Текст книги "Большая Советская Энциклопедия (ФО)"
Автор книги: Большая Советская Энциклопедия
Жанр:
Энциклопедии
сообщить о нарушении
Текущая страница: 33 (всего у книги 39 страниц)
Фоторождение частиц
Фоторожде'ние части'ц, процесс образования мезонов и других частиц на ядрах и нуклонах (протонах и нейтронах) под действием фотонов высокой энергии.
Фоторужьё
Фоторужьё,фотографический аппарат , оснащенный длиннофокусным объективом (телеобъективом) и укрепленный вместе с ним на держателе, который выполнен в виде ружейной ложи (рис. ). Держатель позволяет жестко фиксировать положение фотоаппарата во время съёмки; на нём также имеются устройства для спуска фотозатвора (курок) и фокусировки объектива. Ф. предназначено для съёмки удалённых объектов и объектов, к которым нельзя подойти на близкое расстояние (например, для съёмки диких животных и птиц при фотоохоте).
Илл. к ст. Фоторужьё.
Фотосинтез
Фотоси'нтез (от фото... и синтез ), образование высшими растениями, водорослями, фотосинтезирующими бактериями сложных органических веществ, необходимых для жизнедеятельности как самих растений, так и всех др. организмов, из простых соединений (например, углекислого газа и воды) за счёт энергии света, поглощаемой хлорофиллом и др. фотосинтетическими пигментами. Один из важнейших биологических процессов, постоянно и в огромных масштабах совершающийся на нашей планете. В результате Ф. растительность земного шара ежегодно образует более 100 млрд. т органического веществ (около половины этого количества приходится на долю Ф. растений морей и океанов), усваивая при этом около 200 млрд. т CO2 и выделяя во внешнюю среду около 145 млрд. т свободного кислорода. Полагают, что благодаря Ф. образуется весь кислород атмосферы. Ф. – единственный биологический процесс, который идёт с увеличением свободной энергии системы; все остальные (за исключением хемосинтеза ) осуществляются за счёт потенциальной энергии, запасаемой в продуктах Ф. Количество энергии, ежегодно связываемой фотосинтезирующими организмами океана и суши (около 3×1021дж ), во много раз больше той энергии, которая используется человечеством (около 3×1020дж ).
Историческая справка. Начало исследованию Ф. положено работами Дж. Пристли , Ж. Сенебье , Н. Соссюра , Я. Ингенхауза, Ю. Майера , в которых постепенно выяснилось, что растения на свету усваивают из воздуха углекислый газ, выделяют кислород, образуют в результате этого органические вещества, запасая в них энергию солнечного света. Во 2-й половине 19 в. К. А. Тимирязев показал, что энергия солнечного света вводится в цепь фотосинтетических превращений через зелёный пигмент растений – хлорофилл : спектр действия Ф. соответствует спектру поглощения света хлорофиллом, и интенсивность Ф. увеличивается с увеличением интенсивности света. В 1905 английским учёный Ф. Блекман обнаружил, что Ф. состоит из быстрой световой реакции и более медленной – темновой. Биохимическое доказательство существования световой и темновой фаз были получены лишь в 1937 английским исследователем Р. Хиллом. Крупный вклад в изучение темновой и световой стадий Ф. внесли также нем. биохимик и физиолог О. Варбург , амер. биохимик Х. Гафрон . В 1931 амер. микробиолог К. Нил показал, что фототрофные бактерии осуществляют Ф. без выделения О2 , т.к. при ассимиляции СО2 окисляют сероводород, тиосульфат и др. субстраты. Так было положено начало представлению о Ф. как окислительно-восстановительном процессе, где восстановление CO2 осуществляется при одновременном окислении донора водорода. В 1941 сов. учёными А. П. Виноградовым и М. В. Тейц, а также американскими исследователями Э. Рубеном и др. установлено, что источником кислорода, выделяющегося в процессе Ф. высших растений и водорослей, является вода, а не CO2 , как считали ранее.
Начиная с 1-й четверти 20 в. важные работы выполнены по изучению физиологии и экологии Ф. (В. В. Сапожников, С. П. Костычев , В. Н. Любименко , А. А. Ничипорович , О. В. Заленский и многие др.). С середины 20 в. изучению Ф. способствовало создание новых методов исследования (газовый анализ, изотопные методы, спектроскопия, электронная микроскопия и др.). Эти методы позволили разработать представления о тонких механизмах участия хлорофилла в Ф. (А. Н. Теренин , А. А. Красновский , американские учёные Е. Рабинович, В. Кок, У. Арнолд, Р. Клейтон, Дж. Франк, франц. исследователь Дж. Лаворель); об окислительно-восстановительных реакциях Ф. и о существовании двух фотохимических реакций Ф. (английский фитофизиолог Р. Хилл, С. Очоа , амер. исследователи В. Вишняк, Р. Эмерсон, Френч, голландский учёный Л. Дёйсенс); о фотосинтетическом фосфорилировании (Д. Арнон ); о путях превращения углерода (М. Калвин , амер. учёные Дж. Бассам, Э. Бенсон, австралийские исследователи М. Хетч и К. Слэк); о механизме разложения воды (В. Кок, французские учёные А. и П. Жолио, советский учёный В. М. Кутюрин и др.).
Характерные черты фотосинтеза высших зелёных растений, водорослей и фотосинтезирующих бактерий. В реакциях Ф. у высших зелёных растений, водорослей (многоклеточных – зелёных, бурых, красных, а также одноклеточных – эвгленовых, динофлагеллят, диатомовых) донором водорода и источником выделяемого кислорода служит вода, а основным акцептором атомов водорода и источником углерода – углекислый газ. При использовании в Ф. только CO2 и H2 O образуются углеводы. Но в процессе Ф. растения образуют не только углеводы, но и содержащие азот и серу аминокислоты, белки, а также пигменты и др. соединения. Акцепторами атомов водорода (наряду с CO2 ) и источниками азота и серы в этом случае служат нитраты () и сульфаты (). Фотосинтезирующие бактерии не выделяют и не используют молекулярный кислород (большинство из них облигатные, т. е. обязательные анаэробы ). Вместо воды в качестве доноров электронов эти бактерии используют либо неорганические соединения (сероводород, тиосульфат, газообразный водород), либо органические вещества (молочную кислоту, изопропиловый спирт). Источником углерода в большинстве случаев является также CO2 , но наряду с этим и некоторые органические соединения (например, ацетат). Т. о., Ф. у разных организмов может протекать с использованием различных доноров (ДН2 ), акцепторов (А) электронов и водорода и может быть представлен схематически обобщённым уравнением:
Д×Н2 + А AH2 + Д,
где AH2 – продукты Ф.
Структурные особенности фотосинтетического аппарата. Высокая эффективность Ф. высших зелёных растений обеспечивается совершенным фотосинтетическим аппаратом, основа которого – внутриклеточные органеллы – хлоропласты (в клетке зелёного листа их 20–100). Они окружены двуслойной мембраной. Внутренний слой её построен из уплощённых мешочков или пузырьков, называемых тилакоидами, которые часто упакованы в стопки, составляют граны, соединённые между собой одиночными межгранными тилакоидами. Тилакоиды состоят из собственно фотосинтетических мембран, представляющих собой биомолекулярные липидные слои и мозаично вкрапленные в них липопротеидопигментные комплексы, образующие фотохимически активные центры, и содержат также специальные компоненты, участвующие в транспорте электронов и образовании аденозинтрифосфата (АТФ). Часть хлоропласта, находящаяся между тилакоидами строма, содержит ферменты, катализирующие темновые реакции Ф. (например, превращение углерода, азота, серы, биосинтез углеводов и белков). В строме откладывается образуемый при Ф. крахмал. Хлоропласты имеют собственные ДНК, РНК, рибосомы , синтезирующие белки, и обладают некоторой генетической автономностью, но находятся под общим контролем ядра. фотосинтезирующие бактерии и большинство водорослей не имеют хлоропластов. Фотосинтетический аппарат большинства водорослей представлен специализированными внутриклеточными органеллами – хроматофорами , а фотосинтезирующих бактерий и сине-зелёных водорослей – тилакоидами (мембраны их содержат пигмент бактерио-хлорофилл или бактериовиридин, а также др. компоненты реакций Ф.), погруженными в периферические слои цитоплазмы.
Фаза первичных превращений и запасания энергии в процессе Ф. В основе Ф. растений лежит окислительно-восстановительный процесс, в котором 4 электрона (и протона) поднимаются от уровня окислительно-восстановительного потенциала, соответствующего окислению воды (+ 0,8 в ) до уровня, соответствующего восстановлению CO2 с образованием углеводов (– 0,4 в ). При этом увеличение свободной энергии реакции восстановления CO2 до уровня углеводов составляет 120 ккал/моль, а суммарное уравнение Ф. выражается как:
CO2 + H2 O C (H2 O) + O2 + 120 ккал/моль.
Энергия моля квантов (Эйнштейна) красной части спектра составляет около 40 ккал/моль. Т. о., для Ф., идущего в соответствии с приведённым уравнением, было бы достаточно поглощения энергии 3 квантов на молекулу CO2 (или на выделение молекулы O2 ). Однако в окислительно-восстановительной реакции от воды к CO2 должны быть перенесены 4 электрона, причём перенос каждого из них осуществляется в ходе двух последовательных фотохимических реакций. Поэтому квантовый расход при оптимальных условиях составляет 8–12 квантов на молекулу O2 , а максимальная эффективность преобразования энергии красного света – около 30° %. В полевых условиях вследствие неполного поглощения света, энергетических затрат на дыхание и др. потерь, а также ограниченности вегетационного периода эффективность усвоения солнечной энергии с.-х. растениями в умеренных широтах обычно не выше 0,5–1,3%. Сопоставление этих цифр c теоретическим максимальным значением указывает на существование значительных резервов, которые могут быть использованы в будущем. Для некоторых культур с.-х. растений удаётся в специальных условиях повысить энергетическую эффективность до 5–6% и даже выше (при культивировании водорослей до 7–10%).
Ни CO2 , ни вода непосредственно не поглощают свет, посредником во взаимодействии этих соединений с квантами служит хлорофилл а, включенный в структуру хлоропласта или хроматофора и образующий функциональные фотосинтетические единицы, состоящие из нескольких сотен молекул пигмента и реакционных центров. Основная часть сопровождающих пигментов (хлорофилл b, каротиноиды, фикобилины и др. и коротковолновые формы хлорофилла а ) выполняет функцию светособирающей антенны. При поглощении квантов их молекулы переходят в возбуждённое состояние, которое путём миграции энергии передаётся на молекулу хлорофилла а, находящуюся в реакционном центре. Эффективность передачи энергии обусловлена близким расположением молекул, а также наличием нескольких агрегированных форм хлорофилла а, участвующих в формировании реакционных центров и образующих нисходящую лестницу энергетических уровней. Возможен полупроводниковый перенос электрона по агрегированному пигменту. В реакционном центре происходит основной акт Ф. – разделение зарядов с последующим образованием первичного окислителя и первичного восстановителя. Существуют два типа центров (рис. 1 ), один из которых включен в пигментную фотосистему I (ФС I), а др. – в фотосистему II (ФС II). В фотореакции, связанной с разложением воды, участвует ФС II: пигментом её центра служит хлорофилл а с максимумом поглощения 680 нм, гипотетическим первичным восстановителем – Q (вероятно, цитохром ), а первичным окислителем – сложный комплекс Z. Возбуждение пигментной молекулы центра P680 сопровождается разделением зарядов и образованием окисленного Z+ , который участвует в окислении воды и выделении O2 . Полагают, что в систему разложения воды, пока мало изученную, входят неизвестные ферменты, ионы марганца и бикарбонат. Первичный восстановитель Q (проявляется по индукции флуоресценции) ФС II передаёт электрон переносчикам (цитохромы b, f, пластохинон, пластоцианин) фотосинтетической электронной транспортной цепи к реакционному центру ФС I. Пигментом этого центра служит хлорофилл а с максимумом поглощения 700 нм, первичным восстановителем – неидентифицированное вещество Х. Восстановленный Х передаёт электрон ферредоксину – железосодержащему белку, который восстанавливает никотинамидадениндинуклеотидфосфат (НАДФ). Его восстановленная форма – НАДФ-Н запасает основную часть энергии света. Др. часть энергии электронного потока запасается в виде АТФ (фотосинтетическое фосфорилирование), который образуется на нисходящем участке переноса электронов между ФС II и ФС I (нециклическое фотофосфорилирование) или при круговом замыкании потока в ФС I (циклическое фотофосфорилирование). Фосфорилирование, возможно, происходит по хемиосмотическому механизму за счет электрического потенциала и градиента концентрации Н+ , возникающих при индуцировании светом электронного потока в мембранных структурах тилакоидов. Экспериментально обнаружено, что освещение индуцирует электрический потенциал на мембране хлоропласта. Описанное последовательное соединение двух фотореакций I и II наиболее вероятно, хотя обсуждается возможность параллельного соединения реакций. Предполагают, что фотосинтезирующие бактерии осуществляют Ф. с участием лишь одной пигментной фотосистемы, однако этот вопрос нельзя считать решенным. Фотофизические и фотохимические стадии заканчиваются за 10-12 –10-8сек разделением зарядов и последующим образованием первичного окислителя и восстановителя. Границей первичных биофизических и биохимических процессов обычно считают появление первых химически стабильных продуктов – НАДФ-Н и АТФ. Эти вещества («восстановительная сила») используются затем в темповых процессах восстановления CO2 .
Ассимиляция углекислоты . Ассимиляция CO2 происходит в процессе темновых реакций. Восстановлению при Ф. подвергается не свободная молекула CO2 , а предварительно включенная в состав определённого органического соединения. В большинстве случаев акцептором CO2 служит двукратно фосфорилированный пятиуглеродный сахар рибулозодифосфат (РДФ). Присоединяя CO2 , РДФ распадается на 2 молекулы фосфоглицериновой кислоты (ФГК). Углерод CO2 , включенный в молекулу ФГК, и является конечным звеном цепи, к которому направляются электроны, мобилизуемые хлорофиллом. Присоединив электрон, ФГК превращается в восстановленное соединение – фосфоглицериновый альдегид (в этом процессе участвуют АТФ и НАДФ-Н), который может рассматриваться как первый стабильный углеводный продукт Ф., содержащий углерод уже в восстановленной (органической) форме. Дальнейшие превращения происходят в пентозофосфатном цикле и завершаются, с одной стороны, образованием РДФ, т. е. происходит регенерация первичного акцептора CO2 (что делает цикл при наличии света и CO2 непрерывно действующим), а с др. стороны – образованием продуктов Ф. – углеводов.
Всё, что было сказано выше, относится к т. н. С3 -растениям, которые усваивают углерод в Ф. через цикл Калвина (рис. 2 ), акцептируют CO2 на РДФ при помощи РДФ-карбоксилазы, образуя первые трёхуглеродные продукты Ф. – фосфоглицериновую кислоту и фосфоглицериновый альдегид. Некоторые травянистые, главным образом тропического происхождения, растения (например, сахарный тростник, кукуруза, сорго) образуют в качестве первых продуктов Ф. не трёх-, а четырёхуглеродные соединения – щавелевоуксусную, яблочную и аспарагиновую кислоты. Путь автотрофной ассимиляции CO2 через фосфоенолпировиноградную кислоту, или фосфоенолпируват (ФЕП), с образованием С4 -дикарбоновых кислот получил название С4 -пути усвоения углерода, а организмы – С4 -растений. В листьях таких растений имеется два типа фотосинтезирующих клеток и Ф. идёт в две стадии. В клетках мезофилла листа происходит первичное акцептирование CO2 на ФЕП с участием ФЕП-карбоксилазы, которая вовлекает CO2 в реакции карбоксилирования даже при очень низких концентрациях CO2 в окружающем воздухе. В результате карбоксилирования образуются щавелевоуксусная, яблочная и аспарагиновая кислоты. Из них две последние переходят в обкладочные клетки проводящих пучков листа, подвергаются там декарбоксилированию и создают внутри клеток высокую концентрацию CO2 , усваиваемую уже через РДФ-карбоксилазу в цикле Калвина. Это выгодно, во-первых, потому, что облегчает введение CO2 в цикл Калвина через карбоксилирование РДФ при помощи РДФ-карбоксилазы, которая менее активна и требует для оптимальной работы более высоких концентраций CO2 , чем ФЕП-карбоксилаза. Кроме того, высокая концентрация CO2 в обкладочных клетках уменьшает световое дыхание (фотодыхание ) и связанные с ним потери энергии. Т. о. происходит высокоинтенсивный «кооперативный» Ф., свободный от излишних потерь в световом дыхании, от кислородного ингибирования и хорошо приспособленный к осуществлению Ф. в атмосфере, бедной CO2 и богатой O2 .
Существуют и др. пути превращения CO2 при Ф., в результате которых в клетке в разных соотношениях образуются различные органические кислоты, белки и т.п. Соотношения между этими группами соединений в растении зависят от интенсивности и качества света, вида растения и условий его развития (корневого питания, условий освещения и др.). Регулируя условия развития растений, можно управлять составом продуктов Ф. и тем самым – химизмом растения в целом.
Роль фотосинтеза в биосфере. Наряду с Ф. на Земле совершаются примерно равноценные по масштабам, но противоположные по направлению процессы окисления органических веществ и восстановленного углерода при горении топливных материалов (каменный уголь, нефть, газ, торф, дрова и т.п.), при расходовании органических веществ живыми организмами в процессе их жизнедеятельности (дыхание, брожение), в результате которых образуются полностью окисленные соединения – углекислый газ и вода, и освобождается энергия. Затем с помощью энергии солнечной радиации углекислый газ, вода снова вовлекаются в процессы Ф. Т. о., энергия солнечного света, используемая при Ф., служит движущей силой колоссального по размерам круговорота на Земле таких элементов, как углерод, водород, кислород. В этот круговорот включаются и многие др. элементы: N, S, Р, Mg, Ca и др. За время существования Земли благодаря Ф. важнейшие элементы и вещества прошли уже много тысяч циклов полного круговорота.
В предшествующие эпохи условия для Ф. на Земле были более благоприятны в связи с сильным перевесом восстановительных процессов над окислительными. Постепенно огромные количества восстановленного углерода в органических остатках оказались захороненными в недрах Земли, образовав громадные залежи горючих ископаемых. В результате этого в атмосфере сильно снизилось относительное содержание углекислого газа (до 0,03 объёмных %) и повысилось содержание кислорода, что существенно ухудшило условия для Ф.
Следствием появления на Земле мира фотосинтезирующих растений и непрерывного новообразования ими больших количеств богатых энергией органических веществ явилось развитие мира гетеротрофных организмов (бактерий, грибов, животных, человека) – потребителей этих веществ и энергии. В результате (в процессе дыхания, брожения, гниения, сжигания) органические соединения стали окисляться и подвергаться разложению в таких же количествах, в каких образуют их высшие растения, водоросли, бактерии. На Земле установился круговорот веществ, в котором сумма жизни на нашей планете определяется масштабами Ф. В текущем геологическом периоде (антропогеновом) размеры фотосинтетической продуктивности на Земле, вероятно, стабилизировались. Однако в связи с бурно возрастающим использованием продуктов Ф. основным её потребителем – человеком – приходится думать о предстоящем истощении горючих ископаемых, пищевых, лесных ресурсов и т.п. Недостаточна фотосинтетическая мощность современной растительности для регенерации атмосферы: растительность Земли не способна полностью усваивать весь углекислый газ (относительное содержание его в атмосфере за последние 100 лет медленно, но неуклонно возрастает), дополнительно поступающий в окружающую среду в результате бурно возрастающих масштабов добычи и сжигания горючих ископаемых.
При этом потенциальная фотосинтетическая активность растений используется далеко не полно. Проблема сохранения, умножения и наилучшего использования фотосинтетической продуктивности растений – одна из важнейших в современном естествознании и практической деятельности человека.
Фотосинтез и урожай. Один из путей повышения общей продуктивности растений – усиление их фотосинтетической деятельности. Например, чтобы сформировать урожай пшеницы в 40 ц/га, что составляет 100 т общей сухой биомассы, растения должны усвоить около 20 т CO2 , фотохимически разложить около 7,3 т H2 O, выделить во внешнюю среду около 13 т O2 . Обычно за время вегетации растений в средних широтах (около 3–4 мес ) на поверхность Земли приходит около 2×109ккал фотосинтетически активной радиации (ФАР; в области спектра от 380 до 720 нм ). Из них в урожае биомассы в 10 т запасается около 40×106ккал, т. е. 2% ФАР. Остальная энергия частично отражается, но в большей части превращается в тепло и вызывает испарение громадных количеств H2 O. Т. о., для усиления фотосинтетической деятельности растений необходимо повысить коэффициент использования растениями солнечной радиации. Это достигается увеличением в посевах размеров листовой поверхности, удлинением сроков активной деятельности листьев, регулированием густоты стояния растений. Важное значение имеет способ размещения растений на площади (правильные нормы высева семян), обеспечение их достаточным количеством CO2 в воздухе, воды, элементов почвенного питания и т.д. Функциональная активность фотосинтетического аппарата, помимо внешних условий, определяется также анатомическим строением листа, активностью ферментных систем и типом метаболизма углерода. Большая роль принадлежит селекции растений – созданию сортов, обладающих высокой интенсивностью ассимиляции CO2 , и управлению процессами, связанными с эффективным использованием создаваемых при Ф. органических веществ. Важное свойство высокопродуктивных сортов – способность использовать большую часть ассимилятов на формирование ценных в хозяйственном отношении органов (зерна у злаков, клубней у картофеля, корней у корнеплодов и т.д.). Выяснение законов и основ фотосинтетической продуктивности растений, разработка принципов её оптимизации и повышения – важная задача современности.
Лит.: Любименко В. Н,, Фотосинтез и хемосинтез в растительном мире, М. – Л., 1935; Тимирязев К. А., Солнце, жизнь и хлорофилл, М., 1937 (Соч., т. 1–2); Годнев Т. Н., Строение хлорофилла и возможные пути его образования в растении, М. – Л., 1947 (Тимирязевское чтение. 7); Теренин А. Н., Фотохимия хлорофилла и фотосинтез, М., 1951 (Баховское чтение. 6); Рабинович Е., Фотосинтез, пер. с англ., т. 1–3, М., 1951–59; Ничипорович А. А., Фотосинтез и теория получения высоких урожаев, М., 1956 (Тимирязевское чтение, 15); Воскресенская Н. П., Фотосинтез и спектральный состав света, М., 1965; Андреева Т. Ф., Фотосинтез и азотный обмен листьев, М., 1969; Теоретические основы фотосинтетической продуктивности, Сб. докл. на Междунар. симпозиуме, М., 1972; Современные проблемы фотосинтеза. К 200-летию открытия фотосинтеза, М., 1973; Красновский А. А., Преобразование энергии света при фотосинтезе. Молекулярные механизмы, М., 1974 (Баховское чтение. 29); Фотохимические системы хлоропластов, К., 1975; Bioenergetics of photosynthesis, N. Y. – L. – Los Ang., 1975.
А. А. Ничипорович.
Рис. 1. Схема фотохимических систем (ФС I и ФС II) фотосинтеза. – окислительно-восстановительный потенциал при pH 7 (в вольтах), Z – донор электронов для ФС II, P680 – энергетическая ловушка и реакционный центр ФС II (светособирающая антенна этого центра включает молекулу хлорофилла а, хлорофилла b, ксантофиллы), Q – первичный акцептор электронов в ФС II, АДФ – аденозиндифосфат, Pнеорг. – неорганический фосфат, АТФ – аденозинтрифосфат, Р700 – энергетическая ловушка и реакционный центр ФС I (светособирающая антенна этого центра включает молекулу хлорофила а, хлорофилла b, каротин), ВВФ – вещество, восстанавливающее ферредоксин.
Рис. 2. Упрощённая схема цикла Калвина – пути фиксации углерода при фотосинтезе.