Текст книги "Большая Советская Энциклопедия (ФО)"
Автор книги: Большая Советская Энциклопедия
Жанр:
Энциклопедии
сообщить о нарушении
Текущая страница: 23 (всего у книги 39 страниц)
Фосфориты
Фосфори'ты, осадочные горные породы, сложенные более чем на 50% аморфными или микрокристаллическими минералами группы апатита (или в пересчёте на P2 O5 свыше 18%). В геологоразведочной практике к Ф. часто относят также породы, содержащие от 5 до 18% P2 O5 , особенно при условии открытой добычи и лёгкой обогатимости полезного ископаемого.
По Г. И. Бушинскому (1956), среди фосфатов, слагающих Ф., различаются 5 разновидностей апатита: фторапатит, карбонатапатит, гидроксилапатит, франколит, курскит; по А. В. Казакову (1937), фосфатное вещество всех Ф. состоит из высокодисперсного фторапатита, а различия химического состава объясняются наличием минеральных примесей. В составе Ф. почти всегда присутствуют органическое вещество, карбонаты Ca, Mg и Fe, глинистые минералы, пирит, гидроокислы железа, кварц, халцедон; часто концентрируются U, лантаноиды цериевой группы, а также Y, Pb, Sr, реже – примеси V, Sc, Zr, Se, Be. По структурам различают массивные, желваковые (конкреционные), зернистые, кавернозные, шлаковидные, галечные и конгломератовые разновидности Ф.; по текстурам – слоистые и натёчные Ф. По окраске Ф. чаще чёрные, серые, редко белые, а иногда зелёные, красные и жёлтые.
По морфологическим и петрографическим признакам среди залежей Ф. выделяются пластовые (микрозернистые), зернистые, желваковые Ф., скопления фосфатных раковин и скелетов рыб и др. организмов, костяные брекчии, залежи гуано-фосфатов (образующиеся при разложении экскрементов морских птиц), фосфатизированные известняки, мергели, мел и фосфоритовые галечники.
Пластовые (геосинклинальные) Ф. представляют собой плотную однородную породу с раковистым изломом, сложенную округлыми фосфатными зёрнами и оолитами с фосфатным, карбонатным или кремнистым цементом. Характерна большая мощность продуктивных пластов (свыше 10 м ), значительная выдержанность их на площади и высокое качество Ф. (28—36% P2 O5 ).
Месторождения Ф. этого типа известны в кембрийских отложениях Каратау (СССР), Хубсугуча (МНР), Куньяна (КНР), Джорджины (Австралия), а также в пермских отложениях Скалистых гор (США).
Зернистые (платформенные) Ф. – карбонатная или терригенная осадочная горная порода с многочисленными фосфатными стяжениями и органическими остатками (фосфатизированные обломки ихтиофауны, рептилий, моллюсков и фораминифер), сцементированных карбонатным, кремнистым и глинистым материалом. Мощность продуктивных пластов до 10 м, но чаще 2—3 м, содержат 22—30% P2 O5 . Распространены в меловых и палеогеновых отложениях Европейской части СССР и Северной Африки (Алжир, Тунис, Марокко и др.), в миоценовых толщах района Сечура (Перу).
По условиям образования среди Ф. различают морские и континентальные скопления. Происхождение залежей морских Ф. спорно. Согласно представлениям одних ученых (А. В. Казаков, А. С. Соколов, А. И. Смирнов, Дж. Мансфилд, В. Мак-Келви и др.), глубинные воды океана, обогащенные растворенным фосфором за счет гибели планктона, выносились течениями на отмели, теряли углекислоту в зоне фотосинтеза и благодаря этому химическим путем осаждался P2 O5 . Отвергая возможность хемогенного образования Ф, другие исследователи (Г. И. Бушинский, В. Н. Холодов и др.) предполагают, что фосфор в определенные моменты геологической истории поступал в большом количестве с континентов, осаждался планктоном и др. организмами вблизи от берега (в устьях палеорек), а затем, вследствие диагенетического перераспределения веществ (см Диагенез ) в иле образовывал фосфоритовые залежи.
Большинство промышленных запасов фосфора в мире связано с пластовыми и зернистыми Ф., существенное значение имеют желваковые и карстовые Ф. и залежи гуано, остальные типы Ф. представляют лишь теоретический интерес.
Ф. используются главным образом (до 90%) для приготовления фосфорных удобрений (фосфоритная мука, суперфосфат, преципитат, томасшлак, аммофос и др.). Кроме того, из Ф. попутно в промышленных масштабах извлекается ряд редких элементов (см. Рассеянных элементов руды ).
Лит.: Казаков А. В., Химическая природа фосфатного вещества фосфоритов и их генезис, Л., 1937. Бушинский Г. И., Фосфаты кальция фосфоритов, в кн. Вопросы геологии агрономических руд, М., 1956, его же, Древние фосфориты Азии и их генезис, М., 1966, Гиммельфарб Б. М., Закономерности размещения месторождений фосфоритов СССР и их генетическая классификация, М., 1965 Шатский Н. С., Фосфоритоносные формации и классификация фосфоритовых залежей, в кн. Доклады Совещания по осадочным породам, в. 2, М., 1955, Холодов В. Н., О редких и радиоактивных элементах в фосфоритах, М., 1963, (Тр. института минералогии геохимии и кристаллохимии редких элементов, в. 17), Mansfield G. R., Origin of the Western phosphates of the United States, «American Journal of Science», 1918, v. 46, № 274.
В. Н. Холодов.
Фосфорноватая кислота
Фосфорнова'тая кислота', гипофосфорная, H4 P2 O6 , четырехосновная кислота средней силы. Безводная H4 P2 O6 – бесцветные кристаллы, плавятся при температуре 70 °С с разложением, кристаллогидраты H4 P2 O6 ×H2 O и H4 P2 O6 ×2H2 O с температурами плавления соответственно от 62 до 62,5 °С и от 79,5 до 81,5 °С. Константы диссоциации Ф. к. при 25 °С K1 = 6×10-3 , K2 = 1,5×10-3 , K3 = 5,4×10-8 , K4 = 9,3×10-11 . При нагревании Ф. к. превращается в фосфорную H3 PO4 и фосфористую H3 PO3 кислоты. При температуре свыше 180 °С разлагается с выделением фосфина PH3 . Ангидрид Ф. к. Неизвестен. Соли Ф. к. называются гипофосфатами.
Ф. к. образуется при медленном окислении H3 PO3 на воздухе или при окислении твердого фосфора ограниченным количеством воздуха (фосфор частично погружают в воду). Процесс идет быстрее при действии хлорной извести на красный фосфор.
Лит.: см. при статьях Фосфор и Фосфаты .
Фосфорноватистая кислота
Фосфорнова'тистая кислота', H3 PO2 , сильная одноосновная кислота. Формула, отражающая строение Ф. к., может быть записана в виде H[H2 PO2 ], показывающем, что в молекуле только 1 атом водорода может замещаться металлом. Безводная Ф. к. – бесцветные кристаллы, плотность 1,49 г/см3 , tпл 26,5 °С, константа диссоциации при 25 °С К = 8,9×10-2 . Ф. к. хорошо растворима в воде, концентрация товарной Ф. к. 30—50% При нагревании разлагается, образуя фосфин, красный фосфор, ортофосфорную кислоту и водород, нагревание водных растворов в основном приводит к образованию фосфористой и ортофосфорной кислот и водорода. Получают Ф. к. взаимодействием концентрированных растворов её солей – гипофосфитов [например Ca (H2 PO2 )2 ] с серной кислотой. В лабораторных условиях Ф. к. может быть получена окислением фосфина водной суспензией иода. Растворы чистой H3 PO2 готовят из NaH2 PO2 с помощью ионообменных смол. Гипофосфиты применяют как восстановители при нанесении тонких металлических покрытий.
Лит.: см. при ст. Фосфор .
Фосфорные кислоты
Фо'сфорные кисло'ты, кислородные кислоты фосфора, представляющие собой продукты гидратации фосфорного ангидрида (см Фосфора окислы ). Различают ортофосфорную кислоту (обычно называемую фосфорной кислотой) и конденсированные Ф. к. Наиболее изучена и важна ортофосфорная кислота H3 PO4 , образующаяся при растворении P4 O10 (или P2 O5 ) в воде.
Ортофосфорная кислота – бесцветные гидроскопические кристаллы, плотность 1,87 г/см3 ,tпл 42,35 °С, известен кристаллогидрат H3 PO4 ×1 /2 H2 O с tпл 29,32 °С. Плотность обычно широко применяемой 85%-ной H3 PO4 при 25 °С 1,685 г/см3 вязкость при 20 °С 47×10-3 мн ×сек/м2 , удельная теплоемкость в интервале температур 20—120 °С 2064,1 дж/кг ×К (0,493 кал/г °С). С водой H3 PO4 смешивается в любых отношениях Константы диссоциации при 25 °С K1 = 7×10-3 , K2 = 8×10-8 , K3 = 4×10-13 . Ортофосфорная кислота трехосновная, средней силы. Образует три ряда солей – фосфатов . При нагревании растворов кислоты происходит её дегидратация с образованием конденсированных фосфорных кислот.
В промышленности ортофосфорную кислоту получают экстракционным (сернокислотным) или термическим способами. Экстракционный способ заключается в разложении фосфатов природных серной и фосфорной кислотами:
Ca5 F (PO4 )3 + 5H2 SO4 + nH3 PO4 = (n+3) H3 PO4 + 5CaSO4 + HF
и последующим разделением на фильтрах образовавшейся кислоты и нерастворимого CaSO4 . Термический способ основан на сжигании фосфора до фосфорного ангидрида P4 + 5O2 P4 O10 и гидратации последнего P4 O10 + 6H2 O = 4H3 PO4 . Промышленная ортофосфорная кислота – важнейший полупродукт для производства фосфорных и комплексных удобрений и технических фосфатов, широко используется также для фосфатирования металлов, в качестве катализатора в органическом синтезе. Пищевая фосфорная кислота применяется для приготовления безалкогольных напитков, лекарств, зубных цементов и т.д.
Конденсированные (полимерные) Ф. к. подразделяются на полифосфорные с линейным строением фосфат-аниона общей формулы Hn+2 Pn O3n+1 , метафосфорные с циклическим строением фосфат-аниона общей формулы (HPO3 ) n и ультрафосфорные кислоты, имеющие разветвленную, сетчатую структуру. Наибольшее практическое значение имеют полифосфорные кислоты Из полифосфорных кислот наиболее полно изучена дифосфорная (пирофосфорная) кислота H4 P2 O7 , выделенная в кристаллическом виде в двух формах с температурами плавления 54,3 °С и 71,5 °С. Пирофосфорная кислота четырёхосновна, константы диссоциации при 18 °С K1 = 1,4×10-1 , K2 = 1,1×10-2 , K3 = 2,1×10-7 , K4 = 4,1×10-10 . Три– и тетраполифосфорные кислоты выделены в виде разбавленных растворов. Существование более конденсированных Ф. к., содержащих до 12 атомов в цепи, доказано методом бумажной хроматографии. Полифосфорные кислоты – полиэлектролиты. Циклические метафосфорные кислоты (например, H3 P3 O9 , H4 P4 O12 ) представляют собой сильные кислоты. Ультрафосфорные кислоты мало изучены.
Конденсированные Ф. к. получают дегидратацией ортофосфорных кислот, гидратацией фосфорного ангидрида соответствующим количеством воды, а также путем ионного обмена из соответствующих конденсированных фосфатов. Применяют в основном для производства высококонцентрированных фосфорных удобрений, в качестве катализаторов при получении нефтепродуктов и в органическом синтезе, для производства различных полифосфатов.
Лит.: Краткая химическая энциклопедия, т. 5, М., 1967, Везер Ван Дж., Фосфор и его соединения, пер. с англ., т. 1, М., 1962, Постников Н. Н., Термическая фосфорная кислота, М., 1970, Копылов Б. А., Технология экстракционной фосфорной кислоты, Л., 1972.
Л. В. Кубасова.
Фосфорные удобрения
Фо'сфорные удобре'ния, минеральные и органические вещества, содержащие фосфор и используемые для улучшения фосфорного питания растений. Являются единственным источником пополнения запасов фосфора в почве. Производятся в основном промышленным путем из горнорудного сырья – фосфоритов и апатитов . В качестве Ф. у. применяют также органические вещества, например костную муку, навоз, богатые фосфором отходы промышленности – фосфатшлак, томасшлак и др. Ф. у. – первые из минеральных удобрений , полученные промышленным путем. Их (суперфосфат) впервые стали вырабатывать в Великобритании в 1842 (до этого в 1-й половине 19 в. в качестве Ф. у. использовали в основном костную муку), в России – с 1868. Разработка фосфоритов для производства удобрений была начата в 1855 во Франции. В России первая попытка их непосредственного использования в земледелии принадлежит А. Н. Энгельгардту, проводившему с 1866 опыты с фосфоритной мукой (измельченным фосфоритом) в своём имении Батищево Смоленской губернии. В 1867–69 Д. И. Менделеев изучал действие Ф. у. на урожайность с.-х. растений в Смоленской, Петербургской, Московской и Симбирской губерниях. В своих работах учёный пропагандировал необходимость применения размолотых фосфоритов и суперфосфата в земледелии. Промышленная разработка апатитов впервые осуществлена в СССР в 1935 (Хибинское месторождение, крупнейшее в мире).
Мировое производство Ф. у. к 1900 составило около 1 млн. т (в пересчёте на P2 O5 ), в России около 20 тыс. т. В 20 в. (особенно с его середины) применение Ф. у. значительно увеличилось (табл. 1). Однако относительный рост потребления их в сельском хозяйстве меньше, чем азотных и калийных удобрений, что объясняется недостаточными запасами фосфатного сырья.
Табл. 1. – Мировое потребление в сельском хозяйстве фосфорных минеральных удобрений, тыс. т P2 O5
Страны | 1950 | 1960 | 1970 | 1974 |
Все страны в том числе: США СССР Франция КНР Австралия ФРГ Польша Япония Бразилия Индия Испания Канада Великобритания Италия | 5918 1869 532 370 – 331 336 55 232 25 8 126 113 413 247 | 9600 2427 1088 783 – 536 707 180 440 62 66 275 133 436 389 | 18802 4145 3184 1684 730 862 857 595 702 237 420 389 284 460 486 | 24255 4600 4496 2152 1390 1171 917 848 793 725 634 481 480 478 472 |
Обеспечение Ф. у. 1 га пашни в 1974 составляло (в кг P2 O5 ): 16,5 в мировом земледелии, 198,4 в Бельгии, 74 в Чехословакии, 66,8 в Великобритании, 56 в Польше, 53,6 в ГДР, 24,1 в США, 18,7 в СССР. Расширился ассортимент Ф. У.
Ф. у. по растворимости разделяют на 3 группы. В водорастворимых удобрениях (простой, двойной и аммонизированный суперфосфаты) фосфор содержится в виде одноосновного фосфата кальция Ca (P2 O4 )2 ×H2 O. Их производят преимущественно гранулированными и используют для основного и припосевного (в рядки) внесения. В цитратнорастворимых (растворимы в щелочном растворе цитрата аммония – реактиве Петермана) и лимоннорастворимых (в лимонной кислоте) удобрениях (преципитат, томасшлак, фосфатшлак, обесфторенный фосфат, плавленный фосфат магния) фосфор находится в виде двухосновного фосфата кальция CaHPO4 ×H2 O или тетракальциевого фосфата Ca4 P2 O5 . Эти удобрения применяют для основного внесения под вспашку или культивацию. В труднорастворимых Ф. у. (фосфоритная мука, костная мука) фосфор содержится в виде трикальцийфосфата Ca3 (PO4 )2 . Вносят их как основное удобрение в повышенных дозах на кислых почвах, в которых труднорастворимые фосфаты переходят в доступную для растений форму. Все Ф. у. негигроскопичны, не слёживаются, хорошо рассеваются туковыми сеялками.
Перспективны новые высококонцентрированные Ф. у. (полифосфаты аммония, метафосфаты калия), содержащие от 50 до 80% P2 O5 . По эффективности они равноценны, а в ряде случаев превосходят стандартные формы Ф. у. В США и некоторых странах Западной Европы получают применение жидкие удобрения, изготовляемые на основе полифосфорных кислот. Использование этих удобрений позволяет полностью механизировать их внесение, до минимума сократить потери, равномерно заделывать в почву, одновременно вносить микроэлементы и пестициды. Характеристика основных минеральных Ф. у. приведена в табл. 2.
Табл. 2. – Характеристика основных минеральных удобрений
Удобрения | Химическая формула | Содержание P2 О5 , % |
Суперфосфат простой и гранулированный | Са (Н2 РО4 )2 Н2 О + 2CaSO4 | 14–19,5 |
Суперфосфат двойной гранулированный | Са (Н2 РО4 )2 ×Н2 О | 45 |
Фосфоритная мука | СаF (РО4 )3 + СаОН (РO4 )3 + СаСО3 | 19–30 |
Преципитат | СаНРO4 ×2Н2 O | 27–35 |
Фосфатшлак | 4СаО×Р2 O5 ×СaSiO3 | 16–19 |
Томасшлак | 4СаО×Р2 О5 + 4СаО×P2 O5 ×CaSiO3 | 14 |
Ф. у. увеличивают урожай и улучшают его качество, ускоряют созревание растений, повышают их устойчивость к полеганию и засухе. Последнее имеет особое значение для СССР, где основные земледельческие районы расположены в зоне недостаточного увлажнения. Установлена высокая эффективность Ф. у. во всех почвенно-климатических зонах страны, при внесении под все с.-х. культуры. Положительное действие их особенно проявляется на фоне обеспечения растений азотом и калием, при глубокой заделке Ф. у. в почву. Внесение 60 кг P2 O5 (основное удобрение) под озимую пшеницу даёт дополнительно 2–5 ц с 1 га зерна. В зонах возделывания яровой пшеницы внесение 60–80 кг P2 O5 повышает урожай на 1,5–2,5 ц с 1 га. В связи с малой подвижностью Ф. у. оказывают последействие в течение нескольких лет: в засушливых районах 6–8 лет, в зоне достаточного увлажнения 2–3 года.
Дозы Ф. у. зависят от почвенных условий, особенности культуры, обеспеченности растений элементами питания. В СССР вносят в качестве основного удобрения (под вспашку или культивацию) 60–120 кг/га P2 O5 и припосевного – 10–40 кг/га P2 O5 . Подкормка фосфором, как правило, малоэффективна, за исключением орошаемых земель.
На орошаемых землях республик Средней Азии и Азербайджана применение 100–120 кг/га P2 O5 под хлопчатник повышает сбор хлопка-сырца на 3–5 ц с 1 га. В зонах свеклосеяния 60–120 кг/га P2 O5 увеличивают урожай сахарной свёклы на 25–50 ц с 1 га и повышают сахаристость корнеплодов на 0,1–0,3%. Внесение в качестве основного удобрения 60 кг/га P2 O5 под подсолнечник на чернозёмах Украины, Молдавии, лесостепи РСФСР и степной зоны Сев. Кавказа повышает урожайность семян на 1–4,5 ц с 1 га; использование 20 кг/га P2 O5 или вместе с 10 кг/га N в рядки при посеве даёт прибавку 1,0–3,4 ц с 1 га. При достаточном фосфорном питании в подсолнечнике увеличивается также содержание жира. При удобрении фосфором в дозе 90 кг/га урожайность картофеля на дерново-подзолистых и чернозёмных почвах повышается па 25–30 ц с 1 га ; при этом содержание крахмала в клубнях возрастает на 0,6–1,2%. Ф. у. эффективны также при внесении под др. с.-х. культуры – кормовые, овощные, плодовые.
Лит.: Прянишников Д. Н., Избр. соч., т. 1, 3, М., 1963; Справочная книга по химизации сельского хозяйства, под ред. В. М. Борисова, М., 1969; Географические закономерности действия удобрений, М., 1975.
О. В. Сдобникова.
Фосфорный ангидрид
Фо'сфорный ангидри'д, пяти окись фосфора, оксид фосфора (V) P4 O10 (P2 O5 ), ангидрид фосфорных кислот. См. Фосфора окислы .
Фосфоробактерин
Фосфоробактери'н,бактериальное удобрение для всех с.-х. культур, содержащее споры микроорганизмов, способных переводить фосфорорганические соединения в усвояемую для растений форму.
Фосфоролиз
Фосфоро'лиз (от фосфор и греч. lýsis – разрушение), ферментативная реакция расщепления химических связей в некоторых биологически важных соединениях с участием фосфорной кислоты; сопровождается включением фосфорильной группы (–H2 PO3 ) в образующиеся продукты. Ферменты, катализирующие Ф., называются фосфорилазами . Ф. широко распространён в процессах обмена веществ у животных, растений и микроорганизмов. Фосфоролитическому расщеплению под действием ферментов могут подвергаться гликозидные (в гликогене), тиоэфирные (в ферментсубстратном комплексе, образующемся при окислении 3-фосфоглицеринового альдегида), углерод-углеродные (в ксилулозо-5-фосфате, в пировиноградной кислоте), фосфодиэфирные (в нуклеиновых кислотах) и углерод-азотные (в цитруллине) связи. Ф. играет важную роль в энергетике живых систем, т.к. фосфорильная группа, включенная в продукты реакции, под действием различных ферментов в конечном счёте переносится на аденозиндифосфорную кислоту с образованием аденозинтрифосфорной кислоты (АТФ) – основного энергетического ресурса клеток.
А. Д. Виноградов.
Фосфорорганические инсектициды
Фосфороргани'ческие инсектици'ды, органические производные фосфорных кислот из группы фосфорорганических пестицидов . Применяются для борьбы с вредителями с.-х. растений, эктопаразитами домашних животных (паразитируют на теле) и синантропными насекомыми (см. Синантропные организмы ). К Ф. и. относятся карбофос, метафос, хлорофос, бензофосфат и др.
Фосфорорганические отравляющие вещества
Фосфороргани'ческие отравля'ющие вещества', группа отравляющих веществ нервно-паралитического действия.
Фосфорорганические пестициды
Фосфороргани'ческие пестици'ды, органические производные фосфорных кислот из группы пестицидов; применяются для борьбы с вредителями и болезнями растений, эктопаразитами домашних животных (паразитируют на теле), синантропными насекомыми и клещами (см. Синантропные организмы ), с сорными растениями, в качестве бактерицидов и регуляторов роста растений. Мало стабильны в окружающей среде, что исключает возможность их накопления в опасных для живых организмов количествах. Большинство Ф. п. разлагается в объектах окружающей среды, образуя нетоксичные продукты (H3 PO4 , CO2 и H2 O). К недостаткам относится сравнительно высокая токсичность многих Ф. п. для человека и животных, что вызывает необходимость соблюдать меры предосторожности при их использовании. Мировое производство Ф. п. к 1975 превысило 200 тыс. т в год, практическое применение получили свыше 150 различных Ф. п., которые используют как инсектициды (карбофос, метафос, хлорофос и др.), акарициды (метилпитрофос, октаметил и др.), фунгициды (пиразофос, хинозан, инезин и др.), гербициды (фалон, бенсулид и др.) и регуляторы роста растений (этефон, фосфон-Д и др.).
Лит.: Мельников Н. Н., Химия и технология пестицидов, М., 1974; Системные фунгициды, пер. с англ., М., 1975; Fest С., Schmidt К. J., The chemistry of organophosphorus pesticides, B. – [e. a.], 1973: Eto М., Organophosphorus pesticides: organic and biological chemistry, Cleveland, 1974.
Н. Н. Мельников.