355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Александр Чернов » Гомо акватикус (первое изд.) » Текст книги (страница 15)
Гомо акватикус (первое изд.)
  • Текст добавлен: 16 октября 2016, 22:24

Текст книги "Гомо акватикус (первое изд.)"


Автор книги: Александр Чернов



сообщить о нарушении

Текущая страница: 15 (всего у книги 17 страниц)


Теленавты

Спуститься вглубь, подобно водолазу…

Эсхил

Года два-три назад американская нефтяная фирма «Шелл ойл» купила лицензию на несколько морских участков у тихоокеанского побережья США с глубинами до четырехсот метров. До сего времени удавалось вести разведку бурением на глубинах не более двухсот метров. А скважины, из которых можно было бы вести добычу нефти, ограничивались и того меньшими пределами.

Пока что, имея в своем распоряжении новейшие газовые коктейли и графики декомпрессии, водолазы и аквалангисты помогают оборудовать скважины в море на глубинах шестидесяти-восьмидесяти метров и только в отдельных случаях – на глубине до ста – ста двадцати метров.

На что же делала ставку «Шелл ойл», затевая эту, казалось, явно проигрышную лотерею?


Электронные репортеры

Лет пятнадцать тому назад бесследно исчезла подводная лодка «Эффрей». Она отправилась в учебное плаванье по Ла-Маншу и с момента выхода из Портсмута не подала о себе никаких вестей.

Была поднята тревога, и на поиски лодки отправились десятки различных кораблей.

На кораблях-спасателях включили гидролокаторы. Лучи стали обшаривать дно. Это была нелегкая работа. Ведь Ла-Манш – одно из величайших морских кладбищ, где покоятся тысячи погибших кораблей разных эпох.

Но эхолокационное «зрение» оказывалось недостаточно острым, чтобы распознать, что именно лежит под водой: давно погибшее судно или подводная лодка, которую ищут спасатели. А бывало и так, что судно, найденное приборами, оказывалось всего лишь выступом на дне моря, напоминающим своими очертаниями корабль.

Тогда ученые предложили испробовать в поисках телевидение.

Объектив телепередатчика оказался гораздо внимательнее и зорче человеческого глаза. Он сделал много любопытных находок под водой. Главное же, подводный телепередатчик дал возможность обследовать дно без помощи водолазов.

Однажды гидролокатор обнаружил еще один подозрительный предмет, лежащий на дне. Спустили телекамеру, и все увидели – это была подводная лодка! На экране телевизора вырисовывается орудийная башня и название корабля.

– «Эффрей»! – с волнением прочитали моряки.

Несколько позднее появились подводные телепередатчики-автоматы с дистанционным управлением – телевизионные роботы.

Автоматический водолаз не страдает от морской болезни и не нуждается ни в сне, ни в кислороде для дыхания, как бы долго и глубоко ни пробыл он под водой.

Бесстрастное телевизионное око позволяет разглядеть происходящее на больших глубинах, не выходя в воду. Наблюдатели и операторы могут оставаться у пульта управления роботом – на палубе корабля, в помещении подводной обсерватории или даже на берегу. Сидеть в кресле перед экраном телевизионного приемника и уютнее и безопаснее, чем странствовать с аквалангом.

Несколько подводных телероботов сконструировали советские инженеры. Один из первых отечественных роботов с дистанционным управлением назван в честь Института океанологии Академии наук СССР – ИОАН-3. Он, например, помог исследовать лежащий на дне корабль «Десна». На экране приемника была отчетливо видна зияющая пробоина в борту – смертельная рана, которую получил корабль во время боя.

Подводные телероботы были первыми из электронных водолазов.

Затем под воду отправились роботы, которые могли не только наблюдать, фотографировать и сообщать об увиденном на поверхность, но вести и более сложные наблюдения, а главное, заниматься тяжелым физическим трудом. Для этого им были даны механические руки…


Мастера на все руки

Особые надежды океанологи возлагают на роботов, имеющих специальность подводных монтажников. Им поручается оборудование морских скважин на больших глубинах. Один из таких роботов по имени «Теленавт» сконструирован инженерами Французского нефтяного института. Механический водолаз-нефтяник погружается в море на глубину одного километра.

Под водой робот передвигается с помощью гребных винтов. Механические руки робота перемещают грузы и выполняют довольно тонкие манипуляции под водой, даже завертывают гайки. Сила пожатья металлической десницы этого рыцаря глубин – пятьдесят килограммов.

Помимо телепередатчика, «Теленавт» обладает еще и кинокамерой.

Не так давно у «Теленавта» появился «родственник» в США – рабочий-монтажник, ухаживающий за устьем скважин на дне моря. Он успешно прошел испытания в калифорнийских водах. «Родители» подводного робота – американские фирмы «Шелл» и «Хьюджес Эйркрафт» – назвали свое детище «Моботом».

«Мобот» опускается под воду на тросе; при самостоятельном передвижении его по дну включаются гребные движители. Для наблюдений служит телепередатчик.

Все увиденное телевизионной камерой «Мобота» отражается на экране телевизора, который установлен на пульте управления. Действиями механического океанавта командует оператор. Его распоряжения по проводам поступают в «мозг» робота. При более или менее хорошем освещении телеглаз отчетливо различает трос или кабель диаметром два – два с половиной сантиметра с расстояния пятнадцати метров. Для обычного водолаза или аквалангиста это, как правило, непостижимая задача. Когда «Мобот» работает в темноте или в мутной воде, включается гидроакустическое «всевидящее око».


Сейчас для обслуживания подводных скважин у берегов Калифорнии нефтяники «Шелл» используют уже четыре таких подводных робота. Разносторонние способности механических слуг позволяют им вести и акустические наблюдения в океане.

Не так давно у «Моботов» появился конкурент по имени «Унумо». Он тоже прекрасно показал себя при оборудовании устьев подводных нефтяных скважин. На глубине свыше четверти километра робот присоединял тросы к трубам, вставлял и вынимал фиксаторы затворов устьев скважин, манипулировал с отрезком трубы, брал образцы проб грунта и выполнил ряд других операций на дне моря.

«Унумо» имеет четыре механические руки. «Мышцы» каждой из них сжимаются и расслабляются девятью миниатюрными, но достаточно мощными электродвигателями.

Но что четыре руки «Унумо» по сравнению с одной «Солариса»! Если бы среди подводных роботов проводились соревнования по тяжелой атлетике, «Соларису» было бы обеспечено первое место и золотая медаль.

Силач «Соларис» помогает прокладывать и ремонтировать телефонные и телеграфные кабели, водо– и газопроводы. С особым искусством «Соларис» выполняет саперные работы: сам переносит и укладывает взрывчатку, достает из-под воды затонувшие торпеды и другие находки. Как большинство подводных роботов-«неинтеллектуалов», «Соларис» держится на привязи. По проводам поступает электрическая энергия, передаются команды оператора и транслируется наверх телевизионное изображение панорамы дна моря.


Из пены морских волн…

Грохоча могучими двигателями, из пены морских волн выходит на берег робот-ползун «Рам». Он не похож на «классического» робота с руками, ногами и головой. «Рам» скорее напоминает боевой танк, только взамен орудийной башни и пушек на нем установлены огромная катушка с кабелем и мощная клешня для подводных работ. Туловище «Рама» – автоматический транспортер – вездеход на гусеницах.

Этот робот тоже управляется с берега. По кабелю с берегового поста могут передаваться тридцать три различные команды.

«Рам» совершает достаточно дальние и продолжительные путешествия по дну моря. На ровном твердом грунте он движется со скоростью трех миль в час, легко преодолевая небольшие холмы и преграды. Натолкнувшись на непреодолимое препятствие, робот, недолго думая, обходит его и продолжает путь. В особых случаях «Рам», не ожидая команд оператора, сам «принимает решение» и автоматически тормозит ход.

Не боясь быть раздавленным, «Рам» работает в море на глубине до шестисот метров.

«Рам» – первый экспериментальный робот подобного вида. В будущем предполагается создать целый отряд таких роботов, снабженных винтом, как у вертолета. Тогда робот, снявшись с грунта, сможет преодолевать крупные трещины и подводные каньоны. Крылатый «Рам» станет незаменимым помощником при исследовании морского дна с неровным рельефом.


«Батиандр» – «глубинный человек»

А какой-нибудь год назад в семье подводных роботов появился новорожденный. Родился он в Москве, в лаборатории морской электроники Института океанологии Академии наук СССР. У новорожденного еще нет имени, но зато известна его будущая специальность – подводник-геолог. Испытания показали, что разведку недр океана он ведет лучше всех своих зарубежных коллег. На четыре тысячи метров может он проникать в царство Нептуна, выдерживая колоссальное давление – четыреста атмосфер!

У электронного геолога две ловкие и сильные стальные руки, готовые выполнить любую команду человека. Тело автомата – два соединенных между собой стальных шара, диаметром около полуметра каждый. В одном из шаров скрыта кинокамера, в другом – телеустановка.

Вскоре геолог-автомат получил ответственное задание – отправиться на разведку в глубины Тихого океана. Каковы будут итоги его командировки? Ученые считают новорожденного робота очень способным специалистом и возлагают на него большие надежды.

Автоматический подводник-геолог, как и его зарубежные собратья, о которых мы уже рассказали, управляется с берега или с корабля базы.

Совсем иначе выглядит подводный робот ленинградского инженера А. Н. Дмитриева, названный им «Батиандром» – «глубинным человеком».

Оператор, управляющий «Батиандром», находится не на берегу или на палубе корабля, а в самой «скорлупе» робота – небольшой прочной гондоле с иллюминатором. В этом главное отличие «глубинного человека» от прочих механических собратьев-океанавтов.

Оператор, сидящий за пультом, управляет руками и ногами робота с предельной точностью, так работают манипуляторы-клешни в атомных лабораториях. При ходьбе «Батиандра» включаются реактивные движители, которые по команде оператора легко могут менять свою позу. Поэтому робот подвижен, как рыба в воде.

Оператор располагается в уютном мягком кресле, помещенном в сферическом туловище робота. Внутри гондолы «Батиандра» автоматически поддерживаются необходимая температура, давление и влажность воздуха. Для связи с поверхностью или с другими глубоководными аппаратами, находящимися на задании, имеется гидротелефон.

Подводные роботы появились во владениях Нептуна сравнительно недавно, но на их счету уже немало полезных дел. Люди убедились, что в освоении океана, как и в покорении космоса, первое слово лучше предоставить автоматам. И сейчас ученые многих стран трудятся над созданием новых механических океанавтов, которые проложат человеку «зеленую улицу» в голубых океанских просторах.


Человек-амфибия

Ты обладаешь тем, чем не обладает ни один человек: способностью жить под водой…

А. Беляев

Никогда еще Кристо не приходилось видеть столь необычных животных. Из травы, из зарослей кустарников, с деревьев глядели на него необычные звери, гады и птицы: собаки с кошачьими головами, гуси с петушиной головой, рогатые кабаны, страусы с клювами орлов, змеи с рыбьей головой и жабрами.

Какое-то существо с шумом выскочило из-за ветвей и бросилось в бассейн, подняв тучи брызг. Кристо казалось, что он бредит. На дне бассейна, на белых каменных плитах, сидела… обезьяна. С испугом и любопытством она глядела из-под воды на Кристо. Кристо не мог прийти в себя от удивления: обезьяна дышала под водой. Рот открыт, бока ходят ходуном…


Киевские Сальваторы

В аквариуме – стальной герметической камере с просторными иллюминаторами – плавала белая мышь. Быстро-быстро перебирая лапками, она спустилась на дно и уткнулась крошечным носом в прозрачное оконце водяного домика.

Ихтиандр, Сальватор, обезьяны, которые живут в бассейне, – все это знакомые лица, герои романа Александра Беляева «Человек-амфибия». Но белая мышь? О ней у Беляева не сказано ни слова.

Значит, тоже фантастика, но только из другого романа?

Вовсе нет! Это уже не вымысел, а реальный факт, эксперимент, осуществленный в одном из научно-исследовательских институтов.

Ученые приступили сейчас к осуществлению одной из самых «сумасшедших» идей нашего времени: к созданию человека-амфибии, который в будущем станет хозяином океанских глубин.

На разведку ученые, как обычно, выслали животных. С одним из них – белой мышью – мы уже успели познакомиться.

Это был юркий, подвижный зверек, ни секунды не сидевший спокойно. При виде людей он занервничал, стал к чему-то принюхиваться, внимательно смотрел на окружающих красными глазками-бусинками. Но, что запомнилось, зверек ни разу не взглянул на стоявшую рядом с ним массивную стальную камеру – подводный домик, в который ему сейчас предстоит войти. Оранжевые толстые иллюминаторы не будили в нем страха. Однако вскоре мышь потеряла всякий интерес к присутствующим и продолжала заниматься своими делами… Фотокорреспонденту не удалось запечатлеть момент, когда зверек пулей влетел сквозь открывшийся шлюз, развернулся в воде, а затем бросился к иллюминатору. Мы растерялись, потрясенные необычностью происходящего. Лишь спустя двадцать секунд щелкнул затвор фотоаппарата. Животное к этому времени принялось обследовать все уголки необычной подводной квартиры, – таково документальное свидетельство очевидца этого удивительного эксперимента.

Где же произошло это чудо и кто совершил его?

В роли легендарного доктора Сальватора выступил молодой физиолог Владлен Козак. Вместе с ним в проведении экспериментов участвовали Михаил Иродов, Владимир Демченко и еще несколько сотрудников лаборатории гидробионики в Киеве.

…Кислорода в воде обычно немного. Рыбы фильтруют сквозь жабры огромное количество жидкости, чтобы получить необходимую порцию «газа жизни». А как быть в этой стихии обладателю легких? Ведь они в отличие от жабр не приспособлены к тому, чтобы добывать кислород из воды, у них иная конструкция, иной принцип работы.

Но, оказывается, дело не только в несовершенстве легких, но и в количестве кислорода, растворенного в воде.

Известно ведь, что рыба гибнет в озере, скованном льдом, в котором нет отдушин. Гибнет она из-за недостатка кислорода и в затхлом, зарастающем пруду.

Наблюдения показали, что легкие млекопитающих, как и жабры рыб, все же могут извлекать содержащийся в воде кислород. Разница в том, что рыбы довольствуются самой незначительной концентрацией кислорода в воде.

Для животных, чтобы они выжили, не захлебнулись, необходимо растворить десять-пятнадцать процентов кислорода, а то и больше. Тогда животное начинает… дышать водой! Вдох – выдох, вдох – выдох… Как обычно! Именно так и вела себя белая мышь.

Конечно, этот опыт не получился бы, если бы мышь попала в обычный аквариум. Вода не удержит столько кислорода: газ сразу же улетучится из нее, подобно пузырькам воздуха, которые попадают в стакан с водой, если дуть в него через соломинку.

– В чем же дело?

– В давлении!

Вспомните минеральную воду или шампанское в бутылках.

Откройте пробку – раздается легкий хлопок, давление моментально падает до комнатного, и газы, растворенные в жидкости, цепочкой пузырьков потянутся к горловине бутылки.

При избыточном давлении, равном десяти атмосферам, – такое давление царит на глубине ста метров – вода растворяла примерно столько же кислорода, сколько его в воздухе, которым мы дышим. В опытах с белыми мышами достаточно создать давление, равное шести-восьми атмосферам.

– А как же углекислый газ?

Он выдыхается в воду и растворяется в ней.

Должно соблюдаться и другое правило. Пресная вода для дыхания – смертельна. У животных, которые дышали такой водой, вдруг начиналось горловое кровотечение, и они гибли. Разгадка оказалась очень простой: вымывание солей из крови. Дыхательная смесь попадала в легкие. Легкие обладают разветвленной кровеносной системой. Соли из крови «перекочевывали» в пресную воду. Но обессоленная кровь – еще полбеды. Пресная вода легко проникает в легочные пузырьки, а оттуда – в кровеносные сосуды. Ясно, что такая «водянистая» кровь не может поддерживать нормальную жизнедеятельность организма. Вскоре отказываются служить и сами легкие: поглощение кислорода прекращается – и наступает смерть.

Но вернемся к эксперименту киевских Сальваторов.

Камера, где находилась мышь-акванавтка, была наполнена водой, напоминающей морскую.

Мышь вела себя спокойно.

Лишь на тридцать седьмой минуте ритмичные дыхательные движения животного несколько нарушились.

– Это еще не признак опасности. Не надо забывать, что на дыхание жидкостью требуется во много раз больше энергии: плотность воды в восемьсот раз превышает плотность воздуха! – поясняет один из экспериментаторов.

Между тем давление в аквариуме непрестанно возрастало. Крошечный сухопутный зверек превращался в обитателя морских бездн… Значит, разница между жабрами рыб и легкими млекопитающих, а стало быть и людей, не такая уж непроходимая пропасть!

Не следует забывать и того, что дальние предки человека некогда сами вышли из моря. Это случилось очень давно, много миллионов лет назад. Но мы до сих пор носим в себе следы этого происхождения. Плазма крови имеет тот же солевой состав, что и морская вода: в крови людей живет крохотная частичка моря…


Зоосад доктора Кильстры

Несколько раньше исследования в этой области начал голландский физиолог, профессор Лейденского университета доктор Иоганнес Кильстра.

Камеру наполовину заполняли жидкостью, а в оставшуюся верхнюю часть нагнетали сжатый воздух. Десять-пятнадцать часов жили там белые мыши. В одном из экспериментов Кильстры мыши находились в камере под давлением ста шестидесяти атмосфер! Маленькие, ничем не защищенные зверьки как бы побывали на глубине 1600 метров! А еще четверть века назад ни одна из подлодок с бронированным корпусом не поднялась бы и с глубины вдесятеро меньшей…


Можно вспомнить, что Линк тоже проводил опыты под давлением ста двадцати атмосфер. Однако подопечные Кильстры жили не в воздушной среде, а под водой.

– Трудно было поверить в возможность безболезненного переселения животного в совершенно чуждую ему среду, но в душе мы все же немножко надеялись, что непоправимого не произойдет… – рассказывали свидетели киевских экспериментов.

Как ни парадоксально, но роковым оказалось возвращение на твердую землю. Зверьки, благополучно прожившие под водой, все, как один, погибли, стоило им выйти из аквариума.

В экспериментах профессора Кильстры под водой жили не только белые мыши, но и собаки.

В одном из первых экспериментов Кильстры собака по возвращении «на землю» прожила целый месяц. В другом опыте собака дышала водой полчаса и осталась живой и невредимой, а в дальнейшем даже принесла здоровое потомство.

Значит, смерть все-таки подстерегает не всех!

По мнению экспериментаторов, весь секрет в том, что у крыс и мышей слишком миниатюрные органы дыхания, и, когда зверьки выходят на воздух, остатки воды, не успевая выйти, застревают в легких, и животные гибнут от удушья.

Некоторые эксперименты Кильстра проводил не в герметической камере, а в открытом аквариуме, положенном на дно барокамеры. Это упрощало дело.

Кильстра самокритично заметил, что методика его работы еще далека от совершенства. Доктор уверен, что в дальнейшем удастся продлить срок жизни животных в аквариуме до четырех недель без особого ущерба для их здоровья.

Несколько иначе ставил эксперименты американец Лампьер. Животные держались в станке. Никаких аквариумов. Собак, как аквалангистов, облачили в маски, только вместо сжатого воздуха через легкие циркулировал насыщенный кислородом физиологический раствор. В одном из опытов участвовали шестнадцать собак, выжили семеро.


Сможет ли человек дышать под водой подобным образом?

Пока таких попыток не было. Однако опыты Кильстры, Лампьера, советских исследователей дают основание надеяться, что в недалеком будущем спустится под воду без акваланга и человек.

– Года через два-три мы перейдем к опытам с добровольцами, – заявил Кильстра.

При работе человека на больших глубинах достаточно подать по шлангу кислород, и окружающая вода превратится в дыхательную смесь. Можно было бы заранее проложить по дну газопроводы с отверстиями для выпуска воздуха. Направление газопроводов можно легко менять. Для этого надо перенести шланги на новое место. Так возникнут своеобразные «трассы жизни».

Этот способ был бы совсем хорош, если бы не был столь расточителен. Ведь в легкие попадает лишь незначительная часть газа. Остальное пропадет в океане.

Как же быть?

При работах на дне, например, при обслуживании нефтяных скважин, можно воздвигнуть легкий купол. Тогда будет обогащаться только та вода, что находится внутри. При переходе на новое место океанавты приподнимают купол, переносят и ставят его куда надо. Никакого монтажа не требуется. Вся операция – ее смогут выполнить два-три человека – займет считанные минуты. При эвакуации купол поднимут на борт корабля.

Но, конечно, удобнее всего построить специальный «акваланг» или даже специальный скафандр с замкнутой циркуляцией воды, как в экспериментах Кильстры, Лампьера, Козака. Вода автоматически пропитывается кислородом и очищается от углекислого газа и от прочих вредных примесей.

Наверное, конструкторам уже сейчас надо подумать о создании таких аппаратов. Может быть, со временем появятся универсальные акваланги. Хочешь – дыши газовой смесью, переключи вентиль – и дыши водой… Поднявшись на поверхность и выдохнув из легких воду, океанавт вновь превращается в обыкновенного жителя земли.


«Водное дыхание» может пригодиться не только при покорении глубин и сверхглубин, но и в делах сугубо земных и даже космических.

Высказана также идея, что дыхание водой в некоторых случаях может спасти жизнь преждевременно родившихся детей. В особой купели, подобной аквариумам Кильстры, создадут условия, переходные от жизни плода во чреве матери к жизни новорожденного на воздухе. И конечно же, «водное дыхание» будет помогать в спасении утопающих. Возвратить им жизнь пока удается далеко не всегда. Кильстра в этом случае рекомендует следующий рецепт «живой» воды: на один литр жидкости добавлять девять граммов солевой смеси и кислород.

Космическим путешественникам ванна с водяным дыханием облегчит недомогания, возникающие при перегрузках, неизбежных при взлете и посадке звездолетов.


Приоритет изобретения

Вот что рассказывал один из участников пресс-конференции, организованной в аудитории исследовательного центра американской фирмы «Дженерал электрик»:

– Герой дня, ради которого собрались журналисты, никому так и не дал интервью. Он оставался нем, словно рыбы, которые плавали вокруг него. Красивые юркие скалярии и гурами сновали туда-сюда, поглядывая на какое-то странное четвероногое существо, забравшееся в самую середину аквариума. Отделенное от рыб прозрачными стенками ящика, животное преспокойно грызло лист салата, не обращая внимания ни на любопытных рыбешек, ни на яркие вспышки фоторепортерских «блицев». Но это молчаливое спокойствие красноречиво говорило само за себя. Еще бы!.. Наш маленький хомяк вот уже который час чувствовал себя как ни в чем не бывало! Очевидно, ему вполне хватало кислорода для дыхания, хотя нигде не было видно трубок, через которые воздух в ящике мог бы освежаться. Зверька не душил и избыток углекислого газа, хотя поглотителей тоже не видно. Ловкий трюк фокусника? Нет, об обмане не могло быть и речи: новую установку демонстрировали журналистам серьезные ученые. Тогда что это?

Внимательные зрители уже давно приметили, что две стенки и крышка подводной клетки со зверьком сделаны не из стекла или плексигласа, а из тончайшего гибкого материала – особой пленки, изобретенной Вальтером Роббом. Он демонстрирует этот опыт. Каждая сторона подводного домика – из шести слоев общей толщиной 0,15 миллиметра.

Эта пленка извлекает кислород из воды. Стенки-мембраны маленького подводного домика добывали столько живительного газа, что его хватило бы и для более крупного зверька, чем хомяк. Убыль кислорода, «сгорающего» в организме животного, непрестанно восполняется притоком свежего газа из окружающей воды. Надо только, чтобы давление внутри домика было меньше, чем снаружи. Кислород без труда «протискивается» сквозь мембраны, направляясь из области более высокого давления туда, где давление ниже. Замечательно, что углекислый газ при этом направляется в обратную сторону: автоматически проходит сквозь стенки и растворяется в воде…

Наводнение зверьку не грозит. Небольшое количество отфильтрованной и опресненной воды, которое все-таки проникает в домик, не приносит хлопот. Она используется для питья. Пленка задерживает и соли, содержащиеся в морской воде.

Что же это за чудесная пленка? Она не имеет пор в обычном смысле слова, как губка или микропористая резина. Перед нами скорее молекулярное сито. Его сверхузкие отверстия тесны для молекул воды. Они в пору лишь молекулам кислорода и углекислого газа.

«Волшебная» пленка Робба пригодится не только океанавтам – обитателям подводных обсерваторий на дне моря.

Отдавая дань справедливости, следует признать, однако, что чудесный дом Вальтера Робба, где жил зверек, не был таким уж откровением для науки. Еще лет десять назад «дышащую» пленку начала выпускать английская фирма «Транспарент пэйпер». Она рекламировалась как великолепный материал для упаковки фруктов, овощей, мяса. Продукты, хранящиеся в такой таре, непрерывно получают добавки кислорода, углекислый газ удаляется – происходит постоянный газообмен.

Но еще раньше – много-много раньше – это изобретение было сделано нашим старым знакомцем – пауком серебрянкой. Он живет в подводном домике из воздушного пузыря, стенки которого та же дышащая пленка. Они, как жабры, извлекают кислород из воды. Одного только воздуха, запасенного серебрянкой с поверхности, хватило бы ненадолго.

Загадочный образ жизни серебрянки, его уникальная хижина давно интриговали воображение ученых. Около полувека назад за серебрянкой наблюдал немецкий естествоиспытатель доктор Брюгер. Он считал водяной домик паука одним из самых универсальных приборов, которые когда-либо сотворяла природа.

О серебрянке, не скрывая своего изумления, писал несколько десятилетий тому назад… автор «Синей птицы» – Метерлинк:

«Правда, давление, которому подвергаются пауки и люди, не одинаково. К тому же наши легкие поглощают значительно больше кислорода и больше выдыхают углекислого газа. Да и дыхательные системы у нас разные. Но удивительно то, что приспособление ничтожного паука вызывает так много вопросов…»

Метерлинк еще тогда призывал разгадать секреты серебрянки с ее удивительным подводным домом и обратить эти знания на пользу людям.

Отличными подводными пловцами считаются многие другие насекомые. Это легко заметить, сидя в ясный день на берегу обычного пруда: то там, то здесь быстро движутся из стороны в сторону маленькие шарики воздуха. На самом деле это живые существа. Воздух застрял в волосках на их теле. У других устроено еще более хитро – воздух застревает под крылышками. Когда насекомые ныряют, такой пузырек, как акваланг, снабжает их воздухом. Но самое важное – сквозь воздушную пленку из воды начинает процеживаться кислород. Правда, кислород расходуется быстрее, чем добывается. Поэтому рано или поздно воздушный шарик опадает и уже не вбирает кислород…

Пленка, идею которой подсказала серебрянка, поможет обитателям подводных домов и подводных лодок – она будет снабжать их кислородом и пресной водой.

Но еще бóльшую помощь подводным жителям, возможно, окажет… пресноводная одноклеточная водоросль хлорелла. Каждый из вас, конечно, не раз видел, как «цветут» стоячие пруды и озера. Это дает о себе знать хлорелла.

В последние годы хлореллу изучают десятки научных институтов и лабораторий во многих странах мира. Дело в том, что это простейшее растение является настоящей фабрикой питательных веществ. Оно вырабатывает почти все аминокислоты, столь необходимые для жизни человека, белки, жиры, различные витамины.

Не удивительно, что ученые рассматривают хлореллу как возможный источник питания для космонавтов в будущих межпланетных полетах. О создании космических оранжерей мечтал еще К. Э. Циолковский, и хлорелла самая подходящая для них кандидатура. Но сегодня эта водоросль уже не раз поднималась в космос, и, как говорится, она вполне оправдала оказанное доверие. И в космических условиях растение, оставаясь весьма неприхотливым, давало большие урожаи.

Но для океанавтов, пожалуй, самым ценным качеством хлореллы является ее исключительная способность выделять большое количество кислорода. Водоросль «выдыхает» столько кислорода, что объем его в двести раз превышает ее собственный объем.

Однажды ученые поставили такой опыт. В герметическую камеру, куда предварительно поместили хлореллу, была посажена белая мышь. В такой обстановке мышь прожила шестьдесят шесть дней. Она могла пробыть там и больше, но выпила всю воду, и опыт пришлось прекратить. Количество же кислорода в камере, несмотря на то, что там жила мышь, увеличилось за это время с двадцати одного до шестидесяти трех процентов.

А недавно подобный эксперимент был проведен с участием человека. Сотрудница одного сибирского института – Галина М. – прожила целый месяц в изолированной кабине. Кислород для дыхания человека поставляла хлорелла.

Миллиарды клеток этой водоросли поглощали углекислый газ, выделяемый при дыхании, и в процессе фотосинтеза превращали его в кислород. Никаких других источников снабжения воздухом и аппаратов для его очистки не было.

Хлорелла прекрасно справлялась со своими обязанностями, и Галина за все тридцать дней ни разу не испытывала недостатка в кислороде. Отличное самочувствие подтвердили и показания медицинских приборов, установленных в ее «отдельной квартире». Водоросль чутко реагировала на поведение человека, и если Галина засыпала, то и хлорелла тоже замедляла ритм своей жизни…

Оранжерея, в которой росла водоросль, напоминала собой тщательно закрытый фонарь, в котором горела мощная ксеноновая лампа. Стенки оранжереи, зеркальные с внутренней стороны, почти не пропускали наружу свет – энергию, необходимую для фотосинтеза.

«Грядка» с хлореллой – пачка тонких кювет из оргстекла, расположенных через каждые пять миллиметров. Оранжерея с кюветами общей площадью восемь квадратных метров, где находилось всего полкилограмма хлореллы, вырабатывала кислорода, которого вполне хватало для одного человека.

Успешное завершение сибирского эксперимента открывает хлорелле «зеленую улицу» и в космические дали и в просторы гидрокосмоса. Океанавты, очевидно, смогут использовать кислород, вырабатываемый хлореллой, не только в помещении, но, быть может, и заряжать им свои акваланги. Быть может, в самом недалеком будущем чудесные водоросли избавят экипаж автономных домов под водой и от части громоздких стальных баллонов с газовой смесью и от дорогостоящей аппаратуры по очистке воздуха.


    Ваша оценка произведения:

Популярные книги за неделю