ранних этапах взаимодействия особей. Запах, вид, партнёра, его поведение способствуют тому, что агрессия не проявляется. Происходит дистантная оценка возможностей и намерений друг друга. Часто достаточно угроз – у мышей, например, это вибрация хвостом, – чтобы агрессия у партнёра прекратилась, не начавшись. И особи, как правило, расходятся в разные стороны, не проявив агрессивного поведения. Причём, в каждой конкретной ситуации и поведенческом контексте, механизм, приводящий к блокаде агрессии, может быть разным.
Общепринятым является представление о том, что агрессия провоцируется только определёнными условиями среды и не является сущностью данного индивида, данного животного. Во всех случаях необходима провокационная среда, конфликтная ситуация, в которой развивается агрессивное поведение.
Александр Гордон: «Только от жизни собачьей собака бывает кусачей»…
Н.К. Да, по-видимому, так. Лоренц рассматривал агрессию как инстинкт, сходный пищевому и половому инстинктам. Предполагал, и даже находил свидетельства тому, что в организме спонтанно и постоянно продуцируется агрессивная энергия, которая рано или поздно должна находить выход. И потому возникает и всегда находится повод для её разрядки. И развивая эту мысль, он говорил о том, что войны и агрессия неизбежны в человеческом обществе. Однако, многие исследователи, работавшие в области агрессологии, эти представления Лоренца о спонтанном продуцировании агрессивной энергии критиковали, утверждая, что нужна провокационная среда и видоспецифические стимулы, запускающие проявление агрессии. У мышей это феромоны, запахи других самцов. У птиц это визуальные стимулы. Агрессия возникает, если расстояние между птицами меньше их размаха крыльев. Агрессия часто возникает при скученности животных, нарушении каких-либо стабильных условий существования.
Но если пусковые стимулы, запускающие агрессивное поведение у представителей разных видов, как показывают некоторые исследования, разные, то механизмы регуляции агрессивного поведения во многом сходны.
Контроль агрессивного поведения сложен. И от многих физиологических и нейрохимических составляющих зависит характер и выраженность протекания агрессии в провоцирующей среде. В частности, запускают агрессивное поведение сенсорные стимулы. Это значит, что некоторые особенности их восприятия могут повлиять на проявление агрессивного поведения. Особенности обоняния, зрения, особенности болевых ощущений или тактильного восприятия. Например, есть агрессия, вызванная болью или раздражительностью, когда животное отвечает агрессивной реакцией в ответ на болевое, тактильное или какое-либо другое воздействие. И если у индивида снижен порог болевой чувствительности или раздражительности, то есть вероятность, что эти виды агрессии у него разовьются быстрее, чем у той особи, у того индивида, у которого этот порог повышен.
Кроме того, некоторые общие свойства нервной системы, по Небылицыну, это эмоциональность и активность – могут влиять на возникновение и течение агрессивного поведения. Одно из определений эмоциональности – это способность индивида развивать реакцию страха в угрожающих условиях, которая может тормозить или стимулировать у особей проявление агрессии. В последнем случае этот вид агрессии, называется агрессией, вызванной страхом. Под активностью имеется в виду не просто двигательная активность, это может быть активность и на мыслительном уровне, и исследовательская активность, отражающие особенности реагирования на окружение и события. Полагают, что активность также оказывает влияние на проявление агрессивного поведения, например, «механически». Активное животное, активный индивид, чаще попадает в ситуации, в которых может развиться конфронтационное взаимодействие. Однако, как полагают, между агрессивностью и активностью существует не только «механическая связь», но и внутренняя. Известно, например, что отбор на агрессивный тип поведения сопровождается и повышением двигательной активности у этих животных в процессе селекции.
Большое значение на проявление агрессии оказывает гормональный фон, на котором разворачивается или не разворачивается агрессивное поведение при наличии провоцирующей ситуации. Я хочу всё время подчеркнуть, что должна быть провоцирующая ситуация, должен быть определённый социальный контекст, формирующий агрессивную мотивацию.
Общепризнано, что мужской половой гормон тестостерон, который у мужских особей присутствует в существенно больших количествах, чем у женских, является гормоном агрессии. Существует множество доказательств того, что тестостерон необходим для внутривидовой агрессии: физическую агрессию, в основном, проявляют самцы. Известно, что кастрация животных снижает, а чаще полностью блокирует проявление агрессии. Введение тестостерона таким животным её восстанавливает. Введение тестостерона самкам, которые в норме не агрессивны, вызывает у них проявление агрессии. У дзюдоистов было найдено, что чем выше уровень тестостерона, тем больше атак по отношению к своему партнёру спортсмен проявляет.
Однако есть данные, противоречащие представлению о позитивной корреляции между уровнем тестостерона и уровнем агрессивности, присущей мужскому индивиду. У дзюдоистов было отмечено, что уровень тестостерона повышался после борьбы только в том случае, если были успех и победа. То есть повышенный уровень тестостерона обусловлен скорее социальным успехом, чем влиянием агрессии. Полагают, что эта взаимосвязь может быть обусловлена взаимосвязью между социальным и репродуктивным успехом, по крайней мере, в популяции: повышенный уровень тестостерона у доминанта скорее вызван его репродуктивным опытом, а не агрессивностью, поскольку хорошо известно, что в популяции со стабильными иерархическими взаимоотношениями агрессия возникает редко, поскольку подчинённые животные избегают конфликтных ситуаций.
Гормоны стресса также влияют на проявление агрессии, хотя уровень стрессированности особи и агрессивность также связаны неоднозначно. Сильный стресс, особенно хронический, снижает уровень тестостерона, и значит, снижает агрессивность. Однако, проявит ли особь агрессию в данной конкретной ситуации зависит, в первую очередь, от её предыдущего социального опыта – негативного или позитивного.
Хорошо известно, что уровень агрессивности наследственно обусловлен. Об этом свидетельствует разная выраженность агрессивного поведения у линейных животных. Об этом свидетельствует возможность селекции на высокий и низкий уровень агрессивности. Показан различный характер наследования уровня агрессивности при скрещивании животных. В исследованиях на нокаутных животных с отсутствием какого-либо гена показано, что как минимум 17 генов участвуют в регуляции агрессивного поведения: их отсутствие снижает или увеличивает агрессивность особей. То есть, можно говорить о полигенном характере наследования.
Результаты изучения нейрохимических механизмов агрессии свидетельствуют об участии как минимум, 5-6 медиаторных систем головного мозга в регуляции и в контроле агрессивного поведения. Воздействуя на каждую из этих систем определённым образом, например, фармакологически, можно изменить, запустить или полностью ингибировать агрессивное поведение.
Надо сказать, что в последние 30 лет преобладает серотонергическая теория агрессии, которую поддерживает много исследователей. Полагают, что одним из основных веществ, которое выполняет роль ингибитора агрессии в организме, является серотонин. И действительно, когда мы вводим вещества, которые активируют серотонергическую систему, агрессия снижается. И наоборот, если снижать активность этой системы тем или иным способом, агрессия увеличивается.
А.Г. Фармакологически снижаете активность?
Н.К. …Да, и фармакологически. Одно время было даже такое направление исследований, как поиски препаратов на серотонинпозитивной основе, снижающих проявление агрессии.
Но снизить или повысить уровень агрессивности можно воздействием и на другие медиаторные системы. Например, на катехоламинергические системы (норадренергическую и дофаминергические). Показано, что активация дофаминергических систем усиливает проявление агрессии, а блокаторы этой системы эффективно её подавляют.
Показано вовлечение опиоидэргических систем в механизмы контроля агрессии. Основная биологическая функция этих систем состоит в обеспечении положительного (или отрицательного) подкрепления любого физиологического или поведенческого акта, осуществляемого на уровне формирования эмоций. Эти системы дают возможность индивиду понять, хорошо это было или плохо. Если говорить в терминах психологических, опиоидэргическим системам приписывают функции вознаграждения. И именно они обеспечивают положительное подкрепление агрессивного акта, который сопровождается победой. Именно поэтому агрессивное поведение, проявленное раз стремится быть проявленным вновь.
Чтобы завершить эту часть краткого рассмотрения исследований, проводимых на животных, и посвящённых изучению нейробиологических составляющих агрессивного поведения, нужно сказать, что существует много нейрохимических, поведенческих и физиологических механизмов, влияющих на возникновение, характер, и реализацию агрессивного поведения в провоцирующих условиях среды.
До сих пор мы говорили о той агрессии, которая играет позитивную роль в приспособлении особи к среде обитания и носит позитивный характер, поскольку позволяет особи сохранить жизнь и достичь положительного результата в борьбе за самку, пищу, среду обитания. Этот вид агрессивного поведения у животных рассматривается аналогом так называемой импульсивной агрессии у людей. И всё то, что мы знаем о механизмах агрессии у животных, можно отнести и к человеку, у которого импульсивная агрессия возникает в ответ на провоцирующий стимул в конфликтных ситуациях. Фромм называл такую агрессию доброкачественной.
Но помимо этого вида агрессии человеку присущи, как минимум, ещё два вида агрессии, которые не встречаются у животных в естественных условиях. Прежде всего, это патологическая агрессия, сопровождающая развитие многих психических заболеваний. Это маниакально-депрессивный психоз, это эпилепсия, это шизофрения, это различные токсикозы мозга. Агрессия вызывается токсическими веществами, которые образуются в мозге во время болезни.