Текст книги "Большая Советская Энциклопедия (ПЛ)"
Автор книги: Большая Советская Энциклопедия
Жанр:
Энциклопедии
сообщить о нарушении
Текущая страница: 3 (всего у книги 38 страниц)
Методы теоретического описания плазмы. Основными методами являются: 1) исследование движения отдельных частиц П.; 2) магнитогидродинамическое описание П.; 3) кинетическое рассмотрение частиц и волн в П.
Скорость движения u отдельной частицы П. в магнитном поле можно представить как сумму составляющих u|| (параллельной полю) и u^ (перпендикулярной полю). В разреженной П., где можно пренебречь столкновениями, заряженная частица летит со скоростью u|| вдоль магнитной силовой линии, быстро вращаясь по ларморовской спирали (см. рис. 2). При наличии возмущающей силы F частица также медленно «дрейфует» в направлении, перпендикулярном как магнитному полю, так и направлению силы F. Например, в электрическом поле Е, направленном под углом к магнитному, происходит «электрический дрейф» со скоростью u др. эл. = cE^/В (Е^—составляющая напряжённости электрического поля, перпендикулярная магнитному полю В). Если же Е = 0, но магнитное поле неоднородно, то имеет место «центробежный дрейф» в направлении бинормали к силовой линии, а в продольном направлении диамагнитная сила тормозит частицу, приближающуюся к области более сильного магнитного поля. При этом остаются неизменными полная энергия частицы ( u||2 + u^2) и её магнитный момент m = mu^2/2B. Таково, например, движение в магнитном поле Земли космических частиц (рис. 5), которые отражаются от полярных областей, где поле сильнее, и вместе с тем дрейфуют вокруг Земли (ионы – на запад, электроны – на восток). Поле Земли является магнитной ловушкой: оно удерживает захваченные им частицы в радиационных поясах. Аналогичными свойствами удержания П. обладают так называемые зеркальные магнитные ловушки, применяемые в исследованиях по управляемому термоядерному синтезу (подробнее см. Магнитные ловушки).
При описании П. с помощью уравнений магнитной гидродинамики она рассматривается как сплошная среда, в которой могут протекать токи. Взаимодействие этих токов с магнитным полем создаёт объёмные электродинамические силы, которые должны уравновешивать газодинамическое давление П., аналогичное давлению в нейтральном газе (см. Газовая динамика). В состоянии равновесия магнитные силовые линии и линии тока должны проходить по поверхностям постоянного давления. Если поле не проникает в П. (модель «идеального» проводника), то такой поверхностью является сама граница П., и на ней газодинамическое давление П. rгаз должно быть равно внешнему магнитному давлению rмагн = B2/8p. На рис. 6 показан простейший пример такого равновесия – так называемый «зет-пинч», возникающий при разряде между двумя электродами. Штриховка указывает линии тока на поверхности П. Равновесие зет-пинча неустойчиво – на нём легко образуются желобки, идущие вдоль магнитного поля. При последующем развитии они превращаются в тонкие перетяжки и могут приводить к обрыву тока (подробнее см. Пинч-эффект). В мощных разрядах с токами ~ 106а в дейтериевой П. такой процесс сопровождается некоторым числом ядерных реакций и испусканием нейтронов, а также жёстких рентгеновских лучей, что впервые было обнаружено в 1952 Л. А. Арцимовичем, М. А. Леонтовичем и их сотрудниками.
Если внутри «пинча» создать продольное магнитное поле В||, то, двигаясь из-за «вмороженности» вместе с П., оно своим давлением будет препятствовать развитию перетяжек. Желобки и в этом случае могут возникать вдоль винтовых силовых линии полного магнитного поля, складывающегося из продольного поля и поперечного поля В^, которое создаётся самим током П. I||. Это имеет место, например, в так называемом равновесном тороидальном пинче. Однако при условии B||/B^ > R/a (R и a — большой и малый радиусы тора, рис. 7) шаг винтовых силовых линий полного поля оказывается больше длины замкнутого плазменного шнура 2pR и желобковая неустойчивость, как показывает опыт, не развивается. Такие системы, называются токамаками, используются для исследований по проблеме УТС.
При рассмотрении движения П. методами магнитной гидродинамики необходимо учитывать, что вмороженность поля может быть неполной; её степень определяется магнитным Рейнольдса числом.
Наиболее детальным методом описания П. является кинетический, основанный на использовании функции распределения частиц по координатам и импульсам f = f (t, r, p). Импульс частицы p равен mu. В состоянии равновесия термодинамического эта функция имеет вид универсального Максвелла распределения, а в общем случае её находят из кинетического уравнения Больцмана:
.
Здесь F = eE + (e/c)[uB] — внешняя сила, действующая на заряженную частицу П., а член С (f) учитывает взаимные столкновения частиц. При рассмотрении быстрых движений П. столкновениями часто можно пренебречь, полагая С (f) » 0. Тогда кинетическое уравнение называется бесстолкновительным уравнением Власова с самосогласованными полямиЕ и В (они сами определяются движением заряженных частиц). Если П. полностью ионизована, т. е. в ней присутствуют только заряженные частицы, то их столкновения, ввиду преобладающей роли далёких пролётов (см. выше), эквивалентны процессу диффузии в пространстве импульсов (скоростей). Выражение С (f) для такой П. было получено Л. Д. Ландау и может быть записано в виде:
,
где Ñ = – градиент в импульсном пространстве, – тензорный коэффициент диффузии в этом же пространстве, a Fc — сила взаимного (так называемого «динамического») трения частиц.
При высоких температурах и низкой плотности можно пренебречь столкновениями частиц с частицами в П. Однако в случае, когда в П. возбуждены волны какого-либо типа (см. ниже), необходимо учитывать «столкновения» частиц с волнами. При не слишком больших амплитудах колебаний в П. подобные «столкновения», как и при далёких пролётах, сопровождаются малыми изменениями импульса частиц, и член С (f) сохраняет свой «диффузионный» вид с тем отличием, что коэффициент определяется интенсивностью волн. Важнейшим результатом кинетического описания П. является учёт взаимодействия волны с группой так называемых резонансных частиц, скорости которых совпадают со скоростью распространения волны. Именно эти частицы могут наиболее эффективно обмениваться с волной энергией и импульсом. В 1946 Л. Д. Ландау предсказал возможность основанного на таком обмене «бесстолкновительного затухания» ленгмюровских волн, впоследствии обнаруженного в опытах с П. Если направить в П. дополнительный пучок частиц, то подобный обмен может приводить не к затуханию, а к усилению волн. Этот эффект в известном смысле аналогичен Черенкова – Вавилова излучению.
Колебания и неустойчивости плазмы. Волны в П. отличают их объёмный характер и разнообразие свойств. С помощью разложения в Фурье ряд любое малое возмущение в П. можно представить как набор волн простейшего синусоидального вида (рис. 8). Каждая такая (монохроматическая) волна характеризуется определённой частотой w, длиной волны l и так называемой фазовой скоростью распространения uфаз. Кроме того, волны могут различаться поляризацией, т. е. направлением вектора электрического поля в волне. Если это поле направлено вдоль скорости распространения, волна называется продольной, а если поперёк – поперечной. В П. без магнитного поля возможны волны трёх типов: продольные ленгмюровские с частотой wo, продольные звуковые (точнее ионно-звуковые) и поперечные электромагнитные (световые или радиоволны). Поперечные волны могут обладать двумя поляризациями и могут распространяться в П. без магнитного поля, только если их частота w превышает плазменную частоту wo. В противоположном же случае w < woпреломления показатель П. становится мнимым, и поперечные волны не могут распространяться внутри П., а отражаются её поверхностью подобно тому, как лучи света отражаются зеркалом. Именно поэтому радиоволны с l > ~ 20 м отражаются ионосферой, что обеспечивает возможность дальней радиосвязи на Земле.
Однако при наличии магнитного поля поперечные волны, резонируя с ионами и электронами на их циклотронных частотах, могут распространяться внутри П. и при w < wo. Это означает появление ещё двух типов волн в П., называются альфвеновскими и быстрыми магнитозвуковыми. Альфвеновская волна представляет собой поперечное возмущение, распространяющееся вдоль магнитного поля со скоростью ua = В/ (Mi — масса ионов). Её природа обусловлена «вмороженностью» и упругостью силовых линии, которые, стремясь сократить свою длину и будучи «нагружены» частицами П., в частности массивными ионами, колеблются подобно натянутым струнам. Быстрая магнитозвуковая волна в области малых частот по существу лишь поляризацией отличается от альфвеновской (их скорости близки и определяются магнитным полем и инерцией тяжёлых ионов). В области же больших частот, где ионы можно считать неподвижными, она определяется инерцией электронов и имеет специфическую винтовую поляризацию. Поэтому здесь её называют «геликонной ветвью» колебаний, или «ветвью вистлеров», т. е. свистов, поскольку в магнитосферной П. она проявляется в виде характерных свистов при радиосвязи. Кроме того, в П. может распространяться медленная магнитозвуковая волна, которая представляет собой обычную звуковую волну с характеристиками, несколько измененными магнитным полем.
Т. о., при наличии магнитного поля в однородной П. возможны волны шести типов: три высокочастотные и три низкочастотные. Если температура или плотность П. в магнитном поле неоднородны, то возможны ещё так называемые «дрейфовые» волны. При больших амплитудах возможны «бесстолкновительные» ударные волны (наблюдаемые на границе магнитосферы), уединённые волны (солитоны), а также ряд др. «нелинейных» волн и, наконец, сильноразвитая турбулентность движения П.
В неравновесной П. при определённых условиях возможна «раскачка неустойчивостей», т. е. нарастание какого-либо из перечисленных типов волн до некоторого уровня насыщения. Возможны и более сложные случаи индуцированного возбуждения волн одного типа за счёт энергии волн другого типа.
Излучение плазмы. Спектр излучения низкотемпературной (например, газоразрядной) П. состоит из отдельных спектральных линий. В газосветных трубках, применяемых, в частности, для целей рекламы и освещения (лампы «дневного света»), наряду с ионизацией происходит и обратный процесс – рекомбинация ионов и электронов, дающая так называемое рекомбинационное излучение со спектром в виде широких полос.
Для высокотемпературной П. со значительной степенью ионизации характерно тормозное излучение с непрерывным спектром, возникающее при столкновениях электронов с ионами. В магнитном поле ларморовское вращение электронов П. приводит к появлению так называемого магнитотормозного излучения на гармониках циклотронной частоты, особенно существенного при больших (релятивистских) энергиях электронов. Важную роль в космической П. играет вынужденное излучение типа обратного Комптона эффекта. Им, а также магнито-тормозным механизмом обусловлено излучение некоторых космических туманностей, например Крабовидной.
Корпускулярным излучением П. называются быстрые частицы, вылетающие из неравновесной П. в результате развития различных типов неустойчивостей. В первую очередь в П. раскачиваются какие-либо характерные колебания, энергия которых затем передаётся небольшой группе «резонансных» частиц (см. выше). По-видимому, этим механизмом объясняется ускорение не очень энергичных космических частиц в атмосфере Солнца и в туманностях, образующихся при вспышках сверхновых звёзд типа пульсара в Крабовидной туманности.
Диагностика плазмы. Помещая в П. электрический зонд (маленький электрод) и регистрируя зависимость тока от подаваемого напряжения, можно определить температуру и плотность П. С помощью миниатюрной индукционной катушки – «магнитного зонда» – можно измерять изменение магнитного поля во времени. Эти способы связаны, однако, с активным вмешательством в П. и могут внести нежелательные загрязнения. К более чистым методам относятся «просвечивание» П. пучками нейтральных частиц и пучками радиоволн. Лазерное просвечивание П. в различных вариантах, в том числе с использованием голографии, является наиболее тонким и к тому же локальным методом лабораторной диагностики П.
Часто используют также пассивные методы диагностики – наблюдение спектра излучения П. (единственный метод в астрономии), вывод быстрых нейтральных атомов, образовавшихся в результате перезарядки ионов в П., измерение уровня радиошумов. Плотную П. изучают с помощью сверхскоростной киносъёмки(несколько млн. кадров в сек) и развёртки оптической. В исследованиях по УТС регистрируется также рентгеновский спектр тормозного излучения и нейтронное излучение дейтериевой П.
Применения плазмы. Высокотемпературная П. (Т ~ 108 К) из дейтерия и трития — основной объект исследований по УТС. Такая П. создаётся путём нагрева и быстрого сжатия П. током (используется также высокочастотный подогрев) либо путём инжекции высокоэнергичных нейтральных атомов в магнитное поле, где они ионизуются, либо облучением мишени мощными лазерами или релятивистскими электронными пучками.
Низкотемпературная П. (Т ~ 103 К) находит применение в газоразрядных источниках света и в газовых лазерах, в термоэлектронных преобразователяхтепловой энергии в электрическую и в магнитогидродинамических (МГД) генераторах, где струя П. тормозится в канале с поперечным магнитным полем В, что приводит к появлению между верхним и нижним электродами (рис. 9) электрического поля напряжённостью Е порядка Bu/c (u — скорость потока П.); напряжение с электродов подаётся во внешнюю цепь.
Если «обратить» МГД-генератор, пропуская через П. в магнитном поле ток из внешнего источника, образуется плазменный двигатель, весьма перспективный для длительных космических полётов.
Плазматроны, создающие струи плотной низкотемпературной П., широко применяются в различных областях техники. В частности, с их помощью режут и сваривают металлы, наносят покрытия (см. Плазменная металлургия, Плазменная обработка, Плазменное бурение). В плазмохимии низкотемпературную П. используют для получения некоторых химических соединений, например галогенидов инертных газов типа KrF, которые не удаётся получить др. путём. Кроме того, высокие температуры П. приводят к высокой скорости протекания химических реакций – как прямых реакций синтеза, так и обратных реакций разложения. Если производить синтез «на пролёте» плазменной струи, расширяя и тем самым быстро охлаждая её на следующем участке (такая операция называется «закалкой»), то можно затруднить обратные реакции разложения и существенно повысить выход требуемого продукта.
Лит.: Арцимович Л. А., Элементарная физика плазмы, 3 изд., М., 1969; его же. Управляемые термоядерные реакции, 2 изд., М., 1963; Франк-Каменецкий Д. А., Лекции по физике плазмы, М., 1963; Альвен Г., Фельтхаммар К.-Г., Космическая электродинамика, пер. с англ., 2 изд., М., 1967; Спитцер Л., Физика полностью ионизованного газа, пер. с англ., М., 1957; Гинзбург В. Л., Распространение электромагнитных волн в плазме, 2 изд., М., 1967; Трубников Б. А., Введение в теорию плазмы, М., 1969; Вопросы теории плазмы. Сб., под ред. М. А. Леонтовича, в. 1—7, М., 1963—73.
Б. А. Трубников.
Рис. 4. При высокой электропроводности среды силовые линии магнитного поля В движутся вместе с нею (свойство вмороженности силовых линий), v – скорость среды.
Рис. 9. Схема МГД – генератора, преобразующего кинетическую энергию движущейся плазмы в электрическую энергию. R – внешняя нагрузка генератора, по которой протекает ток I.
Рис. 1. Электроны, вылетая по инерции из плазмы, нарушают квазинейтральность на длине порядка дебаевского радиуса экранирования D и повышают потенциал плазмы (ni, и ne – соответственно, плотности ионов и электронов).
Рис. 3. Электрон, пролетающий мимо иона, движется по гиперболе. – угол отклонения.
Рис. 7. Токамак. Токи, текущие в проводящем кожухе, препятствуют смешению плазменного шнура.
Рис. 8. Синусоидальный профиль плотности электронов в монохроматической плазменной волне.
Рис. 2. Вращение ионов и элекронов по ларморовским спиралям ослабляет внешнее магнитное поле (диамагнетизм плазмы). Радиус вращения иона с зарядом е > 0 больше, чем у электрона (е < 0). v║ и v^ – параллельные и перпендикулярные магнитному полю В составляющие скоростей частиц.
Рис. 6. Образование перетяжек на канале разряда, сжатого собственным магнитным полем. I – ток; В – индукция магнитного поля, равная нулю внутри разряда.
Рис. 5. Космическая частица, захваченная в радиационном поясе, движется по зигзагообразной траектории вокруг Земли.
Плазма крови
Пла'зма кро'ви, жидкая часть крови. В П. к. находятся её форменные элементы (эритроциты, лейкоциты, тромбоциты). Представляет собой коллоидный раствор белков и др. органических и неорганических соединений, содержит более 20 витаминов и 20 микроэлементов (железо, фосфор, кальций, цинк, кобальт и др.) (Подробнее см. в ст. Кровь.)
Исследование П. к. имеет большое значение в диагностике различных заболеваний (появление патологических белков, например С-реактивного белка при ревматизме; повышение содержания обычных ингредиентов, например сахара – гипергликемия – при сахарном диабете; повышение титра соответствующих антител и т.д.). Из П. к. животных и человека готовят лечебные препараты (сухая П. к., альбумин, фибриноген, гамма-глобулин).
Лит.: Туманов А. К., Сывороточные системы крови, М., 1968.
Плазма твёрдых тел
Пла'зма твёрдых тел, условный физический термин, означающий совокупность подвижных заряженных частиц в твёрдых проводниках (электронов проводимости в металлах или электронов и дырок в полупроводниках) в таких условиях, когда их свойства близки к свойствамплазмы (см. рис.). Например, под воздействием высокочастотного электромагнитного поля, частота которого w значительно больше, чем частота столкновений электронов, коллективные (плазменные) эффекты играют в свойствах проводников бо'льшую роль, чем столкновения электронов друг с другом, с фононами, примесями и др. дефектами в кристаллах. Это позволяет перенести представления, созданные при исследовании плазмы, в физику твёрдого тела. Главное отличие П. т. т. от газовой плазмы – значительно бо'льшая концентрация n заряженных частиц. В газовой плазме п ~ 1012см-3, в металлах n ~ 1022—1023см-3, в полупроводниках n ~1015 – 1017см-3. Это приводит к различию всех характеристик П. т. т. и газовой плазмы. Например, плазменная частота (частота собственных колебаний плазмы, см. Плазмон) пропорциональна Ön, поэтому она для П. т. т. существенно больше, чем для газовой плазмы. Особенностью П. т. т. является то, что она может быть заряженной. Плазменные эффекты в твёрдых телах (особенно в полупроводниках) используются для создания приборов высокочастотной техники.
Лит.: Бауэрс Р., Плазма в твердых телах, в сборнике: Физика твердого тела. Электронные свойства твердых тел, пер. с англ., М., 1972. См. также лит. при ст. Твёрдое тело.
М. И. Каганов.
Схематическое изображение: вверху – газовой плазмы; в центре – электронной плазмы в металле; внизу – электронно-дырочной плазмы в полупроводнике. Заштрихованные частицы – нейтральные атомы; чёрные кружочки – подвижные электроны; большие белые кружочки со знаком плюс – ионы, маленькие – дырки проводимости.
Плазмалемма
Плазмале'мма, то же, что плазматическая мембрана.
Плазмалогены
Плазмалоге'ны, группа природных нейтральных фосфолипидов (глицеринфосфатидов). Впервые обнаружены в 1924 в плазме крови. Широко распространены в тканях животных (мозг, сердце, скелетные мышцы) и растений (плоды бобовых, водоросли).
Плазматическая мембрана
Плазмати'ческая мембра'на, плазмалемма (от греч. plásma, буквально – вылепленное, оформленное и lémma – оболочка, кожица), мембрана, окружающая протоплазму растительных и животных клеток. У последних П. м. является внутренним (обязательным) компонентом оболочки клетки.
Плазматические клетки
Плазмати'ческие кле'тки, клетки Унна, разновидность клеток соединительной и кроветворной тканей; образуются у позвоночных животных и человека из стволовых кроветворных клеток костного мозга. Основная функция П. к. – выработка антител. П. к. содержатся в лимфоидной и кроветворной тканях, серозных оболочках, соединительной ткани органов пищеварения и дыхания; накопление их наблюдается при иммунологических реакциях на чужеродные ткани, инфекцию и т.п. П. к. имеют округлую форму; ядро с грубыми глыбками хроматина располагается эксцентрично. Цитоплазма содержит много рибонуклеиновой кислоты и поэтому сильно окрашивается основными красителями. Лишь вблизи ядра имеется слабо окрашиваемый участок, здесь расположены Гольджи комплекс и клеточный центр. В П. к. выявлены также хорошо развитая эндоплазматическая сеть, обилие рибосом, что характерно для активно синтезирующих и выделяющих белок клеток.
Н. Г. Хрущов.