355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Большая Советская Энциклопедия » Большая Советская Энциклопедия (РЕ) » Текст книги (страница 58)
Большая Советская Энциклопедия (РЕ)
  • Текст добавлен: 26 сентября 2016, 13:49

Текст книги "Большая Советская Энциклопедия (РЕ)"


Автор книги: Большая Советская Энциклопедия


Жанр:

   

Энциклопедии


сообщить о нарушении

Текущая страница: 58 (всего у книги 75 страниц)

Реометр

Рео'метр (от греч. rhéos – течение, поток и... метр), прибор для измерения объёмного расхода газа; разновидность расходомера. Действие Р. основано на измерении перепада давления в дросселирующем (сужающем сечение потока) устройстве (диафрагме, капилляре), установленном в трубопроводе, по которому поступает газ. Перепад давления, связанный однозначной зависимостью с расходом газа, измеряется дифманометром, шкала которого градуируется, как правило, в единицах расхода газа – см3/мин, л/ч. Р. применяют для измерения небольших расходов газа (до 104 л/ч) в промышленных и лабораторных установках, например в аппаратах для хлорирования воды, в приборах для количественного анализа состава газов и т.п.

  Лит. см. при ст. Расходомер.

Реомюр Рене Антуан

Реомю'р (Réaumur) Рене Антуан (28.2.1683, Ла-Рошель, – 17.10.1757, замок Бермондьер, Мен), французский естествоиспытатель, член Парижской АН (1708). Основные труды в области физики, зоологии и др. В 1730 описал изобретённый им спиртовой термометр, шкала которого определялась точками кипения и замерзания воды и была разделена на 80 градусов (см. Реомюра шкала). В области зоологии осветил вопросы биологии общественных насекомых и тлей, отношения насекомых к растениям; уточнил функции особей пчелиной семьи.

  Соч.: Mémoires pour servir à l'histoire des insectes, v. 1—6, P., 1734—42; Règles pour construire les thermomètres, dont les degrés soient comparables, в кн.: Histoire de l'Académie royale de sciences, Année 1730. Avec les memoires de mathématique et de physique pour la même année, P., 1732.

  Лит.: Лункевич В. В., От Гераклита до Дарвина, 2 изд., т. 2, М., 1960.

Реомюра шкала

Реомю'ра шкала', практическая температурная шкала, предложенная в 1730 Р. А. Реомюром. Единица Р. ш. – градус Реомюра (°R). 1 °R равен 1/80 части температурного интервала между точками таяния льда (0 °R) и кипения воды (80 °R), т. е. 1 °R = 1,25 °С. Р. ш. вышла из употребления.

Реорганизация

Реорганиза'ция (от ре... и организация), преобразование, перестройка, изменение структуры и функций учреждений, организаций и др.

Реостат

Реоста'т (от греч. rhéos – течение, поток и statós – стоящий, неподвижный), электрический аппарат (устройство) для регулирования и ограничения тока или напряжения в электрической цепи, основная часть которого – проводящий элемент (ПЭ) с переменным электрическим сопротивлением. Величина сопротивления ПЭ может изменяться плавно или ступенчато. При необходимости изменения тока или напряжения в небольших пределах Р. включают в электрическую цепь последовательно (например, при ограничении пускового тока в электрических машинах). Для регулирования тока или напряжения в широком диапазоне (от нуля до максимального значения) применяется потенциометрическое включение Р., являющегося в этом случае регулируемым делителем напряжения.

  В соответствии с назначением Р. их разделяют на пусковые, пускорегулировочные, нагрузочные и Р. возбуждения. По способу теплоотвода различают Р. с воздушным, масляным и водяным охлаждением. В зависимости от материала, из которого изготовлен ПЭ, Р. делятся на металлические (наиболее распространены), жидкостные и угольные. Простейшие металлические Р. – ползунковые, у которых сопротивление изменяется перемещением контактного ползунка непосредственно по виткам проволоки из материала с высоким удельным сопротивлением (манганин, константан, нихром, фехраль, сталь), намотанной на цилиндр из электроизоляционного материала (фарфор, стеатит). Жидкостный Р. состоит из сосуда, наполненного электролитом (10—15%-ный раствор Na2CO3 или K2CO3 в воде), с опущенными в него электродами. Регулирование его сопротивления осуществляется изменением расстояния между электродами или глубины их погружения в жидкость. Угольный Р. выполняют в виде столбиков, набранных из тонких угольных шайб. Его сопротивление регулируется изменением давления, приложенного к столбикам.

  Лит.: Чунихин А. А., Электрические аппараты, М., 1975.

  Т. Н. Дильдина.

Реостатное торможение

Реоста'тное торможе'ние,торможение электрическое, при котором электродвигатель работает в генераторном режиме, отдавая энергию в пусковые либо в особые тормозные реостаты и создавая при этом тормозной момент на валу машины. Обычно Р. т. применяется для подтормаживания или полной остановки транспортного средства (или движущейся механической системы) сравнительно небольшой массы, когда количество вырабатываемой при торможении энергии невелико.

Реостатный датчик

Реоста'тный да'тчик, потенциометрический датчик, преобразователь измеряемых перемещений, геометрических размеров, углов поворота и т.п. в изменение электрического сопротивления реостата. Р. д. подразделяют на линейные и функциональные, с поступательным и вращательным перемещением движка. У Р. д. постоянного тока выходным сигналом у может служить изменение тока (реостатное включение Р. д.) либо напряжения (потенциометрическое включение). Линейные Р. д. имеют постоянное отношение приращения выходного сигнала Dy к перемещению движка Dх во всём рабочем диапазоне измерений. Зависимость у = f (x) у функциональных Р. д. задаётся априорно; точность их измерения (преобразования) зависит от однородности и диаметра провода реостата, плотности и равномерности намотки провода на каркас, отношения внутреннего сопротивления rвн Р. д. к сопротивлению нагрузки rн и других факторов. Для достижения малой погрешности преобразования необходимо, чтобы отношение – rвн/rн было минимальным. С этой целью на выходе Р. д. часто включают электронный усилитель сигналов с достаточно большим входным сопротивлением.

  Лит. см. при ст. Датчик.

  А. В. Кочеров.

Реотаксис

Реота'ксис (от греч. rhéos – течение, поток и táxis – расположение), свойство некоторых низших растений (плазмодиев миксомицетов, или слизевиков), одноклеточных животных (жгутиковых, инфузорий) и клеток (сперматозоидов) двигаться в направлении, противоположном току жидкости.

Реотропизм

Реотропи'зм (от греч. rhéos – течение, поток и trópos – поворот, направление), свойство корней многих растений при росте их в токе воды изгибаться или навстречу току (положительный Р.), или по направлению тока (отрицательный Р.). Характер реотропической реакции корней зависит от состава питательного раствора, поэтому иногда считают, что Р. – частный случай хемотропизма. В то же время, учитывая высокую чувствительность растений к всевозможным механическим воздействиям (см. Тропизмы), Р. можно считать и одним из специфических проявлений травмотропизма в его слабой форме.

Реофильные животные

Реофи'льныеживо'тные, реофилы (от греч. rhéos – течение, поток и philéo – люблю), животные, приспособившиеся к обитанию в текучих водах (реках, ручьях и на морских мелководьях, омываемых приливно-отливными или постоянными течениями). Одни Р. ж. проводят в текучих водах всю жизнь, другие – связаны с ними лишь в определённые периоды (например, личинки ручейников, подёнок и других насекомых, проходные рыбы). Р. ж. – кислородолюбивы и нуждаются в постоянном притоке свежей воды. Некоторые Р. ж. хорошие пловцы, способные преодолевать сильное течение (например, многие лососёвые рыбы). Многие Р. ж. – сидячие или малоподвижные формы: противостоят сносу течением, прирастая к субстрату (губки, мшанки и др.), прикрепляясь к нему с помощью выростов тела (например, бесстебельчатые морские лилии) или присасываясь (например, моллюск Ancylus), прячась в норках или среди камней и т.п. Для ряда Р. ж. характерны приспособления для фильтрации воды и улавливания приносимых течением пищевых частиц.

Реоэнцефалография

Реоэнцефалогра'фия (от греч. rhéos – течение, поток, enképhalos – головной мозг и... графия), клинический метод исследования кровоснабжения головного мозга человека. Для Р. применяют электронный прибор – реограф (см. Реография), электроды которого фиксируют на коже в определённых точках головы, и он непрерывно измеряет электропроводность тканей структур, расположенных между электродами. Показания прибора записывают на движущейся бумаге в виде реоэнцефалограммы, точно отражающей все колебания кровотока в сосудах мозга, так как кровь и ликвор головного мозга имеют в 3—4 раза большую электропроводность, чем остальные его ткани. Патологические и функциональные изменения кровоснабжения мозга выявляют при анализе скорости нарастания пульсовых волн и их амплитуды, а также при сравнении реоэнцефалограмм, зарегистрированных одновременно от симметричных отделов головы. Р. не нарушает деятельности мозга и безвредна для исследуемого, поэтому её широко применяют для диагностики заболеваний сосудистой системы мозга.

  Лит.: Дженкнер Ф. Л., Реоэнцефалография, пер. с англ., М., 1966.

  Н. К. Сараджев.

Репа

Ре'па (Brassica rapa), двулетнее овощное растение рода капуста семейства крестоцветных. В первый год образуется розетка рассеченных листьев и мясистый корнеплод; во второй – цветоносные побеги, которые дают семена. Соцветие – щитковидное. Лепестки золотисто-жёлтые у жёлто-мясых сортов и лимонно-жёлтые – у беломясых. Плод – вскрывающийся длинный стручок. Семена мелкие круглые, от светло– до темно-бурого цвета. Р. – холодостойкое (выдерживает заморозки до 5 °С), влаголюбивое, довольно жаростойкое растение. Оптимальная температура для роста и развития 12—20 °С. Вегетационный период короткий (60—85 сут), урожайность от 150 до 350 ц/га. Корнеплоды содержат: сухие вещества от 8,5 до 16,9% (половина из них сахара), витамины С (22—73 мг%), B1, B2, каротин, горчичное масло, наличие которого обусловливает специфический запах Р. и привкус. Р. используют в пищу в свежем, варёном, жареном виде. Большое пищевое значение Р. имеет в северных и высокогорных районах земного шара, где другие овощные культуры плохо растут или совсем не удаются из-за недостатка тепла. Лучшие сорта, районированные в СССР: Петровская 1, с плоским корнеплодом и жёлтой мякотью; Майская жёлтая зеленоголовая 172, с плоским корнеплодом и светло-жёлтой мякотью; Миланская белая красноголовая, с плоским корнеплодом и белой мякотью и др. Наиболее пригодные почвы для выращивания Р. – супесчаные и суглинистые с нейтральной и слабокислой реакцией; удовлетворительно переносит повышенную кислотность почвы. В севообороте размещают после культур, под которые вносили органические удобрения. Семена высевают весной, а для использования корнеплодов в зимнее время – летом. Уход за посевами заключается в подкормке фосфорными и калийными удобрениями по 10—15 кг действующего вещества на 1 га, рыхлении почвы, прореживании на 6—8 см, полке сорняков, борьбе с вредителями и болезнями, поливе. Урожай убирают до наступления заморозков.

  Лит. см. при ст. Редька.

  В. А. Ершова.

Сорта репы: 1 – Петровская 1; 2 – Миланская белая красноголовая; 3 – Майская жёлтая зеленоголовая 172.

Репарации

Репара'ции (от лат. reparatio – восстановление), в международном праве возмещение государством в силу мирного договора или иных международных актов ущерба, причинённого им государствам, подвергшимся нападению. Объём и характер Р. должны определяться в соответствии с нанесённым материальным ущербом (принцип соразмерности). Впервые право на получение Р. обосновано в Версальском мирном договоре 1919 и др. договорах Версальской системы, где зафиксирована ответственность Германии и её союзников за убытки, понесённые гражданским населением стран Антанты вследствие войны. В действительности Р. в указанных договорах носили форму замаскированной контрибуции.

  Формы Р. с фашистской Германии и её союзников в возмещение ущерба, нанесённого ими в ходе 2-й мировой войны 1939—45, были определены на Крымской конференции 1945. На Потсдамской конференции 1945 было достигнуто следующее соглашение: репарационные претензии СССР будут удовлетворены путём изъятия из восточной зоны Германии и за счёт германских активов, находящихся в Болгарии, Финляндии, Венгрии, Румынии и Восточной Австрии; репарационные претензии Польши СССР удовлетворит из своей доли; претензии США, Великобритании и других стран, имеющих право на Р., будут удовлетворены из западных зон; некоторую долю репарационных платежей СССР дополнительно должен был получить из западных зон Германии. Взимание Р. с ГДР было прекращено по совместному соглашению СССР и ПНР с 1 января 1954. Решения Крымской и Потсдамской конференций о Р. СССР из западных зон Германии западными державами не были выполнены.

  Р. с государств, воевавших на стороне Германии в Европе, были предусмотрены в мирных договорах 1947 на следующих принципах: ответственность за агрессивную войну (с учётом, однако, того, что эти страны вышли из войны, порвали с Германией, а некоторые из них объявили ей войну), частичное возмещение ущерба, причинённого войной, с тем, чтобы выплата Р. не подрывала экономику страны, выплата Р. натурой, в частности за счёт демонтажа оборудования военной промышленности, а также текущей промышленной продукции.

  Р. могут иметь место и в форме реституции.

Репарация

Репара'ция в генетике, особая функция клеток, заключающаяся в способности исправлять химические повреждения и разрывы в молекулах дезоксирибонуклеиновой кислоты (ДНК), возникающие вследствие воздействия различных физических и химических агентов, а также при нормальном биосинтезе ДНК в процессе жизнедеятельности клеток. Начало изучению Р. было положено работами А. Келнера (США), который в 1948 обнаружил явление фотореактивации (ФР) – уменьшение повреждения биологических объектов, вызываемого ультрафиолетовыми (УФ) лучами, при последующем воздействии ярким видимым светом (световая Р.). Р. Сетлоу, К. Руперт (США) и др. вскоре установили, что ФР – фотохимический процесс, протекающий с участием специального фермента и приводящий к расщеплению димеров тимина, образовавшихся в ДНК при поглощении УФ-кванта. Позднее при изучении генетического контроля чувствительности бактерий к УФ-свету и ионизирующим излучениям была обнаружена темновая Р. – свойство клеток ликвидировать повреждения в ДНК без участия видимого света. Механизм темновой Р. облученных УФ-светом бактериальных клеток был предсказан А. П. Говард-Фландерсом и экспериментально подтвержден в 1964 Ф. Ханавальтом и Д. Петиджоном (США). Было показано, что у бактерий после облучения происходит вырезание поврежденных участков ДНК с измененными нуклеотидами и ресинтез ДНК в образовавшихся пробелах. Различают предрепликативную Р., которая завершается до начала репликациихромосомы в поврежденной клетке, и пострепликативную Р., протекающую после завершения удвоения хромосомы и направленную на ликвидацию повреждений как в старых, так и в новых, дочерних молекулах ДНК. Считается, что у бактерий в пострепликативной Р. важная роль принадлежит процессу генетической рекомбинации.

  Системы Р. существуют не только у микроорганизмов, но также в клетках животных и человека, у которых они изучаются на культурах тканей. Известен наследственный недуг человека – пигментная ксеродерма, при котором нарушена Р. Каждая из систем Р. включает следующие компоненты: фермент, «узнающий» химически измененные участки в цепи ДНК и осуществляющий разрыв цепи вблизи от повреждения; фермент, удаляющий поврежденный участок; фермент (ДНК-полимераза), синтезирующий соответствующий участок цепи ДНК взамен удалённого; фермент (лигаза), замыкающий последнюю связь в полимерной цепи и тем самым восстанавливающий её непрерывность.

  У бактерий имеются по крайней мере 2 ферментные системы, ведущие Р. Первая осуществляет вырезание и ресинтез на небольшом участке в 5—7 нуклеотидов, вторая – на участке в тысячу нуклеотидов и более. Ферменты второй системы Р. участвуют также в процессах генетической рекомбинации. В случае повреждений, вызванных, например, УФ-светом, нормальная клетка кишечной палочки способна репарировать до 2000 повреждений; клетка с выведенной из строя первой системой Р. – около 100 повреждений; клетка с выведенными из строя обеими системами Р. погибает от одного повреждения. Существуют бактерии с исключительно активными ферментами Р. (например, Micrococcus radiodurans), которые благодаря этому способны выживать в воде, охлаждающей ядерные реакторы.

  Ферментные системы Р., как полагают, принимают участие и в нормальной репликации ДНК, т. е. её удвоении. При репликации материнская ДНК деспирализуется (раскручивается), что может сопровождаться разрывами её нитей. Кроме того, дочерние цепи ДНК синтезируются в виде небольших фрагментов. Поэтому заключительная фаза репликации – Р. всех дефектов, возникших при синтезе ДНК. Важная функция второй системы Р. – её участие в образовании мутаций. Под действием различных мутагенов в ДНК образуются производные нуклеотидов, чуждые клетке. Они устраняются системой Р., которая заменяет их на нуклеотиды, естественные для ДНК, но иногда измененные по сравнению с первоначальными. Открытие Р. ДНК привело к коренным изменениям представлений о молекулярных механизмах, обеспечивающих стабильность генетического аппарата клеток и контролирующих темп мутационного процесса.

  С. Е. Бреслер.

  Репарация в радиобиологии, восстановление биологических объектов от повреждений, вызываемых ионизирующими излучениями. Р. осуществляется специальными ферментами и зависит от генетических особенностей и физиологического состояния облученных клеток и организмов. Изучение генетического контроля и молекулярных механизмов Р. клеток, поврежденных ультрафиолетовыми лучами и ионизирующими излучениями, привело к открытию Р. генетической (см. выше).

  У одноклеточных организмов и клеток растений и животных Р. приводит к повышению выживаемости, уменьшению количества хромосомных перестроек (аберраций) и генных мутаций. Р. способствуют: временная задержка первого после облучения деления клеток, некоторые условия их культивирования и фракционирование облучения. Так, при выдерживании дрожжевых клеток, облученных g-лучами, a-частицами или нейтронами в лишённой питательных веществ среде, их жизнеспособность благодаря Р. возрастает в десятки и сотни раз, что соответствует уменьшению относительной биологической эффективности (ОБЭ) дозы в 4—5 раз (рис. 1). Количество поврежденных хромосом у клеток облученных растений благодаря Р. может уменьшаться в 5—10 раз (рис. 2).

  У многоклеточных организмов Р. проявляется в форме регенерации поврежденных облучением органов и тканей за счет размножения клеток, сохранивших способность к делению. У млекопитающих и человека ведущая роль в Р. принадлежит стволовым клеткам костного мозга, лимфоидных органов и слизистой оболочки тонкого кишечника. При изучении Р. у млекопитающих обычно используют фракционированное облучение: благодаря Р. суммарный эффект двух доз тем меньше, чем больше интервал между ними. Р. можно стимулировать введением в организм после облучения небольшого количества необлучённых клеток костного мозга (подобный приём эффективен при лечении лучевой болезни). Клетки и организмы с нарушенной Р. отличаются повышенной радиочувствительностью.

  Лит.: Восстановление клеток от повреждений, пер. с англ., М., 1963; Корогодин В. И., Проблемы пострадиационного восстановления, М., 1966; Жестяников В. Д., Восстановление и радиорезистентность клетки, Л., 1968; Лучник Н. В., Биофизика цитогенетических поражений и генетический код, Л., 1968: Акоев И. Г., Проблемы постлучевого восстановления, М., 1970; Современные проблемы радиобиологии, т. 1 – Пострадиационная репарация, М., 1970; Восстановление и репаративные механизмы в радиобиологии, пер. с англ., М., 1972.

  В. И. Корогодин.

Рис. 2. Восстановление клеток растений от лучевых повреждений, вызывающих хромосомные перестройки. Кривые описывают зависимость количества поврежденных хромосом (ось ординат – %) в клетках облученных проростков бобов (1), гороха (2) и микроспорах традесканции (3) от времени (ось абсцисс – часы) между облучением и делением.

Рис. 1. Восстановление дрожжевых клеток от летальных повреждений, наблюдающееся при их выдерживании в среде, лишённой питательных веществ: 1 – зависимость выживаемости от дозы при высеве клеток на питательную среду сразу после облучения; 2 – то же при высеве через 48 ч, в течение которых клетки находились в среде, лишённой питательных веществ; 3 – зависимость выживаемости клеток, облученных в дозе 70 крад, от продолжительности выдерживания в среде, лишённой веществ. Стрелками показан способ расчёта питательных эффективной дозы. Ось абсцисс: вверху – доза g-лучей (крад), внизу – время восстановления (сутки): ось ординат – выживаемость (%).


    Ваша оценка произведения:

Популярные книги за неделю