355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Большая Советская Энциклопедия » Большая Советская Энциклопедия (ФО) » Текст книги (страница 32)
Большая Советская Энциклопедия (ФО)
  • Текст добавлен: 17 сентября 2016, 21:41

Текст книги "Большая Советская Энциклопедия (ФО)"


Автор книги: Большая Советская Энциклопедия


Жанр:

   

Энциклопедии


сообщить о нарушении

Текущая страница: 32 (всего у книги 39 страниц)

Фотоплан

Фотопла'н, точный фотографический план местности, изготавливаемый преимущественно для картографических целей. Ф. монтируют по геодезическим точкам на недеформирующейся основе, используя т. н. «трансформированные снимки», т. е. приведённые к заданному масштабу и горизонтальному положению путём устранения на особом приборе искажений за наклоны оси фотоаппарата при съёмке и за неровность заснятой поверхности. Для составления Ф. с высокими измерительными и изобразительными качествами в основном используются центральные части перекрывающихся смежных снимков, полученных при аэро– или космической фотосъёмке. В процессе изготовления Ф. крупных масштабов наряду с вырезанием и механическим монтажом отпечатков снимков (см. Фотосхема ) начали применять оптический монтаж, т. е. поочерёдное оптическое проектирование соответствующих частей негативов снимков на фотооснову Ф. Изготовлять Ф. на горные районы значительно сложнее, чем на равнинные, из-за большой амплитуды высот местности. В связи с этим дополнительно разработан метод дифференциального трансформирования снимков с получением особого Ф., называемого ортофотопланом . Методика составления Ф. по снимкам, воспроизводящим местность с экрана сканирующих систем (см. Фотоэлектронная аэросъёмка ), а также по наземным и подводным снимкам, находится ещё на стадии разработки. Ф. изготовляются строго в рамках трапеций топографических карт и являются исходным материалом при их создании. Нередко Ф. непосредственно применяются при проектно-изыскательских работах; они необходимы и для составления фотокарт .

  Л. М. Гольдман.

Фотополимерная печатная форма

Фотополиме'рная печа'тная фо'рма, форма высокой печати , печатающие элементы которой получают в результате действия света на полимерную композицию (т. н. фотополимерную композицию – ФПК). Эти композиции представляют собой твёрдые или жидкие (текучие) полимерные материалы, которые под действием интенсивного источника света становятся нерастворимыми в обычных для них растворителях, жидкие ФПК переходят в твёрдое состояние, а твёрдые дополнительно полимеризуются. В состав ФПК, кроме полимера (полиамид, полиакрилат, эфир целлюлозы, полиуретан и т.п.), входит в небольших количествах фотоинициатор (например, бензоин). Ф. п. ф. из твёрдых композиций впервые появились в конце 50-х гг. 20 в. в США, а спустя несколько лет в Японии стали применяться Ф. п. ф. из жидких композиций.

  Для изготовления Ф. п. ф. из твёрдых ФПК используют тонкие алюминиевые или стальные листы с нанесённым на них слоем ФПК толщиной 0,4–0,5 мм. Процесс получения Ф. п. ф. состоит из экспонирования негатива, вымывания незаполимеризовавшегося слоя в пробельных участках и сушки готовой формы.

  Для изготовления Ф. п. ф. из жидких ФПК в специальное устройство (например, кювета из прозрачного бесцветного стекла) помещают негатив, закрывают его прозрачной тонкой бесцветной плёнкой и заливают ФПК. После этого производят экспонирование с двух сторон, в результате чего со стороны негатива образуются заполимеризовавшиеся (твёрдые) печатающие элементы, а с противоположной стороны – подложка формы. Затем струей растворителя вымывают незаполимеризовавшуюся композицию с пробельных элементов и высушивают готовую форму.

  Ф. п. ф. (часто называемые полноформатными гибкими формами) применяются для печатания журналов и книг, в том числе с цветными иллюстрациями. Они просты в изготовлении, имеют небольшую массу, высокую тиражеустойчивость (до 1 млн. оттисков), позволяют широко использовать фотонабор и не требуют больших затрат времени на подготовительные операции при печатании тиража.

  Лит.: Синяков Н. И., Технология изготовления фотомеханических печатных форм, 2 изд., М., 1974.

  Н. Н. Полянский.

Фотопроводимость

Фотопроводи'мость, фоторезистивный эффект, увеличение электропроводности полупроводника под действием электромагнитного излучения. Впервые Ф. наблюдалась в Se У. Смитом (США) в 1873. Обычно Ф. обусловлена увеличением концентрации носителей тока под действием света (концентрационная Ф.). Она возникает в результате нескольких процессов: фотоны «вырывают» электроны из валентной зоны и «забрасывают» их в зону проводимости (рис. 1 ), при этом одновременно возрастает число электронов проводимости и дырок (собственная Ф.); электроны из заполненной зоны забрасываются на свободные примесные уровни – возрастает число дырок (дырочная примесная Ф.); электроны забрасываются с примесных уровней в зону проводимости (электронная примесная Ф.). Возможно комбинированное возбуждение Ф. «собственным» и «примесным» светом: «собственное» возбуждение в результате последующих процессов захвата носителей приводит к заполнению примесных центров и, следовательно, к появлению примесной Ф. (индуцированная примесная Ф.). Концентрационная Ф. может возникать только при возбуждении достаточно коротковолновым излучением, когда энергия фотонов превышает либо ширину запрещенной зоны (в случае собственной и индуцированной Ф.), либо расстояние между одной из зон и примесным уровнем (в случае электронной или дырочной примесной Ф.).

  В той или иной степени Ф. обладают все неметаллические твёрдые тела. Наиболее изучена и широко применяется в технике Ф. полупроводников Ge, Si, Se, CdS, CdSe, InSb, GaAs, PbS и др. Величина концентрационной Ф. пропорциональна квантовому выходу h (отношению числа образующихся носителей к общему числу поглощённых фотонов) и времени жизни неравновесных (избыточных) носителей, возбуждаемых светом (фотоносителей). При освещении видимым светом h обычно меньше 1 из-за «конкурирующих» процессов, приводящих к поглощению света, но не связанных с образованием фотоносителей (возбуждение экситонов, примесных атомов, колебаний кристаллической решётки и др.). При облучении вещества ультрафиолетовым или более жёстким излучением h > 1, т.к. энергия фотона достаточно велика, чтобы не только вырвать электрон из заполненной зоны, но и сообщить ему кинетическую энергию, достаточную для ударной ионизации . Время жизни носителя (т. е. время, которое он в среднем проводит в свободном состоянии) определяется процессами рекомбинации. При прямой (межзонной) рекомбинации фотоэлектрон сразу переходит из зоны проводимости в валентную зону. В случае рекомбинации через примесные центры электрон сначала захватывается примесным центром, а затем попадает в валентную зону. В зависимости от структуры материала, степени его чистоты и температуры время жизни может меняться в пределах от долей сек до 10-8 сек.

  Зависимость Ф. от частоты излучения определяется спектром поглощения полупроводника. По мере увеличения коэффициента поглощения Ф. сначала достигает максимума, а затем падает. Спад Ф. объясняется тем, что при большом коэффициенте поглощения весь свет поглощается в поверхностном слое проводника, где очень велика скорость рекомбинации носителей (поверхностная рекомбинация, рис. 2 ).

  Возможны и др. виды Ф., не связанные с изменением концентрации свободных носителей. Так, при поглощении свободными носителями длинноволнового электромагнитного излучения, не вызывающего межзонных переходов и ионизации примесных центров, происходит увеличение энергии («разогрев») носителей, что приводит к изменению их подвижности и, следовательно, к увеличению электропроводности. Такая подвижностная Ф. убывает при высоких частотах и перестаёт зависеть от частоты при низких частотах. Изменение подвижности под действием излучения может быть обусловлено не только увеличением энергии носителей, но и влиянием излучения на процессы рассеяния электронов кристаллической решёткой.

  Изучение Ф. – один из наиболее эффективных способов исследования свойств твёрдых тел . Явление Ф. используется для создания фоторезисторов , чувствительных и малоинерционных приёмников излучения в очень широком диапазоне длин волн – от g-лучей до диапазона сверхвысоких частот .

  Лит.: Рывкин С. М., Фотоэлектрические явления в полупроводниках, М., 1963; Стильбанс Л. С., Физика полупроводников, М., 1967; см. также лит. при ст. Полупроводники .

  Э. М. Эпштейн.

Рис. 2. Характерный вид спектра собственной фотопроводимости. Резкий спад в длинноволновой области отвечает т. н. краю поглощения – выключению собственного поглощения, когда энергия фотона становится меньше ширины запрещенной зоны; плавный спад в области малых длин волн обусловлен поглощением света у поверхности.

Рис. 1. к ст. Фотопроводимость.

Фотопьезоэлектрический эффект

Фотопьезоэлектри'ческий эффе'кт, возникновение фотоэдс в однородном полупроводнике при одновременном одноосном сжатии и освещении.

Фотореактивация

Фотореактива'ция, уменьшение повреждающего действия ультрафиолетового излучения на живые клетки при последующем воздействии на них ярким видимым светом. Ф. открыта в 1948 И. Ф. Ковалевым (СССР), А. Келнером и Р. Дульбекко (США) в результате опытов, проведённых на инфузориях парамециях, коловратках, конидиях грибов, бактериях и бактериофагах. В основе Ф. лежит ферментативное расщепление на мономеры пиримидиновых димеров, образующихся в ДНК под влиянием ультрафиолетового излучения. Ф. возникла в процессе эволюции как защитное приспособление от губительного действия УФ-компонента солнечного излучения и является одной из важнейших форм репарации живых организмов от повреждений их генетического аппарата.

  Лит.: Ковалев И. Ф., Влияние видимого участка спектра лучистой энергии на динамику патологического процесса в клетке, поврежденной ультрафиолетовыми лучами, в кн.: Учёные записки Украинского экспериментального института глазных болезней, т. 1, Од., 1949; Восстановление клеток от повреждений, пер. с англ., М., 1963; Смит К. и Хэнеуолт Ф., Молекулярная фотобиология, пер. с англ., М., 1972.

Фоторегистрирующая установка

Фоторегистри'рующая устано'вка, фотохронограф, прибор для регистрации развития быстропротекающих процессов (взрыв, горение, детонация, электрический разряд и т.п.) в некотором заданном направлении. О принципах действия наиболее употребительных типов Ф. у. см. Развёртка оптическая .

Фоторезист

Фоторези'ст (от фото... и англ. resist – сопротивляться, препятствовать), полимерный светочувствительный слой, нанесённый на поверхность полупроводниковой пластины с окисной плёнкой. Ф. используются в полупроводниковой электронике и микроэлектронике (см., например, Планарная технология ) для получения на пластине «окон» заданной конфигурации, открывающих доступ к ней травителя. В результате экспонирования Ф. через наложенный на него стеклянный шаблон нужного рисунка ультрафиолетовым излучением (иногда электронным лучом) свойства его меняются: либо растворимость Ф. резко уменьшается (негативный Ф.), либо он разрушается и становится легко удалимым (позитивный Ф.). Последующая обработка растворителем образует в Ф. «окна» на необлучённых участках негативного Ф. или облученных участках позитивного Ф. Типичные Ф.: негативные – слои поливинилового спирта с солями хромовых кислот или эфирами коричной кислоты , слои циклизованного каучука с добавками, вызывающими «сшивание» макромолекул под действием света; позитивные – феноло– или крезолоформальдегидная смола с о -нафтохинондиазидом. См. также Фотолитография .

  Лит.: Фотолитография и оптика, М. – Берлин, 1974; Мазель Е. З., Пресс Ф. П., Планарная технология кремниевых приборов, М., 1974.

Фоторезистивный эффект

Фоторезисти'вный эффе'кт, то же, что и фотопроводимость .

Фоторезистор

Фоторези'стор, полупроводниковый прибор, характеризующийся свойством изменять своё электрическое сопротивление под действием оптического излучения (см. Фотопроводимость ). Через Ф., включенный в электрическую цепь, содержащую источник постоянного тока, протекает электрический ток. При облучении Ф. ток увеличивается в результате появления фототока, который пропорционален уровню воздействующего сигнала и не зависит от полярности приложенного к Ф. напряжения. Появление фототока (или вызванного им изменения напряжения на Ф.) используется для регистрации излучений (см. Приёмники излучения , Приёмники света , Оптрон ).

  Для изготовления Ф. используют Se, Te, Ge (чистый либо легированный Au, Cu или Zn), Si, PbS, PbSe, PbTe, InSb, InAs, CdS, CdSe, HgCdTe. Характерная особенность этих полупроводниковых материалов – малая ширина запрещенной зоны (например, у InSb она составляет 0,18 эв ). Полупроводник наносят в виде тонкого слоя на стеклянную или кварцевую подложку либо вырезают в виде тонкой пластинки из монокристалла. Слой (пластинку) снабжают двумя контактами (электродами). Подложку с фоточувствительным слоем (или пластинку) и электроды помещают в защитный корпус.

  Важнейшие параметры Ф.: интегральная чувствительность (определяемая как отношение изменения напряжения на единицу мощности падающего излучения при номинальном значении напряжения питания) составляет 103 –108в/вт; порог чувствительности (величина минимального сигнала, регистрируемого Ф., отнесённая к единице полосы рабочих частот) достигает 10-12вт/гц1/2 постоянная времени (характеризующая инерционность Ф.) лежит в пределах 10-3 –10-8 сек. Для повышения порога чувствительности и расширения рабочего диапазона длин волн принимаемого излучения фоточувствительный слой некоторых Ф. подвергают охлаждению. Так, охлаждение Ф. из PbS до 78 К позволяет на порядок повысить пороговую чувствительность и расширить диапазон длин волн принимаемого излучения с 3,3 мкм до 5 мкм; глубоким охлаждением (до 4 К) Ф. из Ge, легированного Zn, доводят границу его спектральной чувствительности до 40 мкм.

  Лит.: Марков М, Н., Приемники инфракрасного излучения, М., 1968; Аксененко М. Д., Красовский Е. А., Фоторезисторы, М., 1973.

  И. Ф. Усольцев.

Фоторецепторы

Фотореце'пторы (от фото... и рецепторы ), световоспринимающие. светочувствительные образования, способные в ответ на поглощение квантов света молекулами содержащихся в них пигментов генерировать физиологический (нервный, рецепторный) сигнал. В широком смысле под Ф. понимают все светочувствительные образования от стигмы одноклеточных организмов и одиночных рассеянных по телу светочувствительных клеток (черви, ланцетник) до специализированных зрительных клеток глаза – сложного органа фоторецепции животных и человека. К Ф. относят также различные структуры – хлоропласты растений, пластиды водорослей, хроматофоры бактерий, содержащие пигменты и обеспечивающие фотобиологические процессы (фотосинтез, фототропизм, фототаксис, фотопериодизм и др.).

  В сетчатке глаза позвоночных животных и человека Ф. являются высокодифференцированные зрительные клетки – палочковые клетки и колбочковые клетки ; у беспозвоночных – т. н. ретинулярные клетки. Светочувствительный элемент этих клеток – фоторецепторная мембрана содержит поглощающий свет зрительный пигмент (родопсин ) и фосфолипиды. В Ф. позвоночных фоторецепторные мембраны образуют т. н. наружные сегменты палочек и колбочек, в Ф. беспозвоночных – многочисленные пальцеобразные выросты – микровиллы, плотно упакованную систему которых называют рабдомером зрительной клетки. Наружный сегмент у позвоночных состоит из множества (до 15 000 – у глубоководных рыб) дисков (или очень плоских мешочков) толщиной около 160  и диаметром от 1–2 до 6–8 мкм (в зависимости от вида животного); диски ориентированы строго перпендикулярно длинной оси клетки: в палочках они «плавают» в цитоплазме, т.к. оторваны от наружной клеточной мембраны, в большинстве же колбочек они сохраняют с ней связь. В палочках, но не в колбочках происходит постоянное обновление наружного сегмента за счёт образования новых и отмирания (фагоцитоза) «старых» верхушечных дисков. Вследствие строгой ориентации молекул зрительного пигмента в фоторецепторной мембране и особой (трубчатой) упаковки её в клетке многие беспозвоночные способны различать направление поляризации света и ориентироваться по нему. Палочки позвоночных – рецепторы сумеречного (скотопического) зрения, колбочки ответственны за дневное (фотопическое) и цветовое зрение . Фасеточные глаза насекомых также способны к различению цвета.

  Лит. см. при ст. Фоторецепция .

  М. А. Островский.

Фоторецепция

Фотореце'пция (от фото... и рецепция ), восприятие света одноклеточными организмами или специализированными образованиями (фоторецепторами), содержащими светочувствительные пигменты. Ф. – одно из основных фотобиологических явлений, в котором свет выступает как источник информации. В отличие от фотосинтеза , где энергия света используется для химической работы, в Ф. она несёт триггерную, информативную функцию, запуская сложную цепь молекулярных, мембранных и клеточных процессов. Эти процессы обеспечивают сравнительно простые формы Ф., к которым относят фототропизм – изменение ориентации по отношению к источнику света прикрепленных животных и растений; фототаксис – направленное движение к свету или от света свободно движущихся организмов; фотокинезис – ненаправленное увеличение или уменьшение подвижности организма в ответ на изменения уровня освещённости. Сложная и высшая форма Ф. – зрение , осуществляемое специальными органами различной степени совершенства.

  В эволюционном и сравнительно-физиологических аспектах исследование Ф. представляет большой интерес. У простейших примитивная фоторецепторная система состоит из глазного пятнышка и жгутика, т. е. рецептора и эффектора. У хламидомонады светочувствительное глазное пятнышко связано с хлоропластом , у эвглены – непосредственно со жгутиком. Диффузная световая чувствительность (без участия фоторецепторов) свойственна большинству беспозвоночных животных и некоторым позвоночным (отдельные виды рыб, земноводных), у некоторых она обеспечивается специальными клеточными органеллами – хроматофорами . Неспециализированные светочувствительные элементы могут быть разбросаны по всему телу или сконцентрированы на его поверхности и в глубине.

  Зрительная Ф. совершается в фоторецепторах. Стигмы и глазки простейших, а также глазки кишечнополостных, плоских и кольчатых червей, членистоногих можно рассматривать как простейшие формы органов зрения. У моллюсков структура и функция фоторецепторной системы более сложна (у осьминога и каракатицы она, например, вполне сравнима с глазом позвоночных). Высокоспециализированные фоторецепторы в сложном (фасеточном) глазу членистоногих и в камерном глазу позвоночных образуют наиболее совершенные органы зрения. Первичные процессы зрения общие у всех животных и совершаются в светочувствительной фоторецепторной мембране зрительной клетки. Состав и молекулярная организация мембран у позвоночных и беспозвоночных в основном одинаковы. Различия, как правило, касаются способов упаковки мембран в световоспринимающих частях различных фоторецепторов. Основной светочувствительный элемент фоторецепторной мембраны – зрительный пигмент (типичный и хорошо изученный представитель – родопсин ).

  В сравнительно-биохимическом аспекте исключительный интерес представляет тот факт, что производное b-каротина – ретиналь служит хромофором всех без исключения зрительных пигментов; более того, из всех его возможных изомеров только 11-цис- форма способна быть хромофорной частью молекулы зрительного пигмента. Т. о., удачно найденное однажды молекулярно-биохимическое решение в механизме Ф. оказалось филогенетически закрепленным. Белковая часть молекул зрительного пигмента видоспецифична. Специфичностью белка определяются, по-видимому, и различия в спектральной чувствительности колбочковых клеток в сетчатке глаза при цветовом зрении . Физико-химический механизм Ф. основан на реакции фотоизомеризации ретиналя из 11-цис- формы полностью в транс- форму. Вследствие этой фотореакции изменяются структура (конформация) белковой части молекулы зрительного пигмента и функцией, свойства фоторецепторной мембраны. В результате в зрительной клетке происходит перемещение ионов и, возможно, изменение скоростей некоторых ферментативных реакций. Фотоиндуцированные изменения в молекуле зрительного пигмента и фоторецепторной мембране приводят в конечном счёте к возникновению в рецепторной клетке зрительного сигнала – распространяющегося фоторецепторного электрического потенциала.

  См. также Фотобиология .

  Лит.: Проссер Л., Браун Ф., Сравнительная физиология животных, пер. с англ., М., 1967, гл. 12; Физиология сенсорных систем, ч. 1, Л., 1971, с. 88–119 (Руководство по физиологии); Handbook of sensory physiology, v. 7/1–v. 7/2, В., 1972.

  М. А. Островский.


    Ваша оценка произведения:

Популярные книги за неделю

    wait_for_cache